天然气地球科学 ›› 2020, Vol. 31 ›› Issue (5): 587–601.doi: 10.11764/j.issn.1672-1926.2020.04.013

• •    下一篇

7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限

朱光有1(),孙崇浩2,赵斌2,李婷婷1,陈志勇1,杨海军2,高莲花2,黄金华2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2020-03-23 修回日期:2020-04-12 出版日期:2020-05-10 发布日期:2020-05-27
  • 作者简介:朱光有(1973-),男,河南西峡人,教授级高级工程师,博士,主要从事深层油气地质与成藏研究.E-mail:zhuguangyou@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司重大科技项目“古老碳酸盐岩油气成藏分布规律与关键技术”(编号2019B-04)资助

Formation, evaluation technology and preservation lower limit of ultra-deep ancient fracture-cavity carbonate reservoirs below 7 000 m

Guang-you ZHU1(),Chong-hao SUN2,Bin ZHAO2,Ting-ting LI1,Zhi-yong CHEN1,Hai-jun YANG2,Lian-hua GAO2,Jin-hua HUANG2   

  1. 1.Research Institute of Exploration and Development, PetroChina, Beijing 100083, China
    2.Tarim Oilfield Company, PetroChina, Korla 841000, China
  • Received:2020-03-23 Revised:2020-04-12 Online:2020-05-10 Published:2020-05-27
  • Supported by:
    The Major Science and Technology Projects of CNPC(2019B-04)

摘要:

随着油气勘探向深层发展,7 000 m以深的超深层成为勘探重点。超深层古老碳酸盐岩储层的形成、保存和预测是关键难题。通过分析中国塔里木盆地奥陶系7 000 m以深已钻井资料,表征超深层碳酸盐岩储层发育特征及形成演化过程,发现高能沉积相带、准同生期暴露岩溶作用和断裂改造等控制了超深层碳酸盐岩储层的形成。通过地震属性提取,发现“串珠”状反射,提出了沿断裂带顺岩溶层钻探的方法,钻井成功率提高到了75%。建立了缝洞体定量雕刻与表征技术,形成了缝洞型油藏油气富集规律与井点优选方法。建立断层与缝洞型碳酸盐岩储层中孔洞的力学模型,开展数值模拟和理论分析,结果表明:随与断层面距离的增加,裂缝发育能力减弱;8 500 m以浅为碳酸盐岩储层优势分布区,8 500~9 200 m为有效分布区,9 200~9 500 m为一般分布区,11 000 m以深大型孔洞逐渐消亡;台盆区超深碳酸盐岩储层中古溶洞顶部形成抛物面型压力拱,阻碍溶洞的完全垮塌,以高跨比为1、矢高为8 m的抛物面型溶洞为例,其完全闭合深度在50 000 m以深。因此,碳酸盐岩洞穴储层勘探深度下限远远超过目前可钻深度。

关键词: 超深层, 碳酸盐岩, 缝洞体雕刻, 应力场, 压力拱, 塔里木盆地

Abstract:

With the development of oil and gas exploration to deep layers, ultra-deep layers below 7 000 m have become the focus of exploration. The formation, preservation and prediction of ultra-deep ancient carbonate reservoirs are key problems. Based on the analysis of the drilling data below 7 000 m of Ordovician in Tarim Basin, China, this paper characterizes the development characteristics and formation and evolution process of ultra-deep carbonate reservoirs. The formation of ultra-deep carbonate reservoirs is controlled by high-energy depositional bodies, penecontemporaneous exposed karstification and the reconstruct of faults. Through seismic attribute extraction, beads were found and a method of drilling along the fault zone along the karst layer was proposed. The success rate of drilling was increased to 95%. The quantitative sculpture and characterization technology of fracture-cavity has been established, and hydrocarbon accumulation regularity and well point optimization method for fracture-cavity reservoirs have been formed. Mechanical models of vugs in fault and fracture-cavity carbonate reservoirs are established, and numerical simulation and theoretical analysis are carried out. The results show that the distance from fault plane increases, and the fracture development ability decreases. Over 8 500 m is the dominant distribution area of carbonate reservoir, 8 500-9 200 m is the effective distribution area, 9 200-9 500 m is the general distribution area, below 11 000 m, large vugs are gradually disappearing. Parabolic pressure arches are formed at the top of the paleocave in the ultra-deep carbonate reservoir in the platform basin area to prevent the cave from collapsing completely. Take the parabolic cave with the height-span ratio of 1 and arrow height 8 m as an example, its fully closed depth is over 50 000 m. Therefore, the lower limit of exploration depth for carbonate cave reservoirs far exceeds the current drillable depth.

Key words: Ultra-deep, Carbonate, Fracture-cavity sculpture, Stress field, Pressure arch, Tarim Basin

中图分类号: 

  • TE122.2

图1

塔北地区区域构造位置"

图2

哈拉哈塘地区超深层岩溶储层岩心照片及显微镜下孔隙发育特征"

图3

超深缝洞型碳酸盐岩岩心实测孔隙度、渗透率分布直方图"

图4

洞穴型储层测井响应特征"

图5

孔洞型储层测井响应特征"

图6

裂缝型储层测井响应特征"

图7

哈拉哈塘南部奥陶系超深缝洞型碳酸盐岩钻井放空漏失井段对比"

图8

哈拉哈塘奥陶系一间房组沉积相平面图"

图9

哈拉哈塘地区奥陶系岩溶储层叠加改造发育模式"

图10

哈拉哈塘走滑断裂典型剖面"

图11

哈拉哈塘地区奥陶系储层“串珠”状反射和高效井与断裂的关系(a)“串珠”状反射与断裂带距离分布频率统计直方图;(b)高效井与断裂带距离统计分析"

图12

“串珠”状反射地震相空间雕刻示意"

图13

片状反射地震相空间雕刻示意"

图14

杂乱反射地震相空间雕刻示意"

图15

跃满区块奥陶系一间房顶面裂缝地震相空间雕刻图(a)和缝洞几何结构立体雕刻图(b)"

图16

跃满区块奥陶系洞穴型与孔洞型储层立体雕刻融合图"

图17

断层面受力图(图中网格为数值计算划分的网格,红色箭头为力,垂直断层面为挤压力,平行断层面为剪切力)"

图18

最大主应力等值线分布(应力单位:MPa)"

图19

最小主应力等值线分布(应力单位:MPa)"

图20

裂缝发育分布"

图21

孔洞力学模型和孔洞围岩破坏程度评估模型"

图22

孔洞直径与坍塌深度极限关系曲线"

图23

抛物面型洞顶溶洞在巨大上覆岩层压力作用下的变形模拟(a)高跨比为1(矢高=8 m)溶洞变形模拟的初始状态;(b)溶洞围岩破坏区分布;(c)溶洞围岩位移分布云图"

图24

哈拉哈塘南部奥陶系东西向油藏剖面"

1 贾承造,庞雄奇.深层油气地质理论研究进展与主要发展方向[J].石油学报,2015,36(12):1457-1469.
JIA C Z, PANG X Q. Research processes and main development directions of deep hydrocarbon geological theories[J]. Acta Petrolei Sinica, 2015, 36(12): 1457-1469.
2 孙龙德,邹才能,朱如凯,等.中国深层油气形成、分布与潜力分析[J].石油勘探与开发,2013,40(6):641-649.
SUN L D, ZOU C N, ZHU R K, et al. Formation, distribution and potential of deep hydrocarbon resources in China[J]. Petroleum Exploration and Development, 2013, 40(6): 641-649.
3 邹才能,陶士振.海相碳酸盐岩大中型岩性地层油气田形成的主要控制因素[J].科学通报,2007,52(S1):32-39.
ZOU C N, TAO S Z. The main factors controlling the formation of the medium and large scale of lithostratigraphic oil and gas reservoir for marine carbonate rocks[J]. Chinese Science Bulletin, 2007, 52(S1): 32-39.
4 ZHANG Z Y, ZHANG Y J, ZHU G Y, et al. Geochemical and isotopic evidence of the genesis of a condensate in the eastern Tarim Basin, China: Implications for petroleum exploration[J]. Energy Fuels, 2019, 33(6): 4849-4856.
5 朱光有,曹颖辉,闫磊,等.塔里木盆地8 000 m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
ZHU G Y, CAO Y H, YAN L, et al. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8 000 m in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(6): 755-772.
6 孙崇浩,朱光有,郑多明,等.塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素[J].矿物岩石地球化学通报,2016,35(5):1028-1036.
SUN C H, ZHU G Y, ZHENG D M, et al. Characteristics and controlling factors of fracture-cavity carbonate reservoirs in the Halahatang area, Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 1028-1036.
7 ZHU G Y, ZOU C N, YANG H J, et al. Hydrocarbon accumulation mechanisms and industrial exploration depth of large-area fracture-cavity carbonates in the Tarim Basin,western China[J]. Journal of Petroleum Science and Engineering, 2015, 133: 889-907.
8 ZHU G Y, ZHANG Z Y, ZHOU X X, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198: 1-28.
9 ZHANG Z Y, ZHANG Y J, ZHU G Y, et al. Variations of diamondoids distributions in petroleum fluids during migration induced phase fractionation: A case study from the Tazhong area, NW China[J]. Journal of Petroleum Science and Engineering, 2019, 179: 1012-1022.
10 ZHU G Y, ZHANG Z Y, ZHOU X X, et al. Preservation of ultra-deep liquid oil and its exploration limit[J]. Energy & fuels, 2018, 32(11): 11165-11176.
11 ZHANG Z Y, ZHU G Y, ZHANG Y J, et al. The origin and accumulation of multi-phase reservoirs in the east Tabei Uplift, Tarim Basin, China[J]. Marine and Petroleum Geology, 2018, 98: 533-553.
12 ZHU G Y, MILKOV A V, ZHANG Z Y, et al. Formation and preservation of a large, super-deep ancient carbonate reservoir, the Halahatang Oilfield in the Tarim Basin, China[J]. AAPG Bulletin, 2019, 103(7): 1703-1743.
13 朱光有,刘星旺,朱永峰,等.塔里木盆地哈拉哈塘地区复杂油气藏特征及其成藏机制[J].矿物岩石地球化学通报,2013,32(2):231-242.
ZHU G Y, LIU X W, ZHU Y F, et al. The characteristics and the accumulation mechanism of complex reservoirs in the Halahatang area, Tarim Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2): 231-242.
14 淡永,梁彬,曹建文,等.塔北哈拉哈塘地区奥陶系碳酸盐岩岩溶层组特征与溶蚀强度分析[J].石油实验地质,2015,37(5):582-590.
DAN Y, LIANG B, CAO J W, et al. Characteristics and solution intensity of karst formations in Ordovician carbonates in the Halahatang area of the northern Tarim Basin[J]. Petroleum Geology & Experiment, 2015, 37(5): 582-590.
15 何治亮,高志前,张军涛,等.层序界面类型及其对优质碳酸盐岩储层形成与分布的控制[J].石油与天然气地质,2014,35(6):853-859.
HE Z L, GAO Z Q, ZHANG J T, et al. Types of sequence boundaries and their control over formation and distribution of quality carbonate reservoirs[J]. Oil & Gas Geology, 2014, 35(6): 853-859.
16 朱光有,杨海军,朱永峰,等.塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J].岩石学报,2011,27(3):827-844.
ZHU G Y, YANG H J, ZHU Y F, et al. Study on petroleum geological characteristics and accumulation of carbonate reservoirs in Halahatang area, Tarim Basin[J].Acta Petrologica Sinica, 2011, 27(3): 827-844.
17 胡明毅,付晓树,蔡全升,等.塔北哈拉哈塘地区奥陶系鹰山组—一间房组岩溶储层特征及成因模式[J].中国地质,2014,41(5):1476-1486.
HU M Y, FU X S, CAI Q S, et al. Characteristics and genetic model of karst reservoirs of Ordovician Yingshan-Yijianfang Formations in Halahatang area, northern Tarim Basin[J]. Geology in China, 2014, 41(5): 1476-1486.
18 廖涛,侯加根,陈利新,等.塔北哈拉哈塘油田奥陶系岩溶储层发育模式[J].石油学报,2015,36(11):1380-1391.
LIAO T, HOU J G, CHEN L X, et al. Evolutionary model of the Ordovician karst reservoir in Halahatang Oilfield, northern Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(11): 1380-1391.
19 李忠.盆地深层流体—岩石作用与油气形成研究前沿[J].矿物岩石地球化学通报,2016,35(5):807-816, 805.
LI Z. Research frontiers of fluid-rock interaction and oil-gas formation in deep-buried basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5): 807-816, 805.
20 马永生,蔡勋育,赵培荣.深层、超深层碳酸盐岩油气储层形成机理研究综述[J].地学前缘,2011,18(4):181-192.
MA Y S, CAI X Y, ZHAO P R. The research status and advances in porosity evolution and diagenesis of deep carbonate reservoir[J]. Earth Science Frontiers, 2011, 18(4): 181-192.
21 倪新锋,张丽娟,沈安江,等.塔北地区奥陶系碳酸盐岩古岩溶类型、期次及叠合关系[J].中国地质,2009,36(6):1312-1321.
NI X F, ZHANG L J, SHEN A J, et al. Paleo-karstification types, karstification periods and superimposition relationship of Ordovician carbonates in northern Tarim Basin[J]. Geology in China, 2009, 36(6): 1312-1321.
22 漆立新,云露.塔河油田奥陶系碳酸盐岩岩溶发育特征与主控因素[J].石油与天然气地质,2010,31(1):1-12.
QI L X, YUN L. Development characteristics and main controlling factors of the Ordovician carbonate karst in Tahe oilfield[J]. Oil & Gas Geology, 2010, 31(1): 1-12.
23 斯春松,乔占峰,沈安江,等.塔北南缘奥陶系层序地层对岩溶储层的控制作用[J].石油学报,2012,33(S2):135-144.
SI C S, QIAO Z F, SHEN A J, et al. The controlling effect of sequence stratigraphy on karst reservoirs of Ordovician in the south margin of northern Tarim Basin[J]. Acta Petrolei Sinica, 2012, 33(S2): 135-144.
24 孙东,杨丽莎,王宏斌,等.塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用[J].天然气地球科学,2015,26(S1):80-87.
SUN D, YANG L S, WANG H B, et al. The effect of strike-slip fault system on the control of Ordovician marine carbonate reservoir in Halahatang area, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(S1): 80-87.
25 朱光有,杨海军,苏劲,等.中国海相油气地质理论新进展[J].岩石学报,2012,28(3):722-738.
ZHU G Y, YANG H J, SU J, et al. New progress of marine hydrocarbon geological theory in China[J]. Acta Petrologica Sinica, 2012, 28(3): 722-738.
26 FJAR E, HOLT R M, RAAEN A M, et al. Petroleum Related Rock Mechanics[M]. Amsterdam: Elsevier, 2008.
27 朱光有,杨海军,苏劲,等.塔里木盆地海相石油的真实勘探潜力[J].岩石学报,2012,28(4):1333-1347.
ZHU G Y, YANG H J, SU J, et al. True exploration potential of marine oils in the Tarim Basin[J]. Acta Petrologica Sinica, 2012, 28(4): 1333-1347.
28 龙驭球,包世华,袁驷.结构力学[M].北京:高等教育出版社,2001.
LONG Y Q, BAO S H, YUAN S. Structural Mechanics[M]. Beijing: Higher Education Press, 2001.
29 ZHU G Y, MILKOV A V, CHEN F R, et al. Non-cracked oil in ultra-deep high-temperature reservoirs in the Tarim Basin,China[J].Marine and Petroleum Geology,2018,89:252-262.
30 ZHU G Y, CHEN F R, WANG M, et al. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
[1] 王泽宇,乔占峰,寿芳漪,蒙绍兴,吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[2] 徐兆辉,王露,曹颖辉,李洪辉,闫磊,王珊,赵一民,杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[3] 张敏,张正红,熊益学,陈永权,王晓雪,何皓,亢茜,马源,苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[4] 马德波,崔文娟,陶小晚,董洪奎,徐兆辉,李婷婷,陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[5] 杜锦,马德波,刘伟,曹颖辉,赵一民,齐景顺,杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[6] 郑剑锋,黄理力,袁文芳,朱永进,乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[7] 熊冉,郑剑锋,黄理力,陈永权,倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[8] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[9] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[10] 杨晋东, 赵峰华, 秦胜飞, 邹雨, 宋昌贵, 孙宇翔. 华北克拉通北缘中元古界杨庄组碳酸盐岩地球化学特征及其地质意义[J]. 天然气地球科学, 2020, 31(2): 268-281.
[11] 蔡珺君, 梁锋, 占天慧, 王俐佳, 唐青松, 邓庄, 甘笑非. 动静态资料在四川盆地磨溪—高石梯地区震旦系碳酸盐岩储层类型识别中的应用[J]. 天然气地球科学, 2020, 31(1): 132-142.
[12] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[13] 刘金华, 郭瑞, 马洪涛, 夏步余, 先伟, 蒋阿明, 葛政俊. 塔里木盆地塔河地区东部阿克库勒组阿四段条带状砂体成因再认识[J]. 天然气地球科学, 2019, 30(9): 1253-1262.
[14] 吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
[15] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马永生. 普光气田天然气地球化学特征及气源探讨[J]. 天然气地球科学, 2008, 19(1): 1 -7 .
[2] 郭建军,朱忠云, 李广才, 陈践发, 陈仲宇. 柴窝堡凹陷柴参1侧1井烃源岩的地球化学特征[J]. 天然气地球科学, 2004, 15(6): 652 -654 .
[3] 尹太举,张昌民. 层序地层格架内的油气勘探[J]. 天然气地球科学, 2005, 16(1): 25 -30 .
[4] 蒋有录;. 气藏与油藏形成和保存条件差异问题讨论[J]. 天然气地球科学, 1998, 9(2): 1 -6 .
[5] 向廷生;王莉;窦红梅;. 青海花土沟油田浅层油藏连通性研究[J]. 天然气地球科学, 2005, 16(2): 229 -232 .
[6] 妥进才, 王先彬, 周世新, 陈晓东, . 深层油气勘探现状与研究进展[J]. 天然气地球科学, 1999, 10(6): 1 -8 .
[7] 吕宝凤;夏斌;. 川东南“隔档式构造”的重新认识[J]. 天然气地球科学, 2005, 16(3): 278 -282 .
[8] 王顺玉;明巧;黄羚;钟家国;杨阳. 邛西地区邛西构造须二段气藏流体地球化学特征及连通性研究[J]. 天然气地球科学, 2007, 18(6): 789 -792 .
[9] 夏明军, 曾大乾, 邓瑞健, 姜贻伟, 毕建霞, 靳秀菊, 谭国华, 苗菁. 普光气田长兴组台地边缘礁、滩沉积相及储层特征[J]. 天然气地球科学, 2009, 20(4): 549 -556,562 .
[10] 李军, 陶士振, 汪泽成, 邹才能, 高晓辉, 王世谦. 川东北地区侏罗系油气地质特征与成藏主控因素[J]. 天然气地球科学, 2010, 21(5): 732 -741 .