天然气地球科学 ›› 2020, Vol. 31 ›› Issue (5): 698–709.doi: 10.11764/j.issn.1672-1926.2020.04.008

• • 上一篇    下一篇

塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义

郑剑锋1,2(),黄理力1,2,袁文芳3,朱永进1,2,乔占峰1,2   

  1. 1.中国石油集团碳酸盐岩储层重点实验室,浙江 杭州 310023
    2.中国石油杭州地质研究院,浙江 杭州 310023
    3.中国石油塔里木油田公司,新疆 库尔勒 841000
  • 收稿日期:2020-03-23 修回日期:2020-04-04 出版日期:2020-05-10 发布日期:2020-05-27
  • 作者简介:郑剑锋(1977-),男,浙江龙游人,高级工程师,硕士,主要从事碳酸盐岩沉积、储层研究.E-mail:zhengjf_hz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(2016ZX05004-002);中国石油重大科技项目“古老碳酸盐岩油气成藏分布规律与关键技术”(2019B-0405)

Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin

Jian-feng ZHENG1,2(),Li-li HUANG1,2,Wen-fang YUAN3,Yong-jin ZHU1,2,Zhan-feng QIAO1,2   

  1. 1.The Key Laboratory of Carbonate Reservoirs CNPC, Hangzhou 310023, China
    2.PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China
    3.Tarim Oilfield Company, PetroChina, Korla 841000, China
  • Received:2020-03-23 Revised:2020-04-04 Online:2020-05-10 Published:2020-05-27
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05004-002);The PetroChina Science and Technology Major Project(2019B-0405)

摘要:

下寒武统肖尔布拉克组是塔里木盆地寒武系盐下领域主要勘探目的层之一,然而当前沉积相及储层成因认识不深制约了勘探的突破。以柯坪地区肖尔布拉克剖面为对象,在野外实测描述的基础上,优选样品开展了碳氧稳定同位素、锶同位素、白云石有序度、微量元素、稀土元素、U-Pb同位素定年和团簇同位素分析。结果表明:①肖尔布拉克组主要发育层纹石、凝块石、黏结颗粒、泡沫绵层石和叠层石5种微生物白云岩,自下而上的岩相组合特征可将其分为3个段5个亚段,整体构成一个三级层序;②柯坪地区早寒武世肖尔布拉克组沉积期整体处于温热—干热气候,相对正常—较高海水盐度、水体向上逐渐变浅和氧含量逐渐增加的海洋环境,发育碳酸盐缓坡背景下的外缓坡微生物层—中缓坡微生物丘—内缓坡微生物丘滩—潮坪沉积序列;③白云岩形成于准同生—浅埋藏期相对较低温度环境,白云石化流体为具有较高盐度的海水;④储层储集空间类型主要为原生微生物格架孔和受早表生期大气淡水溶蚀作用改造的溶蚀孔洞,沉积微相、高频层序界面和早期白云石化作用是控制储层发育的主要因素。研究成果可以为该领域岩相古地理编图和储层分布预测提供依据。

关键词: 沉积与成岩环境, 地球化学特征, 下寒武统, 肖尔布拉克组, 柯坪地区, 塔里木盆地

Abstract:

Lower Cambrian Xiaoerblak Formation is an important exploration target of Cambrian pre-salt in Tarim Basin, but the limited knowledge of sedimentary facies and reservoir genesis led to the restriction of exploration. This study took Xiaoerblak outcrop of Keping area as an example. Based on detailed description, 110 thin sections identification and multi-parameters geochemical (order degree, trace elements, rare earth elements, δ13C, δ18O, 87Sr/86Sr, U-Pb dating and cluster isotopes) data analysis, it was found that Xiaoerblak Formation can be divided into three members, and microbial dolomite is the main lithology. The characteristics of lithofacies assemblage form bottom to up indicate that it can be described as a complete three-order sequence. The sedimentary environment of Early Cambrian Xiaoerblak Period in Keping area characterized by warm-dry climate, normal-higher sea salinity, gradually increase oxygen content and upward shallower water. The sedimentary sequence was microbial layer-microbial mound/shoal-tidal flat in carbonated ramp background. Dolomitization took place in penecontemporaneous-early diagenetic stage and the main dolomitization fluid was high-saline seawater. Primary microbial framework pores and vugs which formed by the dissolution atmospheric water are the main reservoir spaces. Reservoir was mainly controlled by sedimentary microfacies, high frequency sequence interface and early dolomitization. These research results are of great significance for sedimentary facies mapping and reservoir prediction in Cambrian pre-salt field.

Key words: Sedimentary and diagenetic environment, Geochemical features, Lower Cambrian, Xiaoerblak Formation, Keping area, Tarim Basin

中图分类号: 

  • TE122.1+13

图1

塔里木盆地构造单元图(a)与前寒武系—寒武系地层综合柱状图(b)"

图2

肖尔布拉克组综合柱状图"

图3

肖尔布拉克组白云岩类型及岩石特征(a)层纹石白云岩,微波状明暗纹层相间,肖下段,露头;(b)凝块石白云岩,凝块层状连续分布,肖中1亚段,露头;(c)凝块石白云岩,凝块网状分布,暗色比例少,肖中2亚段,露头;(d)细—中晶白云岩,见发育晶间溶孔,肖中3亚段,蓝色铸体;(e)泡沫绵层石白云岩,窗格溶孔发育,肖中3亚段,蓝色铸体;(f)颗粒白云岩,具有微生物黏结结构,粒间残留少量溶孔,肖中3亚段,蓝色铸体;(g)叠层石白云岩,呈低幅丘状,肖上段,露头;(h)泥质白云岩、泥岩与泥粒白云岩互层,肖上段,露头;(i)泥粒白云岩,具帐篷构造,肖上段,露头"

图4

肖尔布拉克组白云岩碳氧同位素交会图"

表1

肖尔布拉克组白云岩碳氧同位素、锶同位素、有序度测试结果"

样品 编号岩性层段

δ13C/

‰(PDB)

δ18O/

‰( PDB)

87Sr/86Sr±2δ古盐度(Z)古温度(T) /℃有序度
X1-1层纹石白云岩肖下段0.88-6.930.709 374±3125.721.60.77
X1-2层纹石白云岩肖下段1.34-7.670.708 992±8126.225.00.50
X2-1凝块石白云岩肖中1亚段2.85-7.330.708 843±6129.523.40.55
X2-2凝块石白云岩肖中1亚段2.91-7.420.709 289±13129.623.8/
X3-1凝块石白云岩肖中2亚段3.03-7.450.709 167±7129.824.00.60
X3-2凝块石白云岩肖中2亚段3.35-7.510.709 189±4130.424.20.68
X4-1细晶(砂屑)白云岩肖中3亚段2.66-7.110.709 122±8129.222.40.65
X4-2粘结砂屑白云岩肖中3亚段2.67-6.090.709 113±17129.717.80.59
X4-3泡沫绵层云岩肖中3亚段2.10-6.860.709 105±6128.221.20.45
X4-4泡沫绵层白云岩肖中3亚段2.26-6.360.709 113±10128.819.00.56
X5-1叠层石白云岩肖上段0.36-6.400.709 412±6124.919.20.60
X5-2含泥颗粒白云岩肖上段-0.13-6.830.713 218±2123.621.1/
X5-3泥质泥晶白云岩肖上段-0.78-7.510.713 343±11122.024.2/

表2

肖尔布拉克组白云岩元素测试结果"

样品 编号

V/

(10-6)

Cr/

(10-6)

Mn/

(10-6)

Ni/

(10-6)

Cu/

(10-6)

Zn/ (10-6)

Ga/

(10-6)

Sr/

(10-6)

Ba/

(10-6)

Pb/

(10-6)

K/

(10-2)

Na/

(10-2)

Fe/

(10-2)

Al/

(10-2)

CaO/

(10-2)

MgO/

(10-2)

X1-16.861.191806.192.693.740.12111.83.680.54<0.010.0400.0280.03829.9621.63
X1-27.774.432837.082.5514.100.10108.23.410.890.010.0410.1340.02530.0021.48
X2-16.674.902716.602.739.010.10159.17.670.89<0.010.0630.1640.02230.0621.61
X2-26.264.203226.813.499.610.1263.87.982.08<0.010.0390.2300.03029.8221.79
X3-15.753.262397.052.928.250.0897.65.851.25<0.010.0480.1550.02329.9421.77
X3-25.231.812056.042.259.330.07107.85.741.04<0.010.0510.1220.02030.1921.61
X4-15.022.121576.563.215.050.0559.82.001.00<0.010.0380.1060.01429.6922.06
X4-25.171.261416.421.876.210.0472.811.300.39<0.010.0970.0580.01330.5621.52
X4-35.470.45909.331.012.660.0278.527.300.84<0.010.0240.0210.01030.1921.70
X4-45.281.371297.492.334.640.0479.413.530.91<0.010.0530.0620.01230.1521.76
X5-19.643.221509.953.4626.700.2093.812.201.380.030.0310.1190.07730.4421.43
X5-215.6211.1037317.8329.3095.901.33135.223.2020.700.230.1050.9250.56923.6616.42
X5-315.667.8914818.809.8968.301.1288.828.1019.100.200.0681.5740.90918.4913.15

表3

肖尔布拉克组白云岩稀土元素测试结果"

样品 编号

Y/

(10-6)

La/

(10-6)

Ce/

(10-6)

Pr/

(10-6)

Nd/

(10-6)

Sm/

(10-6)

Eu/

(10-6)

Gd/

(10-6)

Tb/

(10-6)

Dy/

(10-6)

Ho/

(10-6)

Er/

(10-6)

Tm/

(10-6)

Yb/

(10-6)

Lu/

(10-6)

ΣREE/

(10-6)

X1-13.159.7625.5334.2033.5281.9130.9821.3500.9680.8210.8060.7060.6020.5940.51732.283
X1-21.684.1013.2792.6092.2361.2610.7040.8680.5990.4870.4950.3920.3260.3110.28417.951
X2-10.892.0371.2401.1590.9720.6090.3350.3860.3350.2560.2530.2120.1750.2190.1818.369
X2-20.481.1640.7680.5430.4440.2740.1730.1990.1410.1380.1500.1220.1250.1190.1034.465
X3-10.571.1310.7530.6300.5240.3130.2080.2270.1940.1560.1760.1350.1630.1360.1494.895
X3-20.690.9790.6970.6160.5140.3300.2420.2640.2290.1690.2190.1610.2510.1420.2075.019
X4-10.210.3440.3070.2030.1670.1090.0810.0610.0700.0620.0810.0470.1000.0640.1031.799
X4-20.230.3700.3070.2170.1810.0960.0690.0900.0700.0620.0920.0550.0750.0680.0781.831
X4-30.190.3440.2870.1960.1670.1090.1040.0640.1060.0540.0690.0470.1000.0870.1291.862
X4-40.250.3530.3020.2050.1710.1040.0950.0920.0980.0670.0890.0630.1140.0770.1081.938
X5-10.541.3490.9730.8700.7080.3700.2310.2480.2640.2100.2070.1570.1500.2100.1556.103
X5-26.2419.25915.88113.26110.8196.6093.0024.1483.5212.7952.5352.3142.0802.2371.73190.193
X5-37.2215.15914.75414.05812.4729.2174.6195.5954.7543.8213.3412.9802.7573.1512.58499.261

图5

肖尔布拉克组白云岩稀土元素配分模式"

表4

肖尔布拉克组微生物白云岩及其碳酸盐胶结物U—Pb同位素年龄测试结果"

样品编号产状同位素年龄/Ma样号产状同位素年龄/Ma
X1-C1a微生物岩围岩517±30X1-C3b孔洞中方解石471±10
X1-C1b孔缝中鞍状白云石45±69X1-C4a微生物岩围岩512±11
X1-C1b孔缝中鞍状白云石29±43X1-C4b裂缝中方解石204±37
X1-C2a微生物岩围岩515±32X1-C4c裂缝中方解石205±10
X1-C2b孔洞中方解石495±12X1-C5a微生物岩围岩499.6±8.3
X1-C3a微生物岩围岩480±25X1-C5b孔洞中方解石481±29

表5

肖尔布拉克组碳酸盐胶结物团簇同位素测试结果"

样品编号产状

δ13Cm

/‰(PDB)

标准偏差

(Sd)

δ18Om/‰(PDB)

标准偏差

(Sd)

Δ47T/℃δ18Ow/‰(SMOW)
X1-C1b孔缝中鞍状白云石0.870.01-10.590.010.55585.31.93
X1-C1b孔缝中鞍状白云石-0.460.02-10.920.020.555 983.41.33
X1-C2b孔洞中方解石-2.490.01-10.570.010.64741.8-5.00
X1-C3b孔洞中方解石-2.810.01-11.210.010.63845.3-5.02
X1-C4b裂缝中方解石-0.680.02-13.660.030.57674.0-2.82
X1-C5b孔洞中方解石-2.250.05-9.50.050.66834.0-5.38

图6

柯坪地区肖尔布拉克组沉积期沉积模式"

1 杨海军. 塔里木盆地下古生界内幕白云岩勘探认识与勘探方向[J]. 天然气地球科学, 2015, 26(7):1213-1223.
YANG H J. Exploration knowledge and direction of Lower Proterozoic Inner Dolostones,Tarim Basin[J].Natural Gas Geo-science, 2015, 26(7):1213-1223.
2 杜金虎, 潘文庆. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向[J]. 石油勘探与开发, 2016, 43(3):327-339.
DU J H, PAN W Q. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3):327-339.
3 朱光有, 曹颖辉, 闫磊, 等. 塔里木盆地8000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6):755-772.
ZHU G Y, CAO Y H, YAN L, et al. Petroleum exploration potential and favorable areas of ultra-deep marine strata deeper than 8000 meters in Tarim Basin[J]. Natural Gas Geoscience, 2018,29(6):755-772.
4 易士威, 李明鹏, 郭绪杰, 等. 塔里木盆地寒武系盐下勘探领域的重大突破方向[J]. 石油学报, 2019, 40(11):1281-1295.
YI S W, LI M P, GUO X J, et al. Breakthrough direction of Cambrian pre-salt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11):1281-1295.
5 王招明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2):1-13.
WANG Z M, XIE H W, CHEN Y Q, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2):1-13.
6 杨永剑, 刘家铎, 田景春, 等. 塔里木盆地寒武纪层序岩相古地理特征[J]. 天然气地球科学, 2011, 22(3):450-459.
YANG Y J, LIU J D, TIAN J C, et al. Sequence Lithofacies Paleogeography of Cambrian in Tarim Basin[J]. Natural Gas Geoscience, 2011, 22(3):450-459.
7 倪新锋, 沈安江, 陈永权, 等. 塔里木盆地寒武系碳酸盐岩台地类型、缘分段特征及勘探启示[J]. 天然气地球科学, 2015, 26(7):1245-1255.
NI X F, SHEN A J, CHEN Y Q, et al. Cambrian carbonate platform types, platform margin segmentation characteristics and exploration enlightenment in Tarim Baisn[J]. Natural Gas Geoscience, 2015, 26(7):1245-1255.
8 李保华, 邓世彪, 陈永权, 等. 塔里木盆地柯坪地区下寒武统台缘相白云岩储层建模[J]. 天然气地球科学, 2015, 26(7):1233-1244.
LI B H, DENG S B, CHEN Y Q, et al. The reservoir modeling of platform margin dolostone of Xiaoerblak Formation, Lower Cambrian, Kalpin area, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7):1233-1244.
9 胡明毅, 孙春燕, 高达. 塔里木盆地下寒武统肖尔布拉克组构造—岩相古地理特征[J]. 石油与天然气地质, 2019, 40(1):12-23.
HU M Y, SUN C Y, GAO D. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation,Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1):12-23.
10 郑剑锋, 袁文芳, 黄理力, 等. 塔里木盆地肖尔布拉克露头区下寒武统肖尔布拉克组沉积相模式及其勘探意义[J]. 古地理学报, 2019, 21(4):589-602.
ZHENG J F, YUAN W F, HUANG L L, et al. Sedimentary facies model and its exploration significance of the Lower Cambrian Xiaoerblak Formation in Xiaoerblak area,Tarim Basin[J]. Journal of Palaeogeography, 2019, 21(4):589-602.
11 乔占峰, 沈安江, 倪新锋, 等. 塔里木盆地下寒武统肖尔布拉克组丘滩体系类型及其勘探意义[J]. 石油与天然气地质, 2019, 40(2):392-402.
QIAO Z F, SHEN A J, NI X F, et al. Types of mound-shoal complex of the Lower Cambrian Xiaoerbulake Formation in Tarim Basin,northwest China,and its implications for exploration[J]. Oil & Gas Geology, 2019, 40(2):392-402.
12 陈文玲, 罗平, 单钰铭, 等. 塔里木苏盖特布拉克地区肖尔布拉克组白云岩储层特征分析[J]. 石油地质与工程, 2010, 24(1):12-15.
CHEN W L, LUO P, SHAN Y M, et al. Features of dolomite reservoir of Xiaoerblak Formation in Sugaitblak area, Tarim Basin[J]. Petroleum Geology and Engineering, 2010, 24(1):12-15.
13 宋金民, 罗平, 杨式升, 等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J].石油勘探与开发,2014,41(4):404-413.
SONG J M, LUO P, YANG S S, et al. Reservoirs of Lower Cambrian microbial carbonates,Tarim Basin,NW China[J].Petroleum Exploration and Development, 2014, 41(4):404-413.
14 黄擎宇, 胡素云, 潘文庆, 等. 台内微生物丘沉积特征及其对储层发育的控制——以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例[J]. 天然气工业, 2016, 36(6):21-29.
HUANG Q Y, HU S Y, PAN W Q, et al. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Formation. in the Keping-Bachu area, Tarim Basin[J]. Natural Gas Industry, 2016, 36(6):21-29.
15 邓世彪, 关平, 庞磊, 等. 塔里木盆地柯坪地区肖尔布拉克组优质微生物碳酸盐岩储层成因例[J]. 沉积学报, 2018, 36(6):1218-1232.
DEN S B, GUAN P, PANG L, et al. Genesis of excellent xiaoerbulak microbial carbonate reservoir in Kalpin area of Tarim Basin,NW China[J].Acta Sedimentologica Sinica. 2018, 36(6):1218-1232.
16 余浩元, 蔡春芳, 郑剑锋, 等. 微生物结构对微生物白云岩孔隙特征的影响——以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 石油实验地质, 2018, 40(2):233-243.
YU H Y, CAI C F, ZHENG J F, et al. Influence of microbial textures on pore characteristics of microbial dolomites:A case study of Lower Cambrian Xiaoerbulake Formation in Keping area,Tarim Basin[J].Petroleum Geology & Experiment, 2018, 40(2):233-243.
17 沈安江, 郑剑锋, 陈永权, 等. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 2016, 43(3):340-349.
SHEN A J, ZHENG J F, CHEN Y Q, et al. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian,Tarim Basin,NW China[J]. Petroleum Exploration and Development, 2016, 43(3):340-349.
18 严威, 郑剑锋, 陈永权, 等. 塔里木盆地下寒武统肖尔布拉克组白云岩储层特征及成因[J]. 海相油气地质, 2017, 22(4):35-43.
YAN W, ZHENG J F, CHEN Y Q, et al. Characteristics and genesis of dolomite reservoir in the Lower Cambrian Xiaoerblak Formation,Tarim Basin[J]. Marine Origin Petroleum Geology, 2017, 22(4):35-43.
19 王珊, 曹颖辉, 杜德道, 等. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6):784-795.
WANG S, CAO Y H, DU D, et al. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2018, 29(6):784-795.
20 郑剑锋, 陈永权, 黄理力, 等. 苏盖特布拉克剖面肖尔布拉克组储层建模研究及其勘探意义[J]. 沉积学报, 2019, 37(3):601-609.
ZHEN J F, CHEN Y Q, HUANG L L, et al. Reservoir modeling of Low Cambrian Xiaoerblak Formation in Sugaitblak Section and its significance on exploration regions, Tarim Basin,NW China[J]. Acta Sedimentologica Sinica. 2019, 37(3):601-609.
21 李斌, 彭军, 杨素举, 等. 塔里木盆地巴楚地区寒武系肖尔布拉克组储层特征及成因模式[J]. 石油实验地质, 2017, 39(6):797-804.
LI B, PENG J, YANG S J, et al. Genetic model and characteristics of the Cambrian Shorebulake reservoir in Bachu area,Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(6):797-804.
22 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社, 1997:1-4.
JIA C Z. Tectonic Chaaracteristics and Petroleum of Tarim Basin, China[M]. Beijing: Petroleum Industry Press, 1997:1-4.
23 吴根耀, 李曰俊, 刘亚雷, 等. 塔里木西北部乌什—柯坪—巴楚地区古生代沉积—构造演化及成盆动力学背景[J]. 古地理学报, 2013, 15(2):203-218.
WU G Y, LI Y J, LIU Y L, et al. Paleozoic sediment-tectonic evolution and basin dynamic settngs in Wushi-Kalpin-Bachu area, northwest Tarim[J]. Journal of Palaeogeography, 2013, 15(2):203-218.
24 陈永权, 严威, 韩长伟, 等. 塔里木盆地寒武纪/前寒武纪构造—沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1):39-50.
CHEN YQ, YAN W, HAN CW, et al. Structural and sedimentary basin transformation at the Cambrian/Neoproterozoic interval in Tarim Basin: Implication to subsalt dolostone exploration[J]. Natural Gas Geoscience, 2019, 30(1):39-50.
25 何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77.
HE D F, JIA C Z, LI D S, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1): 64-77.
26 杨云坤, 石开波, 刘波, 等. 塔里木盆地西北缘震旦纪构造-沉积演化特征[J]. 地质科学, 2014, 49(1): 19-29.
YANG Y K, SHI K B, Liu B, et al. Tectono-sedimentary evolution of the Sinian in the northwest Tarim Basin[J]. Chinese Journal of Geology, 2014, 49(1): 19-29.
27 杨鑫, 李慧莉, 岳勇, 等. 塔里木盆地震旦纪末地层—地貌格架与寒武纪初期烃源岩发育模式[J]. 天然气地球科学, 2017, 28(2):189-198.
YANG X, LI H L, YUE Y, et al. The strata and palaeo-geomorphology framework at the end of Neoproterozoic and development mode of source rocks at the beginning of Cambrian[J]. Natural Gas Geoscience, 2017, 28(2):189-198.
28 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7):1224-1232.
PAN W Q, CHEN Y Q, XIONG Y X, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7):1224-1232.
29 朱永进, 倪新锋, 刘玲利, 等. 裂后沉降期碳酸盐岩缓坡沉积响应及成储特征——以塔里木盆地下寒武统肖尔布拉克组为例[J]. 沉积学报, 2019, 37(5):1044-1057.
ZHU Y J, NI X F, LIU L L, et al. Depositional differentiation and reservoir potential and distribution of Ramp Systems during Post⁃rift Period: An example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin, NW China[J]. Acta Sedimentologica Sinica, 2019, 37(5):1044-1057.
30 刘伟, 张光亚, 潘文庆, 等. 塔里木地区寒武纪岩相古地理及沉积演化[J]. 古地理学报, 2011, 13(5):529-538.
LIU W, ZHANG G Y, PAN W Q, et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim[J]. Journal of Palaeogeography, 2011, 139(5):529-538.
31 VEIZER J, ALA D, AZMY K, et al. 87Sr/86Sr,13C and 18O evolution of Phanerozoic seawater[J].Chemical Geology,1999, 161(1): 59-88.
32 DENISON R E, KOEPNICK R B,BURKE W H, et al. Construction of the Cambrian and Ordovician seawater 87Sr/86Sr curve[J]. Chemical Geology,1998,152(3/4):325-340.
33 郑剑锋, 沈安江, 乔占峰, 等. 塔里木盆地下奥陶统蓬莱坝组白云岩成因及储层主控因素分析——以巴楚大班塔格剖面为例[J]. 岩石学报, 2013, 29(9):3223-3232.
ZHENG J F, SHEN A J, QIAO Z F, et al. Genesis of dolomite and main controlling factors of reservoir in Penglaiba Formation of Lower Ordovician,Tarim Basin:A case study of Dabantage outcrop in Bachu area[J]. Acta Petrologica Sinica, 2013, 29(9):3223-3232.
34 何宏, 彭苏萍, 邵龙义. 巴楚寒武—奥陶系碳酸盐岩微量元素及沉积环境[J]. 新疆石油地质, 2004, 25(6): 631-633.
HE H, PENG S P, SHAO L Y. Trace elements and sedimentary settings of Cambrian-Ordovician carbonates in Bachu area,Tarim Basin[J].Xinjiang Petroleum Geology,2004,25(6): 631-633.
35 LOTTEMOSER B G. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 1992, 7(1): 25-41.
36 沈安江, 胡安平, 程婷, 等. 激光原位U-Pb 同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6):1062-1074.
SHEN A J, HU A P, CHEN T, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6):1062-1074.
37 郑剑锋, 李晋, 季汉成, 等. 二元同位素测温技术及其在白云岩储层成因研究中的应用——以塔里木盆地中下寒武统为例[J]. 海相油气地质, 2017, 22(2):1-7.
ZHENG J F, LI J, JI H C, et al. Clumped isotope thermometry and its application in dolomite reservoir: A case study of the Middle-Lower Cambrian in Traim Basin[J]. Marine Origin Petroleum Geology, 2017, 22(2):1-7.
38 KEITH M H, WEBER J N. Isotopic composition and environmental classification of selected limestones and fossils[J]. Geochim Cosmochim Acta, 1964, 28:1787-1816.
39 张秀莲. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系[J]. 沉积学报, 1985, 3(4):17-30.
ZHANG X L. Relationship between carbon and oxygen stable isotope in carbonate rocks and paleosalinity and paleotemperature of seawater[J]. Acta Sedimentologica Sinica,1985,3(4):17-30.
40 邵龙义, 窦建伟, 张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学, 1996, 25(6):575-581.
SHAO L Y, DOU J W, ZHANG P F. Paleogeographic significances of carbon and oxygen isotopes in Late Permian rocks of southwest China[J]. Geochimica, 1996, 25(6):575-581.
41 熊小辉, 肖加飞. 沉积环境的地球化学示踪[J].地球与环境, 2011, 39(3): 405-414.
XIONG X H, XIAO J F. Geochemical indicators of sedimentary environments-A summary[J]. Earth and Environment, 2011, 39(3): 405-414.
42 林良彪, 余瑜, 黄棋, 等. 川北旺苍地区奥陶系地球化学特征及沉积环境分析[J]. 岩石学报, 2017, 33(4):1272-1284.
LIN L B, YU Y, HUANG Q C, et al. The geochemical characteristics and sedimentary environment analysis of Ordovician in Wangcang region,northern Sichuan Basin[J]. Acta Petrologica Sinica, 2017, 33(4):1272-1284.
[1] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[2] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[3] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[4] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[5] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[6] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[7] 熊冉,郑剑锋,黄理力,陈永权,倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[8] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[9] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[10] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[11] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[12] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[13] 马安来, 李慧莉, 李杰豪, 高晓鹏, 王凡, 姚尧, 冯帆. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
[14] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[15] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马永生. 普光气田天然气地球化学特征及气源探讨[J]. 天然气地球科学, 2008, 19(1): 1 -7 .
[2] 郭建军,朱忠云, 李广才, 陈践发, 陈仲宇. 柴窝堡凹陷柴参1侧1井烃源岩的地球化学特征[J]. 天然气地球科学, 2004, 15(6): 652 -654 .
[3] 尹太举,张昌民. 层序地层格架内的油气勘探[J]. 天然气地球科学, 2005, 16(1): 25 -30 .
[4] 蒋有录;. 气藏与油藏形成和保存条件差异问题讨论[J]. 天然气地球科学, 1998, 9(2): 1 -6 .
[5] 向廷生;王莉;窦红梅;. 青海花土沟油田浅层油藏连通性研究[J]. 天然气地球科学, 2005, 16(2): 229 -232 .
[6] 妥进才, 王先彬, 周世新, 陈晓东, . 深层油气勘探现状与研究进展[J]. 天然气地球科学, 1999, 10(6): 1 -8 .
[7] 吕宝凤;夏斌;. 川东南“隔档式构造”的重新认识[J]. 天然气地球科学, 2005, 16(3): 278 -282 .
[8] 王顺玉;明巧;黄羚;钟家国;杨阳. 邛西地区邛西构造须二段气藏流体地球化学特征及连通性研究[J]. 天然气地球科学, 2007, 18(6): 789 -792 .
[9] 夏明军, 曾大乾, 邓瑞健, 姜贻伟, 毕建霞, 靳秀菊, 谭国华, 苗菁. 普光气田长兴组台地边缘礁、滩沉积相及储层特征[J]. 天然气地球科学, 2009, 20(4): 549 -556,562 .
[10] 李军, 陶士振, 汪泽成, 邹才能, 高晓辉, 王世谦. 川东北地区侏罗系油气地质特征与成藏主控因素[J]. 天然气地球科学, 2010, 21(5): 732 -741 .