天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1404–1414.doi: 10.11764/j.issn.1672-1926.2020.04.006

• 天然气地质学 • 上一篇    下一篇

塔里木盆地塔中东部潜山区上寒武统白云岩储集层特征与主控因素

王晓雪1(),熊益学2(),陈永权1,刘鑫1,黄金华1,胡方杰1,房璐1,王新新1,罗海宁1   

  1. 1.中国石油塔里木油田分公司,新疆 库尔勒 841000
    2.重庆科技学院石油与天然气工程学院,重庆 401331
  • 收稿日期:2020-03-25 修回日期:2020-04-08 出版日期:2020-10-10 发布日期:2020-09-30
  • 通讯作者: 熊益学 E-mail:wxxue-tlm@petrochina.com.cn;xiongyixue2002@aliyun.com
  • 作者简介:王晓雪(1987-),女,河南镇平人,工程师,硕士,主要从事油气勘探与石油地质研究.E-mail:wxxue-tlm@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项课题“塔里木盆地台盆区深层有利区带与目标评价”(2017ZX05008-005-004);“塔里木盆地奥陶系—前寒武系成藏条件研究与区带目标评价”(2016ZX05004-004);重庆科技学院科研资助项目(ckrc2019048)

Characteristics and controlling factors of the Upper Cambrian dolomite reservoir in buried hill area on the East of Tazhong

Xiao-xue WANG1(),Yi-xue XIONG2(),Yong-quan CHEN1,Xin LIU1,Jin-hua HUANG1,Fang-jie HU1,Lu FANG1,Xin-xin WANG1,Hai-ning LUO1   

  1. 1.Research Institute of Exploration and Development,PetroChina Tarim Oilfield Company,Korla 841000,China
    2.School of Petroleum Engineering,Chongqing University of Science & Technology,Chongqing 401331,China
  • Received:2020-03-25 Revised:2020-04-08 Online:2020-10-10 Published:2020-09-30
  • Contact: Yi-xue XIONG E-mail:wxxue-tlm@petrochina.com.cn;xiongyixue2002@aliyun.com
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05008-005-004);The Research Funding from Chongqing University of Science and Technology(ckrc 2019048)

摘要:

下古生界白云岩潜山是塔里木盆地油气勘探的重要领域之一。位于塔中25构造带的G58井在上寒武统下丘里塔格组白云岩测试中获得高产油气流,揭示下古生界白云岩潜山具有广阔勘探前景,但目前对下丘里塔格组白云岩潜山优质储层分布规律仍不清楚,储层预测缺少有效的技术手段。通过采用野外剖面观察、单井资料分析、地震资料预测等方法,分析了塔中东部潜山区下丘里塔格组白云岩储集层的主控因素,并预测了优质储层的分布范围。研究表明:塔中25构造带储集层岩性可细分为砂屑白云岩、细晶白云岩及粉晶白云岩;储集空间为孔洞、孔隙、裂缝;储层物性表现出低孔低渗特点;储层孔隙结构为粗孔中等喉道特点;岩溶作用形成的古地貌残丘幅度控制了白云岩储层的厚度,构造作用形成的裂缝控制了主要储集空间和渗流通道。三维地震解释显示出研究区下丘里塔格组优质白云岩储层平面上呈现出由“两沟”隔挡成3段式特点,东段、中段与西段均表现为古地貌较高且裂缝发育程度高,是白云岩储层有利发育区。

关键词: 塔里木盆地, 塔中东部潜山, 下丘里塔格组, 白云岩, 优质储层, 主控因素

Abstract:

The Lower Paleozoic dolomite buried hill is one of the important fields of oil and gas exploration in Tarim Basin. The Well G58 located in Tazhong 25 structural belt obtained high-yield oil and gas flow in the dolomite test of the lower Qiulitage Formation of the Upper Cambrian, which revealed that the Lower Paleozoic dolomite buried hill has a broad exploration prospect. However, the distribution rule of high-quality reservoir in the dolomite buried hill of the lower Qiulitage Formation is still unclear, and the reservoir prediction is lack effective technical means. In this paper, field section observation, single well data analysis, seismic data prediction and other methods are used to analyze the main controlling factors of dolomite reservoir in the lower Qiulitage Formation in the buried hill area in the east of Tazhong, and to predict the distribution range of high-quality reservoir. The study shows that the reservoir lithology of Tazhong 25 structural belt can be divided into sand clastic dolomite, fine-grained dolomite and silty dolomite; the reservoir space is pore, pore and fracture; the physical properties of the reservoir show the characteristics of low porosity and permeability; the pore structure of the reservoir is the characteristics of coarse pore and medium throat; the range of paleogeomorphic residual hills formed by karst action controls the thickness of dolomite reservoir, and the fracture formed by tectonic action fractures controls the main reservoir space and seepage channel. Three dimensional seismic interpretation shows that the high-quality dolomite reservoir of the Lower Qiulitage Formation in the study area is divided into three sections by "two ditches". The eastern, middle and western sections all show high palaeogeomorphology and high fracture development degree, which is favorable for dolomite reservoir development.

Key words: Tarim Basin, Buried hill in the east of Tazhong, Lower Qiulitage Formation, Dolomite, High quality reservoir, Main control factors

中图分类号: 

  • TE122.2

图1

塔中东部潜山塔中25构造带构造概况及岩性柱状图(a)塔里木盆地构造单元划分图;(b)塔中凸起次级构造单元划分及塔中25构造带构造位置;(c)塔中东部潜山奥陶系—寒武系上寒武统岩性柱状简图"

图2

塔中25构造带上寒武统下丘里塔格组白云岩岩石学特征(a)灰白色亮晶砂屑白云岩,块状构造,具砂屑结构,G582井,3 626.5 m,下丘里塔格组,岩心样品;(b)亮晶砂屑白云岩,可见长条状砾屑,颗粒间被粒状白云石充填,G582井,3 627.29 m,下丘里塔格组,岩心铸体薄片,单偏光;(c)细晶白云岩,白云石晶体呈它形—半自形,G61井,3 549.51 m,下丘里塔格组,岩心薄片,单偏光;(d)残余砂屑粉晶云岩,G582井,3 623.62 m,下丘里塔格组,岩心薄片,单偏光;(e)泥晶白云岩,晶体粒径小于30 μm,晶体呈它形—半自形,G61井,3 650 m,下丘里塔格组,岩屑薄片,单偏光;(d)硅化藻白云岩,暗色层呈顺层状分布,G61井,3 550.22 m,下丘里塔格组,岩心样品"

图3

塔中东部潜山塔中25构造带下丘里塔格组白云岩储集层特征(a)溶洞,洞径约为2 cm,被石英半充填,粉晶白云岩,G58井,3 619.73 m,下丘里塔格组,岩心样品;(b)溶孔,孔隙被硅质、白云石半充填,细晶白云岩,G61井,3 549.91 m,下丘里塔格组,岩心铸体薄片,单偏光;(c)溶孔,颗粒被溶蚀成港湾状,残余颗粒细晶白云岩,G582井,3 625.91 m,下丘里塔格组,岩心铸体薄片,单偏光;(d)溶孔,孔隙呈现出不规则暗色斑块,G61井,3 720~3 721.9 m,成像测井;(e)高角度裂缝,未充填,缝宽约为0.1~3 mm,粉晶白云岩,G582井,3 626.15 m,下丘里塔格组,岩心样品;(f)2期微裂缝,晚期裂缝切割早期裂缝特征,G61井,3 550.95 m,粉晶白云岩,下丘里塔格组,岩心铸体薄片,单偏光;(g)网状微裂缝,沿裂缝发生扩溶,亮晶砂屑白云岩,G582井,3 626.27 m,下丘里塔格组,岩心铸体薄片,单偏光;(h)微裂缝,沿裂缝形成溶蚀孔洞,亮晶砂屑白云岩,G582井,3 625.91 m,下丘里塔格组,岩心铸体薄片,单偏光;(i)高角度裂缝发育区,G58井,3 665.2~3 666.8 m,成像测井"

图4

塔中东部潜山塔中25构造带下丘里塔格组储集物性直方图"

图5

塔中东部潜山塔中25构造带下丘里塔格组G58井压力恢复测试分析"

图6

塔中东部潜山塔中25构造带潜山型白云岩孔隙结构CT扫描图(a)G582井,sample1样品,3 603.37 m,孔隙分布图(左)与喉道分布图(右);(b)G582井,sample2样品,3 625.84 m,孔隙分布图(左)与喉道分布图(右);(c)G61井,sample1样品,3 549.8 m,孔隙分布图(左)与喉道分布图(右);(d)G61井,sample2样品,3 550 m,孔隙分布图(左)与喉道分布图(右)"

表1

塔中东部潜山塔中25构造带潜山型白云岩孔隙结构特征参数"

参数G582样品G61样品
G582-sample1G582-sample2G61- sample1G61-sample2
深度/m3 603.373 625.843 549.83 550
孔隙度/%0.381.151.92.05
最大孔隙直径/mm17.85446.23939.47146.843
最小孔隙直径/mm0.0380.0380.0380.038
平均孔隙直径/mm0.140.1540.1340.189
孔隙数量/个42 205328 0531 048 57538 100
最大喉道直径/mm0.4890.275 70.4511.047
最小喉道直径/mm0.0380.0380.0380.038
平均喉道直径/mm0.052 70.0410.0390.064
喉道数量/个2 51125 88048 7873 388

图7

塔中东部潜山塔中25构造带不同岩性孔隙度分布特征"

图8

阿克苏地区阿果依白云岩潜山野外露头地质特征(a)阿果依剖面地形卫星图与野外踏勘点;(b)实测剖面综合柱状图;(c)褐色角砾状白云岩,角砾呈棱角状,见溶洞内充填方解石,渗流垮塌带;(d)浅灰色角砾状白云岩,角砾呈次棱角状,砾间被含铁方解石充填,渗流垮塌带;(e)褐红色含铁方解石胶结的角砾状白云岩,角砾呈棱角状,砾间充填红色的含铁方解石与细粒白云岩,径流溶蚀带"

图9

塔中东部潜山塔中25构造带石炭系沉积前古地貌与下丘里塔格组顶部裂缝预测叠合图"

1 ZENGER D H, DUNHAM J B, ETHINGTON R L. Concepts and Models of Dolomitization[M]. Tulsa: SEPM Special Publications, 1980: 1-328.
2 SUN S Q. Dolomite reservoirs: Porosity evolution and reservoir characteristics[J]. AAPG Bulletin,1995,79(2): 186-204.
3 ADAMS J E, FRENZEL H N. Capitan barrier reef, Texas and New Mexico[J].Journal of Geology,1950,58(4): 289-312.
4 RAN L H. Natural gas exploration prospect in the Sichuan Basin[J]. Natural Gas Industry, 2006, 26(12) : 42-44.
冉隆辉.论四川盆地天然气勘探前景[J]. 天然气工业,2006,26(12):42-44.
5 MA Y S, CAI X Y. Exploration achievements and prospects of the Permian-Triassic natural gas in northeastern Sichuan Basin[J]. Oil & Gas Geology,2006,27(6):741-750.
马永生,蔡勋育. 四川盆地川东北区二叠系—三叠系天然气勘探成果与前景展望[J].石油与天然气地质,2006,27(6):741-750.
6 MA Y S, CAI X Y, LI G X. Basic characteristics and concentration of the Puguang Gas Field in the Sichuan Basin[J]. Acta Geologica Sinica,2005,79(6): 858-865.
马永生,蔡勋育,李国雄.四川盆地普光大型气藏基本特征及成藏富集规律[J].地质学报,2005,79(6):858-865.
7 YANG H, BAO H P. Characteristics of hydrocarbon accumulation in the Middle Ordovician assemblages and their significance for gas exploration in the Ordos Basin[J]. Natural Gas Industry, 2011, 31(12):11-20.
杨华,包洪平.鄂尔多斯盆地奥陶系中组合成藏特征及勘探启示[J].天然气工业,2011,31(12):11-20.
8 YANG H, FU J H, WEI X S, et al. Natural gas exploration domains in Ordovician marine carbonates, Ordos Basin[J]. Acta Petrolei Sinica,2011,32(5):733-740.
杨华,付金华,魏新善,等. 鄂尔多斯盆地奥陶系海相碳酸盐岩天然气勘探领域[J].石油学报.2011.32(5):733-740.
9 XUE H. Characteristics and genesis of buried-hill dolomite reservoir in Majiagou Formation, Langgu Depression[J]. Fault-Block Oil & Gas Field,2018,25(5):573-578.
薛辉.廊固凹陷马家沟组潜山白云岩储层特征及成因[J]. 断块油气田,2018,25(5):573-578.
10 WANG J P. Study on the characteristics of Cambrian Ordovician carbonate reservoirs in the eastern Tarim Basin[J]. West-China Exploration Engineering,2019,21(4): 90-93.
王继平.塔里木盆地东部地区寒武系-奥陶系碳酸盐岩储层特征研究[J].西部探矿工程,2019,21(4): 90-93.
11 YU K H, JIN Z K. Genesis of the Cambrian-Ordovician dolostones in the eastern Tarim Basin, Xinjiang[J]. Sedimentary Geology and Tethyan Geology,2010,30(2): 32-38.
余宽宏,金振奎.塔里木盆地东部地区寒武系—奥陶系白云岩特征及成因[J].沉积与特提斯地质,2010,30(2):32-38.
12 WANG Z M, XIE H W, CHEN Y Q, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin[J]. China Petroleum Exploration,2014,19(2):1-13.
王招明,谢会文,陈永权,等.塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J].中国石油勘探,2014,19(2): 1-13.
13 XIE H Y, NENG Y, JING B,et al. New discovery in exploration of Cambrian-Ordovician dolomite buried hills in Tarim Basin and its significance[J].China Petroleum Exploration,2017,22(3):1-11.
谢会文,能源,敬兵,等.塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J].中国石油勘探,2017,22(3):1-11.
14 WU M B, WANG X M, CHEN Q L,et al. Oil and gas exploration results and exploration direction in Tazhong area[J]. Xinjiang Petroleum Geology, 2002,23(2): 95-97.
吴茂炳,王新民,陈启林,等. 塔中地区油气勘探成果及勘探方向[J]. 新疆石油地质,2002,23(2):95-97.
15 CHEN Y Q, ZHOU X Y, ZHAO K D, et al. Geochemical research on straticulate dolostone and spatulate dolostone in Lower Ordovician strata of Well Tazhong-l,Tarim Basin[J].Acta Geologica Sinica,2008,82(6):826-834.
陈永权,周新源,赵葵东,等.塔里木盆地塔中1 井藻纹层白云岩与竹叶状白云岩成因——基于岩石学、元素与同位素地球化学的厘定[J].地质学报,2008,82(6):826-834.
16 YANG H J, HAN J F, LI B L, et al. Characteristics of thrust nappe in the eastern segment of Tazhong arch and oil prospecting of Cambrian dolostone reservoirs, Tarim Basin[J]. Marine Origin Petroleum Geology, 2011,16(2):1-8.
杨海军,韩剑发,李本亮,等. 塔中低凸起东端冲断构造与寒武系内幕白云岩油气勘探[J].海相油气地质,2011,16(2): 1-8.
17 CHEN Y Q,YAN W,HAN C W,et al. Redefinition on structural paleogeography and lithofacies paleogeography framework from Cambrian to Early Ordovician in the Tarim Basin:A new approach based on seismic stratigraphy evidence[J]. Natural Gas Geoscience,2015,26(10):1831-1843.
陈永权,严威,韩长伟,等.塔里木盆地寒武纪—早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识[J].天然气地球科学,2015,26(10):1831-1843.
18 NI X F,SHEN A J,CHEN Y Q,et al. Cambrian carbonate platform types,platform margin segmentation characteristics and exploration enlightenment in Tarim Basin[J]. Natural Gas Geoscience,2015,26(7):1245-1255.
倪新锋,沈安江,陈永权,等.塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示[J].天然气地球科学,2015,26(7):1245-1255.
19 LIU W, ZHANG G Y, PAN W Q, et al. Lithofacies palaeogeography and sedimentary evolution of the Cambrian in Tarim area[J]. Journal of Palaeogeography, 2011,13(5): 529-538.
刘伟,张光亚,潘文庆,等. 塔里木地区寒武纪岩相古地理及沉积演化[J].古地理学报,2011,13(5):529-538.
20 ZHANG G Y, LIU W, ZHANG L,et al.Cambrian-Ordovician prototype basin, paleography and petroleum of Tarim Craton[J]. Earth Science Frontier,2015,33(3):269-276.
张光亚,刘伟,张磊,等.塔里木克拉通寒武纪—奥陶纪原型盆地、岩相古地理与油气[J].地学前缘, 2015,33(3):269-276.
21 ZHANG Q Y, CHEN L X, LIANG B, et al. Characterization of precarboniferous karst microgeomorphology in the west part of Lungu Oilfield, Tarim Basin[J]. Marine Origin Petroleum Geology,2012,17(4): 23-26.
张庆玉,陈利新,梁彬,等. 轮古西地区前石炭纪古岩溶微地貌特征及刻画[J].海相油气地质,2012,17(4):23-26.
22 ZHAO Y G,WANG D X,FENG Q H,et al. Review on palaeomorphologic reconstruction methods in oil and gas fields[J]. Journal of Earth Sciences and Environment, 2017,39(4): 516-529.
赵永刚,王东旭,冯强汉,等.油气田古地貌恢复方法研究进展[J]. 地球科学与环境学报,2017,39(4):516-529.
23 WANG L,SHI J A,WANG Q,et al.Analysis on main controlling factor of carbonate reservoirs of Ordovician system in the southwestern margin of Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2005,12(4):10-13.
王雷,史基安,王琪,等.鄂尔多斯盆地西南缘奥陶系碳酸盐岩储层主控因素分析[J].油气地质与采收率,2005,12(4):10-13.
[1] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[2] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
[3] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[4] 陈爱章, 刘文锋, 谢天寿, 王怀武, 齐洪岩, 周隶华, 陈轩, 孙德强, 朱丹萍. 火山岩孔缝型油气藏产能特征及控制因素[J]. 天然气地球科学, 2020, 31(6): 877-889.
[5] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[6] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[7] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[8] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[9] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[10] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[11] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[12] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[13] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[14] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[15] 李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学, 2020, 31(3): 402-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 周兴熙;. 库车油气系统油气藏相态分布及其控制因素[J]. 天然气地球科学, 2004, 15(3): 205 -213 .
[3] 张敏,王东良,朱翠山,赵红静 . 冀中坳陷苏桥-文安油气田混源油定量识别模式研究(一):原油成因分类及地球化学特征[J]. 天然气地球科学, 2004, 15(2): 115 -119 .
[4] 李连民,陈世加,王绪龙,胡守志 . 准噶尔盆地陆梁油气田白垩系天然气的成因及其地质意义[J]. 天然气地球科学, 2004, 15(1): 75 -78 .
[5] 何家雄;陈刚;. 莺歌海盆地CO_2分布、富集特征及初步预[J]. 天然气地球科学, 1997, 8(3): 9 -17 .
[6] 刘珊, 同登科. 变形双重介质煤层气拟稳态渗流问题[J]. 天然气地球科学, 2004, 15(6): 669 -672 .
[7] 于俊峰;夏斌;许静;. 对渤海湾盆地张扭、压扭性构造的一点认识[J]. 天然气地球科学, 2006, 17(4): 473 -476 .
[8] Т А Крылова等;В А Кривошея,史斗(译). 深层气相系统构成:据第聂伯―顿涅茨盆地同位素―地球化学资料[J]. 天然气地球科学, 2002, 13(5-6): 1 -7 .
[9] 王天祥;朱忠谦;李汝勇;陈朝晖;吴震;. 大型整装异常高压气田开发初期开采技术研究――以克拉2气田为例[J]. 天然气地球科学, 2006, 17(4): 439 -444 .
[10] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .