天然气地球科学 ›› 2020, Vol. 31 ›› Issue (5): 721–734.doi: 10.11764/j.issn.1672-1926.2020.04.019

• • 上一篇    下一篇

氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用

李婷婷1(),朱光有1,赵坤1,2,王鹏举1,2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国地质大学(北京),北京 100083
  • 收稿日期:2020-04-08 修回日期:2020-04-22 出版日期:2020-05-10 发布日期:2020-05-28
  • 作者简介:李婷婷(1989-),女,黑龙江肇东人,工程师,主要从事石油地质研究. E-mail: lttjy@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司科学研究与技术开发项目“古老碳酸盐岩油气成藏分布规模与关键技术”(2019B-04);“深层烃源岩形成与分布”(2018A-0102)

Nitrogen cycle and nitrogen isotope application in paleoenvironment reconstruction of ancient hydrocarbon source rocks and oil-source correlations

Ting-ting LI1(),Guang-you ZHU1,Kun ZHAO1,2,Peng-ju WANG1,2   

  1. 1.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    2.China University of Geosciences, Beijing 100083, China
  • Received:2020-04-08 Revised:2020-04-22 Online:2020-05-10 Published:2020-05-28
  • Supported by:
    The Major Science and Technology Project of CNPC(2019B-04)

摘要:

烃源岩是油气勘探的物质基础,其质量和规模决定了油气资源潜力。沉积环境是原始生产力、营养物质供应、水体氧化还原条件及古气候等信息的综合反映,对优质烃源岩形成与分布起着重要的控制作用。然而,随着油气勘探不断向深层和超深层领域拓展,烃源岩经历的埋深和热演化程度随之增加,导致生物标志物及干酪根显微组分等反映成烃母质信息及沉积环境的常规地球化学指标失去指示意义。氮稳定同位素记录了氮循环的原始信息,是重建古海洋环境,探讨地史时期环境与生物演化关系,以及指示气候变化的可靠指标,在重建古老烃源岩形成环境、油源对比等方面也具有很好应用前景。在充分调研基础上,系统总结了海洋中的氮循环过程及氮同位素分馏效应,分析了沉积岩中氮同位素组成分布特征及其控制因素。

关键词: 烃源岩, 氮同位素, 古气候, 生物演化, 氧化还原环境, 油源对比

Abstract:

Hydrocarbon source rocks are the material basis for oil and gas exploration, and their quality and quantity determine the oil and gas resource potential. Sedimentary environment reflects comprehensive information about primary productivity, nutrient supply, aqueous redox conditions, and paleoclimate, thus exerts a dominant control on the formation and distribution of high-quality source rocks. However, the burial depth and thermal maturation of these source rocks significantly increase as hydrocarbon exploration continuously expands into deep and ultra-deep strata, making many conventional geochemical proxies such as biomarkers and kerogen maceral analysis lose indicative significance for sedimentary environment. Stable nitrogen isotopes which record the original signals of marine nitrogen cycles are reliable indicators that can be used to reconstruct the paleomarine environment, explore links between environment and biological evolutions through the geological history, and indicate climate changes. In addition, this method also shows great application potential in oil and gas fields such as sedimentary environment reconstruction of ancient hydrocarbon source rocks and oil-source correlations. On basis of full investigation, this study systematically summarizes marine nitrogen cycle processes, nitrogen isotope fractionation mechanism, analyzes nitrogen isotope distribution and its controlling factors.

Key words: Hydrocarbon source rocks, Nitrogen isotope, Paleoclimate, Biological evolution, Redox environment, Oil-source correlation

中图分类号: 

  • TE122.1+13

图1

大气—海洋氮生物地球化学循环简图(据文献[33,44]修改)"

表1

氮循环过程中发生的分馏情况(分馏因子ε≈δ15Nreact-δ15Nproduct) (据文献[22,45],修改)"

氮循环过程同位素分馏范围/‰保存情况
固氮作用Mo固氮酶 -2~+1保存在氮受限的生态系统中的沉积物内
Fe-V固氮酶 +6~+8
铵同化作用+14~+27无记录
硝化作用 (NH4+→NO2-)+14~+38在化跃层进行完全,无保存
硝化作用 (NO2-→NO3-)-12.8在化跃层进行完全,无保存
硝酸盐同化作用+5~+10在透光带进行完全,无保存
异化硝酸盐还原作用+30?
反硝化作用+10~+30通常在次氧带发生不完全反硝化,保存在同化NO3-的生物体中
厌氧氨氧化作用+16或+23~+29很难与反硝化区分开

表2

沉积物中氮同位素记录及可能的氮循环作用过程"

δ15N分布水体中可能占主导的N循环沉积物δ15N值/‰地区
<-2‰

真光带缺氧区绿硫或紫硫

细菌同化作用

0~-8现代黑海[60]、东地中海[61]
-4.7华南三岔剖面寒武系牛蹄塘组[76]
不完全铵同化作用<-2印度古元古代晚期Aravalli Supergroup[59]
~-7.5华南地区寒武系(2~3阶)[44]
-2‰~+1‰蓝细菌固氮作用0~+2华南三岔剖面寒武系牛蹄塘组[76]
-2~+3.1,均值0±1华南Chunye1井寒武系荷塘组[72]
~-2Cariaco盆地[77]
-2~+1黑海[64]
-1~+1华南南盘江盆地太平剖面上二叠统—下三叠统[78]
>+2‰不完全硝化作用+2~+18白令海[66,67]
不完全反硝化作用-2.6~+4.8,均值2.2±1.3华南Chunye1井寒武系皮园村—荷塘组[72]
+4~+9华南毛石—中南剖面震旦系灯影组[73]
+4~+8华南三峡地区震旦系陡山沱组[71]
+7.4Santa Barbara盆地[69]
>+11阿拉伯海[70]
硝酸盐同化、固氮及反硝化作用相平衡+1~+16,均值~+5现代海洋沉积物[75]

图2

不同氧化还原水体结构的海洋氮循环及氮同位素组成的分布 (据文献[11,20]修改)"

图3

不同地质历史时期δ15N值分布及生物演化 (据文献[15,16,44,111]修改)"

图4

新元古代—显生宙不同时期海洋沉积单元δ15N值与气候及冰期事件 (据文献[124]修改)"

1 张宝民,张水昌,边立曾,等. 浅析中国新元古—下古生界海相烃源岩发育模式[J]. 科学通报,2007,52(增刊):58–69.
ZHANG B M,ZHANG S C,BIAN L Z,et al. Analysis on development patterns of the Neoproterozoic-Lower Paleozoic marine source rocks[J]. Chinese Science Bulletin, 2007, 52(supplement): 58-69.
2 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
ZHANG S C,ZHANG B M,BIAN L Z,et al. Development constraints on marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
3 张水昌,梁狄刚,朱光有,等. 中国海相油气田形成的地质基础[J].科学通报,2007,52(增刊):19-31.
ZHANG S C,LIANG D G,ZHU G Y,et al. Geological basis for the formation of marine oil and gas fields in China[J]. Chinese Science Bulletin, 2007, 52(supplement):19-31.
4 朱光有,陈斐然,陈志勇,等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J].天然气地球科学,2016,27:8-21.
ZHU G Y,CHEN F R,CHEN Z Y,et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J].Natural Gas Geoscience, 2016, 27(1): 8-21.
5 GODFREY L V, GLASS J B. The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors[J]. Methods Enzymol, 2011, 486: 483-506.
6 GALBRAITH E D, KIENAST M, ALBUQUERQUE A L, et al. The acceleration of oceanic denitrification during deglacial warming[J]. Nature Geoscience, 2013, 6:579-584.
7 WARD B B, DEVOL A H, RICH J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J]. Nature, 2009, 461: 78-81.
8 COX G M, SANSJOFRE P, BLADES M L, et al. Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system[J]. Scientific Reports, 2019, 9(1):1-11.
9 FALKOWSKI P G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean[J]. Nature, 1997, 387: 272-275.
10 GRUBER J N, GALLOWAY M. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451 (17): 293-296.
11 ADER M, SANSJOFRE P, HALVERSON G P, et al. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective[J]. Earth Planetary Science Letters, 2014, 396: 1-13.
12 BOYLE R A, CLARK J R, POULTON S W, et al. Nitrogen cycle feedbacks as a control on euxinia in the mid-Proterozoic ocean[J]. Nature Communications,2013, 4: 1510-1533.
13 JOHNSON B W, POULTON S W, GOLDBLATT C. Marine oxygen production and open water supported an active nitrogen cycle during the Marinoan Snowball Earth[J]. Nature Communications, 2017, 8(1): 1-10.
14 KALVELAGE T, LAVIK G, LAM P, et al. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone[J]. Nature Geoscience, 2013, 6: 228-234.
15 KIPP M A, STÜEKEN E E, YUN M, et al. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era[J]. Earth Planetary Science Letters,2018, 500: 117-126.
16 WANG D, LING H F, STRUCK U, et al. Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition[J]. Nature Communications, 2018, 9: 1-8.
17 XU D T, WANG X Q, SHI X Y, et al. Nitrogen cycle perturbations linked to metazoan diversification during the Early Cam-brian[J].Palaeogeography Palaeoclimatology Palaeoecology, 2020, 538: 109392.
18 宋虎跃,童金南,杜勇,等. 早三叠世海洋异常的碳-氮-硫同位素记录[J]. 地球科学,2018,43(11):3922-3931.
SONG H Y,TONG J N,DU Y,et al. Large perturbed marine carbon-nitrogen-sulfur isotopes during early Triassic[J]. Earth Science, 2018, 43 (11): 3922-3931.
19 王丹,朱祥坤,凌洪飞. 氮的生物地球化学循环及氮同位素指标在古海洋环境研究中的应用[J].地质学报,2015,89(增刊):74-76.
WANG D,ZHU X K,LING H F. Nitrogen biogeochemical cycle and nitrogen application in paleomarine environment[J]. Acta Geological Sinica, 2015, 89 (supplement): 74-76.
20 ADER M, THOMAZO C, SANSJOFRE P, et al. Interpretation of the nitrogen isotopic composition of Precambrian sedimentary rocks: Assumptions and perspectives[J]. Chemical Geology, 2016, 429: 93-110.
21 CHENG C, BUSIGNY V, ADER M, et al. Nitrogen isotope evidence for stepwise oxygenation of the ocean during the Great Oxidation Event[J]. Geochimica et Cosmochimica Acta, 2019, 261: 224-247.
22 KOEHLER M C, STÜEKEN E E, Kipp M A, et al. Spatial and temporal trends in Precambrian nitrogen cycling: A Mesoproterozoic offshore nitrate minimum[J]. Geochimica et Cosmochimica Acta, 2017, 198: 315-337.
23 METTAM C, ZERKLE A L, CLAIRE M W, et al. Anaerobic nitrogen cycling on a Neoarchaean ocean margin[J]. Earth Planetary Science Letters, 2019, 527: 115800.
24 ROBINSON R S, KIENAST M, LUIZA A, et al. A review of nitrogen isotopic alteration in marine sediments[J]. Paleoceanography,2012, 27:1-13.
25 STÜEKEN E E, ZALOUMIS J, MEIXNEROVá J, et al. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks[J]. Geochimica et Cosmochimica Acta, 2017, 217: 80-94.
26 CAPONE D G, ZEHR J P, PAERL H W, et al. Trichodesmium, a globally significant marine cyanobacterium[J]. Science, 1997, 276(5316): 1221-1229. .
27 OHKOUCHI N, NAKAJIMA Y, OKADA H, et al. Biogeochemical processes in the saline meromictic Lake Kaiike, Japan: Implications from molecular isotopic evidences of photosynthetic pigments[J]. Environmental Microbiology, 2005,7: 1009-1016.
28 PROKOPENKO M G, HAMMOND D E, BERELSON W M, et al. Nitrogen cycling in the sediments of Santa Barbara basin and Eastern Subtropical North Pacific: Nitrogen isotopes, diagenesis and possible chemosymbiosis between two lithotrophs (Thioploca and Anammox) - “riding on a glider”[J]. Earth Planetary Science Letters, 2006, 242: 186-204.
29 SIGMAN D M,CASCIOTTI K L. Nitrogen isotopes in the ocean[M]∥ STEELE J H,TUREKIAN K K,THORPE S A. Encyclopedia of Ocean Sciences. 1st ed. London,Burlington,San Diego: Academic Press,2001:1884-1894.
30 BERNET B N, DANGCONG P, DELGENE J, et al. Nitrification at low oxygen cencentration in biofilm reactor[J]. Journal of Environmental Engineering, 2007, 127(3): 266.
31 SIGMAN D,KARSH K,CASCIOTTI K. Ocean process tracers:Nitrogen isotopes in the ocean[M]∥ STEELE J H,TUREKIAN K K,THORPE S A. Encyclopedia of Ocean Sciences. 2nd ed. London,Burlington,San Diego: Academic Press,2009:40-54.
32 HATTORI A. Denitrification and Dissimilatory Nitrate Reduction,Nitrogen in the Marine Environment[M]. New York:Academic Press, INC,1983:191-232.
33 CREMONESE L, SHIELDS-ZHOU G, STRUCK U, et al. Marine biogeochemical cycling during the early Cambrian constrained by a nitrogen and organic carbon isotope study of the Xiaotan section,South China[J].Precambrian Research,2013, 225: 148-165.
34 BRANDES J A, DEVOL A H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling[J]. Global Biogeochemical Cycles, 2002, 16(4): 1-14.
35 DEUTSCH C, SIGMAN D M, THUNELL R C, et al. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget[J]. Global Biogeochemical Cycles, 2004, 18: 1-22.
36 LEHMANN M F, SIGMAN, BERELSON W M. Coupling the 15N/14N and 18O/16O of nitrate as a constraint on benthic nitrogen cycling[J]. Marine Chemistry,2004, 88: 1-20.
37 WADA E, HATTORI A. Nitrogen in the Sea: Forms, Abundances, and Rate Processes[M].Florida: CRC Press INC, 1991: 208.
38 NISHIZAWA M, MIYAZAKI J, MAKABE A, et al. Physiological and isotopic characteristics of nitrogen fixation by hyperthermophilic methanogens: Key insights into nitrogen anabolism of the microbial communities in Archean hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 2014, 138:117-135.
39 ZERKLE A L, FARQUHAR J, JOHNSTON D T, et al. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium[J]. Geochimica et Cosmochimica Acta, 2009, 73,291-306.
40 ZHANG X N, SIGMAN D M, MOREL F M, et al. Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 4782-4787.
41 MÖBIUS J. Isotope fractionation during nitrogen remineralization (ammonification): Implications for nitrogen isotope biogeochemistry[J].Geochimica et Cosmochimica Acta,2013, 105: 422-432.
42 PENNOCK J R, VELINSKY D J, LUDLAM J M, et al. Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for δ15N dynamics under bloom conditions[J]. Limnology and Oceanography,1996, 41: 451-459.
43 SOMES C J, SCHMITTNER A, GALBRAITH E D, et al. Simulating the global distribution of nitrogen isotopes in the ocean[J]. Global Biogeochemical Cycles, 2010, 24:1-16.
44 CHEN Y N, DIAMOND C W, STÜEKEN E E, et al. Coupled evolution of nitrogen cycling and redoxcline dynamics on the Yangtze Block across the Ediacaran-Cambrian transition[J]. Geochimica et Cosmochimica Acta, 2019, 257: 243-265.
45 STÜEKEN E E, KIPP M A, KOEHLER M C, et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth-Science Reviews,2016, 160: 220-239.
46 CASCIOTTI K L, SIGMAN D M, WARD B B. Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria[J]. Geomicrobiology Journal,2003, 20: 335-353.
47 CASCIOTTI K L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation[J]. Geochimica et Cosmochimica Acta, 2009, 73: 2061-2076.
48 BRISTOW L A, DALSGAARD T, TIANO L, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters[J]. Proceedings of the National Academy of Sciences of the United States of America,2016, 113: 10601-10606.
49 LIPSCHULTZ F, WOFSY S C, WARD B B, et al. Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the eastern Tropical South Pacific Ocean[J]. Deep Sea Research Part A, Oceanographic Research Papers,1990, 37: 1513-1541.
50 KARTAL B, KUYPERS M M, LAVIK G, et al. Anammox bacteria disguised as denitrifiers: Nitrate reduction to dinitrogen gas via nitrite and ammonium[J]. Environmental Microbiology,2007, 9: 635-642.
51 LAM P, LAVIK G, JENSEN M M, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 4752-4757.
52 Granger J, Sigman D M, Lehmann M F, et al. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria[J]. Limnology and Oceanography,2008, 53: 2533-2545.
53 MARIOTTI A, GERMONJ C, HUBERT P, et al. Experimental determination of Nitrogen kinetic isotope fractionation: Some principles; Illustration for the denitrification and nitrification processes[J]. Plant Soil, 1981, 62: 413-430.
54 SIGMAN D M, ROBINSON R, KNAPP A N, et al. Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate[J].Geochemistry,Geophysics,Geosystems,2003,4(5):1-20.
55 KUYPERS M M, SILEKERS A O, LAVIK G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422: 608-611.
56 GALBRAITH E D, SIGMAN D M, ROBINSON R S, et al. Nitrogen in Past Marine Environments[M].Burlington: Academic Press, 2008: 1497-1535.
57 CROWE S A, JONES C A, KATSEV S, et al. Photoferrotrophs thrive in an Archean Ocean analogue[J]. Proceedings of the National Academy of Sciences of the United States of America,2008, 105: 15938-15943.
58 HIGGINS M B, ROBINSON R S, HUSSON J M, et al. Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+[J].Proceedings of the National Academy of Sciences of the United States of America,2012, 109: 2269-2274.
59 PAPINEAU D, PUROHIT R, GOLDBERG T, et al. High primary productivity and nitrogen cycling after the Paleoproterozoic phosphogenic event in the Aravalli Supergroup, India[J]. Precambrian Research, 2009, 171: 37-56.
60 FUCHSMAN C A, MURRAY J W, KONOVALOV S K, et al. Concentration and natural stable isotope profiles of nitrogen species in the Black Sea[J].Marine Chemistry, 2008, 111: 90-105.
61 STRUCK U, EMEIS K C, VOB M, et al. Biological productivity during sapropel S5 formation in the Eastern Mediterranean Sea: Evidence from stable isotopes of nitrogen and carbon[J]. Geochimica et Cosmochimica Acta,2001, 65: 3249-3266.
62 CARPENTER E J, HARVEY H R, BRIAN F, et al. Biogeochemical tracers of the marine cyanobacterium Trichodesmium[J]. Deep-Sea Research Part I: Oceanographic Research Papers,1997, 44: 27-38.
63 LUO G M,JUNIUM C K,IZON G,et al.Nitrogen fixation sus-tained productivity in the wake of the palaeoproterozoic great oxygenation event[J].Nature Communications,2018(9):1-9.
64 FULTON J M, ARTHUR M A, FREEMAN K H. Black Sea nitrogen cycling and the preservation of phytoplankton δ15N signals during the Holocene[J]. Global Biogeochemical Cycles, 2012, 26(2):1-15.
65 THOMAZO C, ADER M, PHILIPPOT P. Extreme 15N-enrichments in 2.72-Gyr-old sediments: Evidence for a turning point in the nitrogen cycle[J].Geobiology, 2011,9: 107-120.
66 GRANGER J, PROKOPENKO M G, SIGMAN D M, et al. Coupled nitrification-denitrification in sediment of the eastern Bering Sea shelf leads to 15N enrichment of fixed N in shelf waters[J]. Journal of Geophysical Research: Oceans, 2011, 116 (C11):1-18.
67 MORALES L V, GRANGER J, CHANG B X, et al. Elevated 15N/14N in particulate organic matter, zooplankton, and diatom frustule-bound nitrogen in the ice-covered water column of the Bering Sea eastern shelf[J]. Deep-Sea Research Part II: Topical Studies in Oceanography,2014, 109: 100-111.
68 GANESHRAM R S, PEDERSEN T F, CALVERT S E, et al. Glacial-interglacial variability in denitrification in the world’s oceans: Causes and consequences[J]. Paleoceanography, 2000, 15: 361-376.
69 EMMER E, THUNELL R C. Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification int he eastern tropical North Pacific during the last 50,000 years[J]. Paleoceanography, 2000, 15: 377-387.
70 GAYE-HAAKE B, LAHAJNAR N, EMEIS K C, et al. Stable nitrogen isotopic ratios of sinking particles and sediments from the northern Indian Ocean[J]. Marine Chemistry, 2005, 96: 243-255.
71 KIKUMOTO R, TAHATA M, NISHIZAWA M, et al. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China[J]. Gondwana Research, 2014, 25: 1057-1069.
72 XIANG L, SCHOEPFER S D, ZHANG H, et al. Evolution of primary producers and productivity across the Ediacaran-Cambrian transition[J].Precambrian Research,2018,313:68-77.
73 CREMONESE L, SHIELDS-ZHOU G A, STRUCK U, et al. Nitrogen and organic carbon isotope stratigraphy of the Yangtze Platform during the Ediacaran-Cambrian transition in South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 398: 165-186.
74 JUNIUM C K, DICKSON A J, UVEGES B T. Perturbation to the nitrogen cycle during rapid Early Eocene global warming[J]. Nature Communications,2018, 9(1): 3186-3193.
75 TESDAL J E, GALBRAITH E D, KIENAST M. Nitrogen isotopes in bulk marine sediment: Linking seafloor observations with subseafloor records[J]. Biogeosciences, 2013, 10: 101-118.
76 WANG D, STRUCK U, LING H F, et al. Marine redox variations and nitrogen cycle of the early Cambrian southern margin of the Yangtze Platform, South China: Evidence from nitrogen and organic carbon isotopes[J]. Precambrian Research, 2015, 267: 209-226.
77 HAUG G H, PEDERSEN T F, SIGMAN D M, et al. Glacial/interglacial variations in production and nitrogen fixation in the Cariaco Basin during the last 580 kyr[J]. Paleoceanography, 1998, 13: 427-432.
78 LUO G M, WANG Y, ALGEO T J, et al. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction[J]. Geology, 2011, 39: 647-650.
79 MACKO S A, FOGEL M L, HARE P E, et al. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms[J]. Chemical Geology: Isotope Geoscience Section,1987, 65: 79-92.
80 ALTABET M A. Variations in nitrogen isotopic composition between sinking and suspended particles: Implications for nitrogen cycling and particle transformation in the open ocean[J].Deep Sea Research Part A, Oceanographic Research Papers,1988, 35: 535-554.
81 LOUREY M J, TRULL T W, SIGMAN D M. Sensitivity of δ15N of nitrate, surface suspended and deep sinking particulate nitrogen to seasonal nitrate depletion in the southern Ocean[J]. Global Biogeochemical Cycles, 2003, 17(3):1-18.
82 DURAND B. Diagenetic modification of kerogens[J]. Philosophical Transactions of the Royal Society of London, 1985, A315(1531):77-90.
83 FREUDENTHAL T, WAGNER T, WENZHÖFER F, et al. Early diagenesis of organic matter from sediments of the Eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes[J]. Geochimica et Cosmochimica Acta,2001, 65: 1795-1808.
84 LEHMANN M F, BERNASCONI S M, BARBIERI A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta,2002, 66: 3573-3584.
85 ALTABET M A. Isotopic tracers of the marine nitrogen cycle: Present and past[M]∥Handbook of Environmental Chemistry, Volume2: Reactions and Processes,Berlin:Springer,2006: 251-293.
86 BEBOUT G E, FOGEL M L. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history[J]. Geochimica et Cosmochimica Acta,1992, 56: 2839-2849.
87 MINGRAM B, BRAUER K. Ammonium concentration and nitrogen isotope composition in metasedimentary rocks from different tectonometamorphic units of the European Variscan Belt[J].Geochimica et Cosmochimica Acta,2001,65:273-287.
88 RIVERA K T, PUCKETTE J, QUAN T M. Evaluation of redox versus thermal maturity controls on δ15N in organic rich shales: A case study of the woodford shale, anadarko basin, Oklahoma,USA[J]. Organic Geochemistry, 2015,83-84: 127-139.
89 KUMP L R, JUNIUM C, ARTHUR M A, et al. Isotopic evidence for massive oxidation of organic matter following the great oxidation event[J]. Science, 2011, 334: 1694-1696.
90 GODFREY L V, POULTON S W, BEBOUT G E, et al. Stability of the nitrogen cycle during development of sulfidic water in the redox-stratified late Paleoproterozoic Ocean[J]. Geology, 2013, 41: 655-658.
91 HIGGINS M B, ROBINSON R S, CARTER S J, et al. Evidence from chlorin nitrogen isotopes for alternating nutrient regimes in the eastern Mediterranean Sea[J]. Earth Planetary Science Letters,2010, 290: 102-107.
92 REDFIELD A C, KETCHUM B H, RICHARDS F A. The Influence of Organisms on the Composition of Sea Water,The Sea[M]. New York: Interscience, 1963: 26-77.
93 CALVERT S E. Beware intercepts: Interpreting compositional ratios in multi-component sediments and sedimentary rocks[J]. Organic Geochemistry,2004, 35: 981-987.
94 QUAN T M, ADIGWE E N, RIEDINGER N, et al. Evaluating nitrogen isotopes as proxies for depositional environmental conditions in shales: Comparing Caney and Woodford Shales in the Arkoma Basin, Oklahoma[J]. Chemical Geology,2013,360-361: 231-240.
95 CROWE S A, KATSEV S, LESLIE K, et al. The methane cycle in ferruginous Lake Matano[J].Geobiology,2011,9: 61-78.
96 QUAN T M, FALKOWSKI P G. Redox control of N:P ratios in aquatic ecosystems[J]. Geobiology, 2009, 7: 124-139.
97 FENG L J, LI C, HUANG J, et al. A sulfate control on marine mid-depth euxinia on the Early Cambrian (ca. 529-521Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
98 LI C, LOVE G D, LYONS T W, et al. A stratified redox model for the ediacaran ocean[J]. Science, 2010, 328: 80-83.
99 LI C, LOVE G D, LYONS T W, et al. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China[J]. Earth Planetary Science Letters,2012,331-332: 246-256.
100 LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth’s early ocean and atmosphere[J]. Nature, 2014, 506: 307-315.
101 THUNELL R C, SIGMAN D M, MULLER-KARGER F, et al. Nitrogen isotope dynamics of the Cariaco Basin, Venezuela[J]. Global Biogeochemical Cycles,2004,18(3):1-13.
102 KUMP L R, PAVLOV A, ARTHUR M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia[J]. Geology, 2005, 33: 397-400.
103 PAPINEAU D, PUROHIT R, FOGEL M L, et al. High phosphate availability as a possible cause for massive cyanobacterial production of oxygen in the Paleoproterozoic atmosphere[J]. Earth Planetary Science Letters,2013, 362: 225-236.
104 STÜEKEN E E. A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile[J]. Geochimica et Cosmochimica Acta,2013, 120: 121-139.
105 BRODA E. 1977. Two kinds of lithotrophs missing in nature[J].Zeitschrift Für Allgemeine Mikrobiologie,1977,17:491-493.
106 GRIFFIN B M, SCHOTT J, SCHINK B. Nitrite, an electron donor for anoxygenic photosynthesis[J]. Science, 2007, 316: 1870.
107 SCHOTT J, GRIFFIN B M, SCHINK B. Anaerobic phototrophic nitrite oxidation by Thiocapsa sp. strain KS1 and Rhodopseudomonas sp. strain LQ17[J]. Microbiology, 2010, 156: 2428-2437.
108 MANDERNACK K W, MILLS C T, JOHNSON C A, et al. The δ15N and δ18O values of N2O produced during the co-oxidation of ammonia by methanotrophic bacteria[J]. Chemical Geology,2009, 267: 96-107.
109 MOORE C M, MILLS M M, ARRIGO K R, et al. Processes and patterns of oceanic nutrient limitation[J]. Nature Geoscience,2013, 6: 701-710.
110 LI C, JIN C S, PLANAVSKY N J, et al. Coupled oceanic oxygenation and metazoan diversification during the early-middle Cambrian?[J]. Geology, 2017, 45: 743-746.
111 CHANG C, HU W, WANG X, et al. Nitrogen isotope evidence for an oligotrophic shallow ocean during the Cambrian Stage 4[J].Geochimica et Cosmochimica Acta,2019,257:49-67.
112 PLANAVSKY N J, BEKKER A, HOFMANN A, et al. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event[J]. Proceedings of the National Academy of Sciences of the United States of America,2012, 109: 18300-18305.
113 BEKKER A, HOLLAND H D. Oxygen overshoot and recovery during the early Paleoproterozoic[J]. Earth Planetary Science Letters,2012, 317-318: 295-304.
114 JAVAUX E J, LEPOT K. The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth’s middle-age[J].Earth-Science Reviews,2018,176:68-86.
115 BENGTSON S, RASMUSSEN B, IVARSSON M, et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt[J]. Nature Ecology & Evolution, 2017, 1: 141
116 GOLD D A, CARON A, FOURNIER G P, et al. Paleoproterozoic sterol biosynthesis and the rise of oxygen[J]. Nature, 2017, 543: 420-423.
117 ZHU M Y, ZHANG J, YANG A. Integrated Ediacaran (Sinian) chronostratigraphy of South China[J]. Palaeogeography Palaeoclimatology Palaeoecology,2007, 254: 7-61.
118 PLANAVSKY N J, ROUXEL O J, BEKKER A, et al. The evolution of the marine phosphate reservoir[J]. Nature, 2010, 467: 1088-1090.
119 BROCKS J J, JARRETT A J M, SIRANTOINE E, et al. The rise of algae in Cryogenian oceans and the emergence of animals[J]. Nature, 2017, 548: 578-581.
120 OCH L M, CREMONESE L, SHIELDS-ZHOU G A, et al. Palaeoceanographic controls on spatial redox distribution over the yangtze platform during the Ediacaran-Cambrian transition[J]. Sedimentology, 2016, 63: 378-410.
121 MONTOYA J P, CARPENTER E J, CAPONE D G. Nitrogen fixation and nitrogen isotope abundances in zooplankton of the oligotrophic North Atlantic[J]. Limnology and Oceanography,2002, 47: 1617-1628.
122 MCELROY M B. Marine biological controls on atmospheric CO2 and climate[J]. Nature, 1983, 302: 328-329.
123 BROECKER W S, HENDERSON G M. The sequence of events surrounding Termination II and their implications for the cause of glacial-interglacial CO2 changes[J]. Paleoceanography, 1998, 13: 352-364.
124 ALGEO T J, MEYERS P A, ROBINSON R S, et al. Icehouse-greenhouse variations in marine denitrification[J]. Biogeosciences, 2014, 11: 1273-1295.
125 GALLOWAY J N, DENTER F J, CAPONE D G, et al. Nitrogen cycles: Past, present, and future[J]. Biogeochemistry, 2004, 70: 153-226.
126 GRUBER N. The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations, The Ocean Carbon Cycle and Climate[M].Dordrecht:Springer,2004:97-148.
127 BAKKER D C E, BANGE H W, GRUBER N, et al. Air-sea Interactions of Natural Long-lived Greenhouse Gases (CO2,N2O,CH4) in a Changing Climate, Ocean-Atmosphere Interactions of Gases and Particles[M]. Springer Earth System Scienes. Berlin, Heidelberg: Springer, 2014: 113-169.
128 陈传平,梅博文. 塔里木盆地原油氮同位素地球化学初步研究[J]. 天然气地球科学,2004,15(2):178-181.
CHEN C P,MEI B W. Elementary research on oil nitrogen isotopic geochemistry in Tarim Basin[J]. Natural Gas Geoscience, 2004, 15(2): 178-181.
129 陈传平,梅博文. 中国不同沉积环境的氮同位素特征[J]. 石油与天然气地质,2001,22(3):207-209.
CHEN C P,MEI B W. Characteristics of nitrogen isotope in different depositional environments in China[J]. Oil & Gas Geology, 2001, 22(3): 207-209.
130 陈践发,徐学敏,师生宝. 不同沉积环境下原油氮同位素的地球化学特征[J]. 中国石油大学学报:自然科学版,2015,39(5):1-6.
CHEN J F,XU X M,SHI S B. Geochemical characteristics of nitrogen isotope of crude oils in different depositional environments[J]. Journal of China Univeristy of Petroleum, 2015, 39(5):1-6.
131 刘娅昭,武明辉,师生宝,等.不同沉积环境中原油氮同位素差异特征研究[J]. 石油实验地质,2015,37(1):1-5.
LIU Y Z,WU M H,SHI S B,et al. Differences of nitrogen isotopes in crude oils from different depositional environments[J]. Petroleum Geology & Experiment, 2015, 37(1): 1-5.
132 MARCANO N, LARTER S, MAYER B. The impact of severe biodegradation on the molecular and stable (C, H, N, S) isotopic compositions of oils in the Alberta Basin, Canada[J]. Organic Geochemistry,2013, 59: 114-132.
133 ZHU G Y,ZHANG Z Y,ZHOU X X,et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 1-28.
134 ZHU G Y,MILKOV A,ZHANG Z Y,et al. Formation and preservation of a large, super-deep ancient carbonate reservoir, the Halahatang oilfield in the Tarim Basin, China[J]. AAPG Bulletin, 2019, 103: 1703-1743.
135 ZHU G Y,ZHANG Y,ZHOU X X,et al. TSR, deep oil cracking and exploration potential in the Hetianhe Gas Feld, Tarim Basin, China[J]. Fuel, 2019, 236:1078-1092.
136 ZHU G Y,YAN H H,CHEN W Y,et al. Discovery of Cryogenian interglacial source rocks in the northern Tarim, NW China: Implications for Neoproterozoic paleoclimatic reconstructions and hydrocarbon exploration[J].Gondwana Resear-ch, 2020, 80: 370-384.
137 ZHU G Y,LI T T,ZHAO K,et al. Excellent source rocks discovered in the Cryogenian interglacial deposits in South China: Geology, geochemistry, and hydrocarbon potential[J]. Precambrian Research, 2019, 333: 105455.
138 ZHU G Y,CHEN F R,WANG M,et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
[1] 闫磊, 杨敏, 张君龙, 曹颖辉, 杜德道, 王珊, 徐兆辉, 李洪辉, 赵一民. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选[J]. 天然气地球科学, 2020, 31(5): 667-674.
[2] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[3] 朱明, 梁则亮, 马健, 庞志超, 王俊, 焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[4] 杨帅杰, 王伟锋, 张道亮, 付小东, 张建勇, 李文正. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学, 2020, 31(4): 507-517.
[5] 韩杨, 高先志, 周飞, 王波, 朱军, 段立锋. 柴达木盆地北缘腹部侏罗系烃源岩热演化特征及其对油气成藏影响[J]. 天然气地球科学, 2020, 31(3): 358-369.
[6] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[7] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[8] 马安来, 李慧莉, 李杰豪, 高晓鹏, 王凡, 姚尧, 冯帆. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
[9] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[10] 崔景伟, 朱如凯, 李森, 齐亚林, 时晓章, 毛治国, . 坳陷湖盆烃源岩发育样式及其对石油聚集的控制——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2019, 30(7): 982-996.
[11] 杨帆, 宋永, 陈洪, 龚德瑜, 卞保力, 刘海磊. 准噶尔盆地阜东地区石炭系松喀尔苏组烃源岩评价及气源对比[J]. 天然气地球科学, 2019, 30(7): 1018-1026.
[12] 吴海, 严少怀, 赵孟军, 卓勤功, 王龙, 白东来, 张月, 沙威. 库车前陆盆地东西部油气成藏过程差异性分析——以吐北1和迪那2构造为例[J]. 天然气地球科学, 2019, 30(7): 1027-1036.
[13] 吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 2019, 30(6): 819-827.
[14] 唐友军, 杨易卓, 孟宪新, 王霆, 何大祥, 李梦茹, 季长军, 孙鹏, 蔡意兰. 火山活动对南羌塘盆地曲色组烃源岩地球化学特征影响探讨[J]. 天然气地球科学, 2019, 30(5): 721-728.
[15] 王伟锋, 张仲达. 准噶尔盆地五彩湾地区石炭系烃源岩演化及油气成藏过程[J]. 天然气地球科学, 2019, 30(4): 447-455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!