天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 939–951.doi: 10.11764/j.issn.1672-1926.2020.04.025

• 天然气地球化学 • 上一篇    下一篇

含油气系统Re⁃Os定年及Re⁃Os元素和同位素体系研究新进展

赛彦明1(),田辉2,李杰3,刘银山4,张彬5,刘俊杰3()   

  1. 1.中国石化西南油气分公司石油工程技术研究院,四川 德阳 618000
    2.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东 广州 510640
    3.中国科学院广州地球化学研究所同位素地球化学国家重点实验室,广东 广州 510640
    4.陕西延长石油(集团)有限责任公司研究院,陕西 西安 710065
    5.中国石油长庆油田分公司对外合作部,陕西 西安 710018
  • 收稿日期:2019-12-15 修回日期:2020-04-17 出版日期:2020-07-10 发布日期:2020-07-02
  • 通讯作者: 刘俊杰 E-mail:373368297@qq.com;liu.junjie@gig.ac.cn
  • 作者简介:赛彦明(1987-),男,河南漯河人,工程师,学士,主要从事钻井和地球化学研究.E-mail: 373368297@qq.com.
  • 基金资助:
    广东省基础与应用基础研究基金广州市联合基金(粤穗联合基金)“原油初始Re-Os元素和同位素体系研究”(2019A1515110310);中国石油天然气集团有限公司碳酸盐岩储层重点实验室开放基金“Re-Os油气定年及烃源岩热模拟生烃Re-Os体系研究”(RIPED-HZDZY-2019-JS-694)

Recent research progresses on Re-Os geochronology and Re-Os elemental and isotopic systematics in petroleum systems

Yan-Ming SAI1(),Hui TIAN2,Jie LI3,Yin-Shan LIU4,Bin ZHANG5,Jun-Jie LIU3()   

  1. 1.Petroleum Engineering Technology Research Institute of the Southwest Oil and Gas Branch of SINOPEC, Deyang 618000, China
    2.State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    3.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
    4.Research Institute of Yanchang Petroleum (Group) Co. , Xi’an 710065, China
    5.Foreign Cooperation Department, PetroChina Changqing Oilfield Company, Xi’an 710018, China
  • Received:2019-12-15 Revised:2020-04-17 Online:2020-07-10 Published:2020-07-02
  • Contact: Jun-Jie LIU E-mail:373368297@qq.com;liu.junjie@gig.ac.cn
  • Supported by:
    Guangdong Basic and Applied Basic Research Fund (Guangdong-Guangzhou Joint Fund)(2019A1515110310);Open Fund of Carbonate Reservoir Key Laboratory of CNPC(RIPED-HZDZY-2019-JS-694)

摘要:

近年来,铼—锇(Re?Os)同位素体系在含油气系统的生油—成藏、热裂解和热化学硫酸盐还原反应等事件的定年,以及油源示踪过程中取得了一系列的成果。Re和Os在原油的沥青质组分中含量较高,同时也在沥青质较早沉淀出来的次组分中含量较高,沥青质与可溶质以及沥青质的次组分之间的Re?Os同位素组成关系复杂。实验表明水中的Re和Os能快速、大量地转移到原油中去。Re?Os同位素体系在油气成藏年代学中具有很好的应用前景。不过,多个原油样品的Re?Os定年法得到的年龄一般不确定度较大,而利用单个原油次组分Re?Os定年法获得的年龄的地质意义有待探讨。Os同位素组成的均一机制、 Re?Os体系的封闭性以及在原油中Re和Os以何种形式存在等问题仍需要进一步研究。

关键词: 含油气系统, 铼—锇定年, 油源对比, Re?Os体系, 油水接触

Abstract:

Re-Os geochronometer has been used in the dating of the generation-accumulation, thermal cracking and thermochemical sulphate reduction of crude oil and the oil-source correlation of petroleum systems in recent years. Re and Os concentrations are higher in the asphaltene fraction of crude oil and the earlier precipitated fractions of asphaltene. The correlations of the Re-Os isotopic systematics between asphaltene and maltene and among the fractions of asphaltenes are complex. It is shown by experiments that Re and Os can transfer from water to oil rapidly in significant amount. However, Re-Os dating with multiple crude oil samples is suffering from great uncertainties while single oil dating methodology does not always work. A bright future for the application of Re-Os geochronometer on the dating of crude oil generation and accumulation requests further research on the homogenization mechanism of 187Os/188Os, the closed system of Re-Os systematics and how Re and Os reside in crude oil.

Key words: Petroleum system, Re-Os dating, Oil source correlation, Re-Os systematics, Oil-water contact

中图分类号: 

  • TE122.1+13

图1

烃源岩187Os/188Os随时间的增长演示"

图2

Duvernay原油与西加拿大沉积盆地其他烃源岩在66 Ma时187Os/188Os的对比(引用自LIU等[37])"

图3

在187Re/188Os—187Os/188Os空间上的所有澳大利亚石沥青样品[43,47](数字代表样品序号)"

表1

澳大利亚石沥青样品在68 Ma、74 Ma、81 Ma和104 Ma时的初始187Os/188Os(Osi)"

样品序号样品名Osi @ 68 MaOsi @ 74 MaOsi @ 81 MaOsi @ 104 Ma
1W13/007477 (interior)0.720.670.610.42
2W13/007507 (interior)0.650.600.540.35
3W13/007516 (interior)0.660.610.540.34
4W13/007668 (interior)0.680.630.560.37
5W13/007671 (interior)0.650.600.540.35
6W13/007672 (interior)0.670.630.580.43
7W13/007742 (interior)0.710.660.590.40
8W13/007764 (interior)0.640.590.530.35
9W13/007845 (interior)0.710.660.600.41
10W13/007976 (interior)0.640.600.540.37
11#1620.740.690.630.44
12#CL10.730.680.620.43
13#27A0.740.690.630.44
14#850.730.680.620.44
15#3060.720.670.620.44

图4

根据68 Ma、74 Ma、81 Ma和104 Ma时沥青样品187Os/188Os进行的使用平均联接(组间)的层次聚类分析谱系"

表2

澳大利亚石沥青样品层次聚类分析及相应Re?Os年龄"

Osi @ 68 MaOsi @ 74 MaOsi @ 81 MaOsi @ 104 Ma
聚类11,7,9,151,7,9,15
年龄38 ± 67(Model 1;Osi = 0.52?±?0.43;MSWD = 1.7)
聚类211,12,13,1411,12,13,1411,12,13,14,156,11,12,13,14,15
年龄94 ± 51(Model 1;Osi = 0.52?±?0.43;MSWD = 1.7)94 ± 51(Model 1;Osi = 0.52?±?0.43;MSWD = 1.7)103 ± 22(Model 1;Osi = 0.44?±?0.18;MSWD = 1.2)104 ± 12(Model 1;Osi = 0.43?±?0.10;MSWD = 0.91)
聚类32,5,8,102,3,5,8,102,3,5,8,102,3,5,8
年龄79 ± 45(Model 1;Osi = 0.56?±?0.38;MSWD = 0.08)84 ± 32 (Model 1;Osi = 0.51?±?0.28;MSWD = 0.09)84 ± 32 (Model 1;Osi = 0.97?±?0.55;MSWD =0.0007)96 ± 59 (Model 1;Osi = 0.40?±?0.51;MSWD = 0.03)

图5

聚类样品的Re?Os等时线"

1 GE X, SHEN C, SELBY D, et al. Apatite fission-track and Re-Os geochronology of the Xuefeng uplift, China: Temporal implications for dry gas associated hydrocarbon systems[J]. Geology, 2016, 44(6): 491-494.
2 MARK D F, PARNELL J, KELLEY S P, et al. Dating of multistage fluid flow in sandstones[J].Science,2005,309(5743): 2048-2051.
3 PARNELL J, SWAINBANK I. Pb-Pb dating of hydrocarbon migration into a bitumen-bearing ore deposit, North Wales[J]. Geology, 1990, 18(10):1028-1030.
4 SHEPHERD T J, DARBYSHIRE D P F. Fluid inclusion Rb-Sr isochrons for dating mineral deposits[J]. Nature, 1981, 290(5807): 578-579.
5 刘文汇,王杰,腾格尔,等.中国海相层系多元生烃及其示踪技术[J].石油学报,2012,33(Z1):115-125.
LIU W H, WANG J, TENGER, et al. Multiple hydrocarbon generation of marine strata and its tracer technique in China[J]. Acta Petrolei Sinica, 2012, 33(Z1):115-125.
6 邱华宁,吴河勇,冯子辉,等.油气成藏40Ar-39Ar 定年难题与可行性分析[J].地球化学,2009,38(4): 405-411.
QIU H N, WU H Y, FENG Z H, et al. The puzzledom and feasibility in determining emplacement ages of oil/gas reservoirs by 40Ar-39Ar techniques[J]. Geochimica, 2009, 38(4): 405-411.
7 SELBY D, CREASER R, DEWING K, et al. Evaluation of bitumen as a Re-Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1-2): 1-15.
8 SELBY D, CREASER R A. Direct radiometric dating of hydrocarbon deposits using Rhenium-Osmium isotopes[J]. Science,2005,308(5726): 1293-1295.
9 蔡李梅,陈红汉,李兆奇,等.油气成藏过程中的同位素测年方法评述[J]. 沉积与特提斯地质, 2008, 28(4): 18-23.
CAI L M, CHEN H H, LI Z Q, et al. Isotopic dating techniques and their applications to the geochronology of hydrocarbon migration and accumulation: An overview[J]. Sedimentary Geology and Tethyan Geology, 2008, 28(4): 18-23.
10 蔡长娥,邱楠生,徐少华.Re-Os同位素测年法在油气成藏年代学的研究进展 [J]. 地球科学进展, 2014, 29(12): 1362-1371.
CAI C E, QIU N S, XU S H. Advances in Re-Os isotopic dating in geochronology of hydrocarbon accumulation[J]. Advances in Earth Science, 2014, 29(12): 1362-1371.
11 陈玲, 张微, 佘振兵. 油气成藏时间的确定方法[J]. 新疆石油地质, 2012, 33(5): 550-553.
CHEN L, ZHANG W, SHE Z B. Methods for dating of hydrocarbon accumulation[J]. Xinjiang Petroleum Geology, 2012, 33(5): 550-553.
12 李真,王选策,刘可禹,等.油气藏铼—锇同位素定年的进展与挑战[J].石油学报,2017,38(3):297-306.
LI Z, WANG X C, LIU K Y, et al. Rhenium-Osmium geochronology in dating petroleum systems: Progress and challenges[J]. Acta Petrolei Sinica, 2017, 38(3): 297-306.
13 刘文汇,王杰, 陶成, 等. 中国海相层系油气成藏年代学[J].天然气地球科学,2013,24(2):199-209.
LIU W H, WANG J, TAO C, et al. The geochronology of petroleum accumulation of China marine sequence[J]. Natural Gas Geosciences, 2013, 24(2): 199-209.
14 沈传波,SELBY D,梅廉夫,等.油气成藏定年的Re⁃Os 同位素方法应用研究[J].矿物岩石地球化学通报,2011,31(4): 87-93.
SHEN C B, SELBY D, MEI L F, et al. Advances in the study of Re-Os geochronology and tracing of hydrocarbon generation and accumulation[J].Journal of Mineralogy and Petrology, 2011, 31(4): 87-93.
15 沈传波,葛翔,白秀娟.四川盆地震旦—寒武系油气成藏的Re⁃Os年代学约束[J].地球科学, 2019, 44(3): 713-726.
SHEN C B, GE X, BAI X J, et al. Re-Os geochronology constraints on the Neoproterozoic-Cambrian hydrocarbon accumulation in the Sichuan Basin[J]. Earth Science, 2019, 44(3): 713-726.
16 沈传波,刘泽阳,肖凡,等.石油系统Re⁃Os同位素体系封闭性研究进展[J]. 地球科学进展, 2015, 30(2): 187-195.
SHEN C B, LIU Z Y, XIAO F, et al. Advancements of the research on Re-Os isotope system in petroleum system[J]. Advances in Earth Science, 2015, 30(2): 187-195.
17 王华建,张水昌,王晓梅.如何实现油气成藏期的精确定年[J].天然气地球科学,2013,24(2): 210-217.
WANG H J, ZHANG S C, WANG X M. How to achieve the precise dating of hydrocarbon accumulation[J]. Natural Gas Geoscience, 2013, 24(2):210-217.
18 张涛,马行陟,王伦,等.Re⁃Os同位素油气成藏定年研究进展[J].石油地质工程,2017,31(4): 30-34.
ZHANG T, MA X Z, WANG L, et al. Progress of Rhenium-Osmium isotopes in the study of dating petroleum system[J]. Petroleum Geology and Engineering, 2017, 31(4): 30-34.
19 DIMARZIO J M, GEORGIEV S V, STEIN H J, et al. Residency of Rhenium and Osmium in a heavy crude oil[J]. Geochimica et Cosmochimica Acta, 2018, 220: 180-200.
20 LIU J, SELBY D, ZHOU H, et al. Further evaluation of the Re-Os systematics of crude oil: Implications for Re-Os geochronology of petroleum systems[J].Chemical Geology, 2019, 513:1-22.
21 MAHDAOUI F, REISBERG L, MICHELS R, et al. Effect of the progressive precipitation of petroleum asphaltenes on the Re⁃Os radioisotope system [J]. Chemical Geology, 2013, 358: 90-100.
22 HURTIG N C, GEORGIEV S V, STEIN H J, et al. Re⁃Os systematics in petroleum during water-oil interaction: The effects of oil chemistry[J]. Geochimica et Cosmochimica Acta, 2019, 247: 142-161.
23 MAHDAOUI F, MICHELS R, REISBERG L, et al. Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re–Os geochronometer to petroleum [J]. Geochimica et Cosmochimica Acta, 2015, 158: 1-21.
24 REISBERG L, MICHELS R, MAHDAOUI F. Reply to the comment by Wu et al. (2016) on “Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re⁃Os geochronometer to petroleum” [Geochimica et Cosmochimica Acta 158 (2015) 1–21] [J]. Geochimica et Cosmochimica Acta, 2016, 186: 348-350.
25 WU J, LI Z, WANG X C. Comment on “Behavior of Re and Os during contact between an aqueous solution and oil: Consequences for the application of the Re⁃Os geochronometer to petroleum”[Geochimica et Cosmochimica Acta 158 (2015) 1–21] [J]. Geochimica et Cosmochimica Acta, 2016, 186: 344-347.
26 GEORGIEV S V, STEIN H J, HANNAH J L, et al. Re⁃Os dating of maltenes and asphaltenes within single samples of crude oil [J]. Geochimica et Cosmochimica Acta, 2016, 179:53-75.
27 MARQUES J C. Overview on the Re-Os isotopic method and its application on ore deposits and organic-rich rocks [J]. Geochimica Brasiliensis, 2013, 26(1): 49-66.
28 REISBERG L, MEISEL T. The Re⁃Os isotopic system: A review of analytical techniques[J]. Geostandards Newsletter, 2002, 26(3): 249-267.
29 李超,屈文俊,王登红,等.沥青样品铼-锇同位素分析溶解实验研究[J].岩矿测试,2011,30(3): 688-694.
LI C, QU W J, WANG D H, et al. Dissolving experimental research of Re-Os isotope system for bitumen samples[J]. Rock and Mineral Analysis, 2011, 30(6): 688-694.
30 LIU J, SELBY D. A matrix-matched reference material for validating petroleum Re-Os measurements[J]. Geostandards and Geoanalytical Research, 2018, 42(1): 97-113.
31 HURTIG N C, GEORGIEV S V, ZIMMERMAN A, et al. Re-Os geochronology for the NIST RM 8505 crude oil: The importance of analytical protocol and uncertainty [J]. Chemical Geology, 2020, 539: 119381.
32 SELBY D, CREASER R A, FOWLER M G. Re⁃Os elemental and isotopic systematics in crude oils[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 378-386.
33 SEN I S, PEUCKER-EHRENBRINK B. Determination of osmium concentrations and 187Os/188Os of crude oils and source rocks by coupling high-pressure, high-temperature digestion with sparging OsO4 into a multicollector inductively coupled plasma mass spectrometer [J]. Analytical Chemistry, 2014, 86(6): 2982-2988.
34 ROONEY A D, SELBY D, LEWAN M D, et al. Evaluating Re⁃Os systematics in organic-rich sedimentary rocks in response to petroleum generation using hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 2012, 77: 275-291.
35 CUMMING V M, SELBY D, LILLIS P G, et al. Re⁃Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments [J]. Geochimica et Cosmochimica Acta, 2014, 138: 32-56.
36 LILLIS P G, SELBY D. Evaluation of the Rhenium-Osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330.
37 LIU J, SELBY D, OBERMAJER M, et al. Rhenium-Osmium geochronology and oil-source correlation of the Duvernay petroleum system, western canada sedimentary basin: Implications for the application of the Rhenium-Osmium geochronometer to petroleum systems[J]. AAPG Bulletin, 2018, 102(8): 1627-1657.
38 COLODNER D, SACHS J, RAVIZZA G, et al. The geochemical cycle of Rhenium: A reconnaissance [J]. Earth and Planetary Science Letters, 1993, 117(1): 205-221.
39 HODGE V F, JOHANNESSON K H, STETZENBACH K J. Rhenium, Molybdenum, and Uranium in groundwater from the southern Great Basin, USA: Evidence for conservative behavior[J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3197-3214.
40 PAUL M, REISBERG L, VIGIER N, et al. Dissolved Osmium in Bengal plain groundwater: Implications for the marine Os budget[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3432-3448.
41 ANBAR A D, CREASER R A, PAPANASTASSIOU D A, et al. Rhenium in seawater: Confirmation of generally conservative behavior[J]. Geochimica et Cosmochimica Acta, 1992, 56(11): 4099-4103.
42 SHARMA M, CHEN C, BLAZINA T. Osmium contamination of seawater samples stored in polyethylene bottles [J]. Limnology and Oceanography: Methods, 2012, 10(9): 618-630.
43 CORRICK A J, SELBY D, MCKIRDY D M, et al. Remotely constraining the temporal evolution of offshore oil systems [J]. Scientific Reports, 2019, 9(1): 1327.
44 FINLAY A J, SELBY D, OSBORNE M J, et al. Fault-charged mantle-fluid contamination of United Kingdom North Sea oils: Insights from Re-Os isotopes [J]. Geology, 2010, 38(11): 979-982.
45 GE X, SHEN C, SELBY D, et al. Neoproterozoic-Cambrian petroleum system evolution of the Micang Shan uplift, northern Sichuan Basin, China: Insights from pyrobitumen Rhenium-Osmium geochronology and apatite fission-track analysis [J]. AAPG Bulletin, 2018, 102(8): 1429-1453.
46 GE X, SHEN C, SELBY D, et al. Petroleum-generation timing and source in the northern Longmen Shan thrust belt, Southwest China: Implications for multiple oil-generation episodes and sources [J]. AAPG Bulletin, 2018, 102(5): 913-938.
47 SCARLETT A G, HOLMAN A I, GEORGIEV S V, et al. Multi-spectroscopic and elemental characterization of southern Australian asphaltites [J]. Organic Geochemistry, 2019, 133: 77-91.
48 CORRICK A J, HALL P A, GONG S, et al. A second type of highly asphaltic crude oil seepage stranded on the south Australian coastline[J]. Marine and Petroleum Geology, 2020, 112: 104062.
49 黄少华,秦明宽,SELBY D,等.准噶尔盆地西北缘超覆带侏罗系油砂地球化学特征及Re⁃Os同位素定年[J]. 地学前缘, 2018, 25(2): 254-266.
HUANG S H, QIN M K, SELBY D, et al. Geochemistry characteristics and Re-Os isotopic dating of Jurassic oil sands in the northwestern margin of the Junggar Basin[J]. Earth Science Frontiers, 2018, 25(2): 254-266.
50 黄少华,秦明宽,许强,等.准噶尔盆地西北缘深部烃类流体与表生氧化流体叠合铀成矿作用 [J]. 地质学报, 2018, 92(7): 1493-1506.
HUANG S H, QIN M K, XU Q, et al. Superimposed Uranium metallogenesis between deep hydrocarbon fluid and supergene oxidation fluid in the northwestern margin of Junggar Basin[J]. Acta Geologica Sinica, 2018, 92(7): 1493-1506.
51 WANG P, HU Y, LIU L, et al. Re-Os dating of bitumen from paleo-oil reservoir in the Qinglong Antimony deposit, Guizhou Province, China and its geological significance[J]. Acta Geologica Sinica(English Edition),2017,91(6):2153-2163.
52 FINLAY A J, SELBY D, OSBORNE M J. Petroleum source rock identification of United Kingdom Atlantic Margin Oil Fields and the Western Canadian Oil Sands using Platinum, Palladium, Osmium and Rhenium: Implications for global petroleum systems[J]. Earth and Planetary Science Letters, 2012, 313-314: 95-104.
53 TRIPATHY G R, HANNAH J L, STEIN H J, et al. Radiometric dating of marine-influenced coal using Re⁃Os geochronology[J].Earth and Planetary Science Letters,2015,432:13-23.
54 GOSWAMI V, HANNAH J L, STEIN H J. Why terrestrial coals cannot be dated using the Re-Os geochronometer: Evidence from the Finnmark Platform, southern Barents Sea and the Fire Clay coal horizon, central Appalachian Basin [J]. International Journal of Coal Geology, 2018, 188: 121-135.
55 JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3-4): 339-353.
56 PEUCKER-EHRENBRINK B, HANNIGAN R E. Effects of black shale weathering on the mobility of Rhenium and Platinum group elements [J]. Geology, 2000, 28(5): 475-478.
57 李超,屈文俊,王登红,等.富有机质地质样品 Re⁃Os 同位素体系研究进展[J]. 岩石矿物学杂志, 2010, 29(4): 421-430.
LI C, QU W J, WANG D H, et al. Advances in the study of the Re-Os isotopic system of organic-rich samples[J]. Acta Petrologica et Mineralogica, 2010, 29(4): 421-430.
58 王剑,付修根,杜安道,等.羌塘盆地胜利河海相油页岩地球化学特征及Re⁃Os定年[J].海相油气地质,2007,12(3):21-26.
WANG J, FU X G, DU A D, et al. Organic geochemistry and Re-Os dating of marine oil shale in Shenglihe area, northern Tibet, China[J]. Marine Origin Petroleum Geology, 2007, 12(3): 21-26.
59 CORBETT L W, PETROSSI U. Differences in distillation and solvent separated asphalt residua [J]. Industrial & Engineering Chemistry Product Research and Development, 1978, 17(4): 342-346.
60 MITCHELL D L, SPEIGHT J G. The solubility of asphaltenes in hydrocarbon solvents [J]. Fuel, 1973, 52(2): 149-152.
61 JAMES K H. The Venezuelan hydrocarbon habitat, part 1: Tectonics, structure, palaeogeography and source rocks [J]. Journal of Petroleum Geology, 2000, 23(1): 5-53.
62 SUMMA L L, GOODMAN E D, RICHARDSON M, et al. Hydrocarbon systems of northeastern Venezuela: Plate through molecular scale-analysis of the genesis and evolution of the eastern Venezuela Basin [J]. Marine and Petroleum Geology, 2003, 20(3): 323-349.
[1] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[2] 李婷婷, 朱光有, 赵坤, 王鹏举. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721-734.
[3] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[4] 马安来, 李慧莉, 李杰豪, 高晓鹏, 王凡, 姚尧, 冯帆. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
[5] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[6] 刘如红, 李剑, 肖中尧, 李谨 , 张海祖, 卢玉红, 张宝收, 马卫, 李德江, 刘满仓. 塔里木盆地库车坳陷吐格尔明地区油气地球化学特征及烃源探讨[J]. 天然气地球科学, 2019, 30(4): 574-581.
[7] 唐海忠,赵建宇,高岗,马国福,赵乐义,杨智明,胡丹丹. 酒泉盆地营尔凹陷油—源地质分布关系[J]. 天然气地球科学, 2019, 30(11): 1590-1599.
[8] 李梦茹, 唐友军, 刘岩, 胡辉, 贺其川. 江陵凹陷不同地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2018, 29(9): 1240-1251.
[9] 杨亚南,周世新,李靖,李成成,李源遽,马瑜,陈克非. 鄂尔多斯盆地南缘延长组烃源岩地球化学特征及油源对比[J]. 天然气地球科学, 2017, 28(4): 550-565.
[10] 何家雄, 张伟, 卢振权, 李晓唐. 南海北部大陆边缘主要盆地含油气系统及油气有利勘探方向[J]. 天然气地球科学, 2016, 27(6): 943-959.
[11] 龚晓峰,何家雄,莫涛,陈胜红,张景茹,张伟,李晓唐. 珠江口盆地珠一坳陷惠陆油区含油气系统与油气运聚成藏模式[J]. 天然气地球科学, 2015, 26(12): 2292-2303.
[12] 张春林,庞雄奇,田世澄,张福东,刘锐娥. 鄂尔多斯盆地西部奥陶系古油藏油源对比与靖边气田气源[J]. 天然气地球科学, 2014, 25(8): 1242-1251.
[13] 王圣柱,张奎华,金强. 准噶尔盆地哈拉阿拉特山地区原油成因类型及风城组烃源岩的发现意义[J]. 天然气地球科学, 2014, 25(4): 595-602.
[14] 段毅, 赵阳, 姚泾利, 张伯祥, 吴应忠, 曹喜喜, 徐丽. 轻烃地球化学研究进展及发展趋势[J]. 天然气地球科学, 2014, 25(12): 1875-1888.
[15] 郭玉峰, 杜秀琴, 傅宁. 珠二坳陷白云凹陷海相烃源岩及其成藏贡献[J]. 天然气地球科学, 2014, 25(12): 1975-1982.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!