天然气地球科学 ›› 2020, Vol. 31 ›› Issue (5): 623–635.doi: 10.11764/j.issn.1672-1926.2020.04.005

• • 上一篇    下一篇

塔里木盆地库车坳陷北部构造带侏罗系阿合组储层特征及控制因素

王珂1,2(),张荣虎1,2,余朝丰1,2,杨钊1,2,唐雁刚3,魏红兴3   

  1. 1.中国石油杭州地质研究院,浙江 杭州 310023
    2.中国石油勘探开发研究院塔里木盆地研究中心,新疆 库尔勒 841000
    3.中国石油塔里木油田公司勘探开发研究院,新疆 库尔勒 841000
  • 收稿日期:2020-03-23 修回日期:2020-04-06 出版日期:2020-05-10 发布日期:2020-05-27
  • 作者简介:王珂(1987-),男,山东郓城人,高级工程师,博士,主要从事碎屑岩储层地质研究.E-mail:wangk_hz@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项(2016ZX05003-001);中国石油天然气股份有限公司重大科技专项(2019B-0303)

Characteristics and controlling factors of Jurassic Ahe reservoir of the northern tectonic belt, Kuqa Depression, Tarim Basin

Ke WANG1,2(),Rong-hu ZHANG1,2,Chao-feng YU1,2,Zhao YANG1,2,Yan-gang TANG3,Hong-xing WEI3   

  1. 1.PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China
    2.Research Center of Tarim Basin, PetroChina Research Institute of Petroleum Exploration and Development, Korla 841000, China
    3.Research Institute of Petroleum Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, China
  • Received:2020-03-23 Revised:2020-04-06 Online:2020-05-10 Published:2020-05-27
  • Supported by:
    The China National Science & Technology Major Project(2016ZX05003-001);The Major Science and Technology Projects of China National Petroleum Corporation(2019B-0303)

摘要:

塔里木盆地库车坳陷北部构造带具有巨大的油气勘探潜力,但储层物性平面差异性显著,控制因素不明确,制约了优质储层的预测。综合露头、岩心、薄片及成像测井资料,对库车坳陷北部构造带下侏罗统阿合组的储层特征进行了描述,分析了储层裂缝特征及形成期次,探讨了沉积、成岩和构造应力对储层的控制作用,明确了储层特征平面差异性的主控因素。结果表明:阿合组以灰白色中砂岩、粗砂岩和薄层砾岩为主,砂岩主要为长石岩屑砂岩和岩屑砂岩;储集空间在露头区以粒内溶孔、裂缝和原生粒间孔为主,在井下以微孔隙和粒内溶孔为主;储层物性在平面上具有显著差异性。阿合组主要发育直立和高角度的剪切裂缝,充填程度较低;微观裂缝在露头区以粒缘缝为主,在井下以粒内缝为主;发育3期裂缝,形成于喜马拉雅晚期的裂缝有效性最好。沉积作用主控阿合组储层基质物性,压实作用是主要的减孔作用,溶蚀作用是主要的增孔作用,但都并非储层特征平面差异性的主导因素;古构造挤压应力具有减孔降渗和造缝增渗的双重效应,控制了阿合组储层特征的平面差异性。

关键词: 储层特征, 储层裂缝, 沉积相, 成岩作用, 古构造应力, 阿合组, 北部构造带

Abstract:

The northern tectonic belt of Kuqa Depression has an enormous potential for hydrocarbon exploration, but the reservoir physical property of Middle and Lower Jurassic has significant horizontal difference and the controlling factors are not clear, which constrain the prediction of high quality reservoir. Based on outcrops, cores, thin sections and image logging data, petrology characteristics, reservoir space types, physical property of Lower Jurassic Ahe Formation in the northern tectonic belt of Kuqa Depression were described, and the characteristics and formation sequence were analyzed. Then, based on above, the controlling effects of sedimentation, diagenesis and paleo-tectonic stress on reservoir were discussed, and the dominant factor of the horizontal difference of reservoir was confirmed. The results show that Ahe Formation is mainly composed of grey-white medium sandstone, coarse sandstone and conglomerate lamina, and the sandstones are primarily feldspar lithic sandstone and lithic sandstone. The reservoir spaces are mainly intragranular dissolved pore, micro fracture and original intergranular pore in outcrops, while mainly micro pore and intragranular dissolved pore underground. The reservoir physical property has significant lateral differences. The Ahe Formation primarily develops vertical and high angle shearing fractures, and the fractures have lower filling extent. Micro fractures are chiefly grain-edge micro fractures in outcrops while mainly intragranular micro fractures underground. There are three periods of fractures in the study area, and the fractures formed at the Late Himalayan have the best effectiveness. The deposition dominates reservoir physical property of Ahe Formation, and the compaction is the primary effect of porosity loss while the dissolution is the chief effect of porosity increase. However, they are not the dominant factor for reservoir horizontal differences. The paleo tectonic stress has a double effect on reservoir. One effect is reducing porosity and permeability, and the other effect is forming fractures and increasing permeability, which dominate the horizontal reservoir differences of Ahe Formation.

Key words: Reservoir characteristics, Reservoir fracture, Sedimentary facies, Diagenesis, Paleo-tectonic stress, Ahe Formation, Northern tectonic belt

中图分类号: 

  • TE122.2

图1

库车坳陷北部构造带构造位置与地层系统"

图2

库车坳陷北部构造带侏罗系阿合组储层岩矿组分三角图"

图3

库车坳陷北部构造带侏罗系阿合组储集空间类型(a)米斯布拉克剖面,原生粒间孔、粒内缝及粒缘缝,面孔率为6%;(b)库车河剖面,粒内溶孔及粒间溶孔,面孔率为5%; (c)克孜勒努尔沟剖面,粒间溶孔、粒内缝及粒缘缝,面孔率为4%;(d)吐格尔明剖面,原生粒间孔、粒间溶孔、粒内溶孔及微孔隙,面孔率为14%;(e)克孜1井,3 237.2 m,粒内溶孔、粒间溶孔及微孔隙,面孔率为8%;(f)依南2井,4 843.0 m,粒间溶孔及微孔隙,面孔率为6%;(g)依南4井,4 591.4 m,粒间溶孔、粒内溶孔及微孔隙、面孔率为4%;(h)依南5井,4 935.9 m,裂缝、粒间溶孔、粒内溶孔及微孔隙,面孔率为5%;(i)明南1井,1 025.1 m,粒间溶孔、粒内溶孔、微孔隙及裂缝,面孔率为14%"

图4

库车坳陷北部构造带侏罗系阿合组构造裂缝(a)米斯布拉克剖面,中—粗砂岩,2组正交裂缝;(b)东2沟剖面,中砂岩,密集的裂缝发育带;(c)克孜勒努尔沟剖面,细砂岩,2组共轭裂缝;(d)克孜勒努尔沟剖面,细砂岩,2组正交裂缝;(e)吐格尔明北翼剖面,粗砂岩,密集的裂缝带;(f)克孜1井,2 955.3 m,细砂岩,2条平行的高角度剪切缝,未充填;(g)迪探1井,2 219.8 m,细砂岩,高角度剪切缝,白云石少量充填;(h)依南2井,4 966.1 m,细砂岩,直立的剪切缝,白云石少量充填;(i)吐孜4井,4 209.6 m,中砂岩,直立剪切缝,未充填;(j)迪西1井,4 980.2~4 984.4 m,FMI成像测井上的一组高角度裂缝"

图5

库车坳陷北部构造带侏罗系阿合组储层微观裂缝(a)黑英山剖面,穿粒缝;(b)库车河剖面,粒缘缝,部分粒缘缝相互连通;(c)东3沟剖面,粒内缝及粒缘缝;(d)东2沟剖面,粒缘缝相互连通,沿裂缝发生溶蚀;(e)克孜勒努尔沟剖面,粒缘缝网状连通;(f)克孜1井,3 298.4 m,穿粒缝; (g)依南2C井,4 756.8 m,粒缘缝及粒内缝;(h)依南4井,4 416.9 m,粒缘缝及粒内缝连通孔隙;(i)依南5井,4 938.3 m,一组平行的粒内缝"

图6

库车坳陷北部构造带侏罗系阿合组储层埋藏史、热演化史及孔隙演化史"

图7

库车坳陷北部构造带侏罗系阿合组构造裂缝形成期次及与油气成藏的关系"

图8

库车坳陷北部构造带侏罗系阿合组不同岩性实测物性直方图"

图9

库车坳陷北部构造带侏罗系阿合组沉积相"

图10

库车坳陷北部构造带侏罗系阿合组成岩作用(a)迪北105X井,4 762.1 m,铸体薄片,颗粒压实致密,以线接触为主,未见明显孔隙;(b)库车河剖面,铸体薄片,颗粒压实致密,未见明显孔隙;(c)吐孜4井,4 204.9 m,铸体薄片,粒间溶蚀与粒内溶蚀;(d)明南1井,951.2 m,铸体薄片,粒间溶蚀与粒内溶蚀;(e)明南1井,955.8 m,铸体薄片(正交光),石英颗粒次生加大,边缘发生溶蚀;(f)吐格4井,3 850.1 m,铸体薄片,方解石胶结物染成红色;(g)依南2井,4 787.0 m,铸体薄片,铁方解石胶结物染成紫红色;(h)吐格尔明剖面,扫描电镜,粒间书页状高岭石;(i)迪北102井,5 030.9 m,扫描电镜,粒间毛发状伊利石;(j)迪北102井,5 029.8 m,铸体薄片,微裂缝网络连通孔隙;(k)依南5井,4 779.5 m,激光共聚焦,微裂缝网络连通孔隙"

表1

库车坳陷北部构造带侏罗系阿合组增孔与减孔量统计"

井号原始孔隙度/%现今孔隙度/%埋藏压实减孔量/%溶蚀增孔量/%胶结减孔量/%构造压实减孔量/%
克孜136.22.612.24.77.218.9
迪探136.46.511.54.43.419.4
依南236.25.211.64.65.518.5
依南435.88.611.54.85.814.7
迪西135.76.612.13.55.814.7
迪北10234.86.715.84.56.510.3
吐孜434.29.515.25.95.210.2
吐西136.34.510.13.74.520.9
明南136.218.411.111.75.612.8
吐格135.94.811.83.95.018.2
吐格236.912.010.34.44.514.5
吐格435.64.411.93.94.518.7
吐东20135.99.412.43.85.312.6

图11

库车坳陷北部构造带侏罗系阿合组最大古构造应力与储层物性的关系"

图12

库车坳陷北部构造带侏罗系阿合组最大古构造应力与构造裂缝的关系"

图13

库车坳陷北部构造带过吐格2井—吐格4井剖面下侏罗统最大古构造应力与裂缝面密度数值模拟结果"

1 王招明.塔里木盆地库车坳陷克拉苏盐下深层大气田形成机制与富集规律[J].天然气地球科学, 2014,25(2):153-166.
WANG Z M. Formation mechanism and enrichment regularities of Kelasu subsalt deep large gas field in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2014, 25(2):153-166.
2 杨帆,邸宏利,王少依,等.塔里木盆地库车坳陷依奇克里克构造带侏罗系储层特征及成因[J].古地理学报, 2002,4(2):46-55.
YANG F, DI H L, WANG S Y, et al. Reservoir characteristics and genesis of the Jurassic in Yiqikelike tectonic zone of Kuqa Depression in Tarim Basin[J]. Journal of Palaeogeography, 2002,4(2):46-55.
3 张妮妮,刘洛夫,苏天喜,等.库车坳陷东部下侏罗统致密砂岩储层特征及主控因素[J].沉积学报, 2015,33(1):160-169.
ZHANG N N, LIU L F, SU T X, et al. Reservoir characteristics and main controlling factors of the Lower Jurassic tight sandstone in eastern Kuqa Depression[J]. Acta Sedimentologica Sinica, 2015,33(1):160-169.
4 刘卫红,高先志,林畅松,等.库车坳陷阳霞地区下侏罗统阿合组储层特征及储层发育的主控因素[J]. 地质科学,2017,52(2):390-406.
LIU W H, GAO X Z, LIN C S, et al. Reservoir characteristics and controlling fractors of Lower Jurassic Ahe Formation in Yangxia area, Kuqa Depression[J]. Chinese Journal of Geology, 2017,52(2):390-406.
5 李国欣,易士威,林世国,等.塔里木盆地库车坳陷东部地区下侏罗统储层特征及其主控因素[J].天然气地球科学, 2018,29(10):1506-1517.
LI G X, YI S W, LIN S G, et al. Reservoir characteristics and major factors influencing the reservoir quality of Lower Jurassic in eastern Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2018,29(10):1506-1517.
6 张惠良,张荣虎,杨海军,等.构造裂缝发育型砂岩储层定量评价方法及应用——以库车前陆盆地白垩系为例[J].岩石学报, 2012,28(3):827-835.
ZHANG H L, ZHANG R H, YANG H J, et al. Quantitative evaluation methods and applications of tectonic fracture developed sand reservoir: A Cretaceous example from Kuqa foreland basin[J]. Acta Petrologica Sinica, 2012, 28(3): 827-835.
7 滕学清,李勇,杨沛,等.库车坳陷东段差异构造变形特征及控制因素[J].油气地质与采收率, 2017,24(2):15-21.
TENG X Q, LI Y, YANG P, et al. Differential structural deformation and its control factors in the eastern segment of Kuqa Depression[J]. Petroleum Geology and Recovery Efficiency, 2017,24(2):15-21.
8 张玮,徐振平,赵凤全,等.库车坳陷东部构造变形样式及演化特征[J]. 新疆石油地质, 2019,40(1):48-53.
ZHANG W, XU Z P, ZHAO F Q, et al. Structural deformation styles and tectonic evolution characteristics in eastern Kuqa Depression[J]. Xinjiang Petroleum Geology, 2019,40(1):48-53.
9 卢斌,李剑,冉启贵,等.塔里木盆地库车坳陷东部烃源岩热模拟轻烃特征及成因判识[J]. 天然气地球科学, 2015,26(6):1129-1136.
LU B, LI J, RAN Q G, et al. Geochemical characteristics and genetic identification of light hydrocarbon generated in the thermal pyrolytic experiments of source rocks from the east of Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2015,26(6):1129-1136.
10 李峰,姜振学,李卓,等.库车坳陷迪北地区下侏罗统天然气富集机制[J].地球科学:中国地质大学学报, 2015,40(9):1538-1548.
LI F, JIANG Z X, LI Z, et al. Enriched mechanism of natural gas of Lower Jurassic in Dibei area, Kuqa Depression[J]. Earth Science:Journal of China University of Geoscience, 2015,40(9):1538-1548.
11 鲁雪松,柳少波,李伟,等.低勘探程度致密砂岩气区地质和资源潜力评价——以库车东部侏罗系致密砂岩气为例[J].天然气地球科学, 2014,25(2):178-184.
LU X S, LIU S B, LI W, et al. Geological and resource evaluation in tight sandstone gas plays of low exploration degree: A case study of Jurassic tight sandstone gas in east Kuqa Basin[J]. Natural Gas Geoscience, 2014,25(2):178-184.
12 ZENG L B. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010,94(12):1811-1825.
13 白斌,邹才能,朱如凯,等.川西南部须二段致密砂岩储层构造裂缝特征及其形成期次[J].地质学报, 2012,86(11):1841-1846.
BAI B, ZOU C N, ZHU R K, et al. Characteristics and formation stage-times of structural fractures in tight sandstone reservoir of the 2nd member of Xujiahe Formation in southwestern Sichuan Basin[J]. Acta Geologica Sinica, 2012,86(11):1841-1846.
14 袁静,杨学君,袁凌荣,等.库车坳陷DB气田白垩系砂岩胶结作用及其与构造裂缝关系[J].沉积学报, 2015,33(4):754-763.
YUAN J, YANG X J, YUAN L R, et al. Cementation and its relationship with tectonic fractures of Cretaceous sandstones in DB Gas Field of Kuqa sub-basin[J]. Acta Sedimentologica Sinica, 2015,33(4):754-763.
15 魏红兴,谢亚妮,莫涛,等.迪北气藏致密砂岩储集层裂缝发育特征及其对成藏的控制作用[J].新疆石油地质, 2015,36(6):702-707.
WEI H X, XIE Y N, MO T, et al. Fracture characteristics and its contribution to hydrocarbon accumulation in tight sandstone reservoir in Dibei gas pool in Kuqa Depression, Tarim Basin[J]. Xinjiang Petroleum Geology, 2015, 36(6):702-707.
16 姜振学,李峰,杨海军,等.库车坳陷迪北地区侏罗系致密储层裂缝发育特征及控藏模式[J].石油学报, 2015,36(S2):102-111.
JIANG Z X, LI F, YANG H J, et al. Development characteristics of fractures in Jurassic tight reservoir in Dibei area of Kuqa Depression and its reservoir-controlling mode[J]. Acta Petrolei Sinica, 2015,36(S2):102-111.
17 李峰,姜振学,李卓,等.库车坳陷迪北气藏流体包裹体特征及油气充注历史[J].中南大学学报:自然科学版, 2016,47(2):515-523.
LI F, JIANG Z X, LI Z, et al. Fluid inclusion characteristics and hydrocarbon charge history of Dibei gas reservoir in the Kuqa Depression[J]. Journal of Central South University: Science and Technology, 2016,47(2):515-523.
18 张惠良,寿建峰,陈子炓,等.库车坳陷下侏罗统沉积特征及砂体展布[J].古地理学报, 2002,4(3):47-58.
ZHANG H L, SHOU J F, CHEN Z L, et al. Sedimentary characteristics and sandstone body distribution of the Lower Jurassic in Kuqa Depression[J]. Journal of Pelaeogeography, 2002,4(3):47-58.
19 冯佳睿,高志勇,崔京钢,等.库车坳陷迪北侏罗系深部储层孔隙演化特征与有利储层评价——埋藏方式制约下的成岩物理模拟实验研究[J]. 地球科学进展, 2018, 33(3):305-320.
FENG J R, GAO Z Y, CUI J G, et al. Reservoir porosity evolution characteristics and evaluation of the Jurassic deep reservoir from Dibei in Kuqa Depression: Insight from diagensis modeling experiments under the influence of burial mode[J]. Advances in Earth Science, 2018,33(3):305-320.
20 唐雁刚,罗金海,马玉杰,等.库车坳陷下侏罗统碱性成岩环境对储集物性的影响[J].新疆石油地质, 2011,32(4):356-358.
TANG Y G, LUO J H, MA Y J, et al. Effect of alkaline diagenetic environment of Lower Jurassic on reservoir property in Kuqa Depression[J].Xinjiang Petroleum Geology,2011,32(4):356-358.
21 寿建峰,张惠良,沈扬,等.中国油气盆地砂岩储层的成岩压实机制分析[J].岩石学报, 2006,22(8):2165-2170.
SHOU J F, ZHANG H L, SHEN Y, et al. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins[J]. Acta Petrologica Sinica, 2006,22(8):2165-2170.
22 王艳忠,操应长,葸克来,等.碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J].石油学报, 2013,34(6):1100-1111.
WANG Y Z, CAO Y C, XI K L, et al. A recovery method for porosity evolution of clastic reservoirs with geological time: A case study from the upper submember of Es4 in the Dongying depression, Jiyang Subbasin[J]. Acta Petrolei Sinica, 2013,34(6):1100-1111.
[1] 宋新飞, 李忠诚, 郭先涛, 白龙辉, 李志龙. 松辽盆地南部德惠断陷合隆—兰家反转带泉一段致密气储层特征及分级评价[J]. 天然气地球科学, 2020, 31(3): 375-384.
[2] 王毅, 李俊飞, 彭家琼, 魏璞, 唐宏, 张顺存, 郭晖. 准噶尔盆地SN31井区白垩系清一段一砂组沉积相及储层主控因素分析[J]. 天然气地球科学, 2020, 31(2): 194-208.
[3] 李祖兵, 李剑, 崔俊峰, 邢立平, 吴雪松. 渤海湾盆地北大港潜山中生界碎屑岩储层特征及发育主控因素[J]. 天然气地球科学, 2020, 31(1): 13-25.
[4] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[5] 陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征[J]. 天然气地球科学, 2019, 30(8): 1180-1189.
[6] 张振宇, 张立宽, 罗晓容, 曹斌风, 林会喜, 曾治平, 秦峰, 贺文君, 李超, 雷裕红. 准噶尔盆地中部地区深层西山窑组砂岩成岩作用及其对储层质量评价的启示[J]. 天然气地球科学, 2019, 30(5): 686-700.
[7] 付爽, 庞雷, 许学龙, 曹元婷, 刘振宇, 张顺存, . 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素[J]. 天然气地球科学, 2019, 30(4): 468-477.
[8] 李延丽, 苟迎春, 马新民, 李程程, 王朴, 陈芳芳. 柴达木盆地坪西地区基岩气藏储层特征[J]. 天然气地球科学, 2019, 30(2): 219-227.
[9] 谢宁,操应长,王健,金杰华,张文杰,钟泽红. 北部湾盆地涠西南凹陷古近系流三段成岩作用及对储层物性影响[J]. 天然气地球科学, 2019, 30(12): 1743-1754.
[10] 王丹丹,周新桂,刘丽红,李世臻,张交东,张文浩,刘卫彬,刘旭锋,曾秋楠. 通化盆地下白垩统亨通山组泥页岩储层特征[J]. 天然气地球科学, 2019, 30(12): 1771-1781.
[11] 曹香妮,姜振学,朱德宇,仇恒远,陈磊,罗东东,双子俊,李维邦. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793.
[12] 张成林,张鉴,李武广,田冲,罗超,赵圣贤,钟文雯. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804.
[13] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[14] 陈秀艳, 贾进华, 崔文娟, 张立平, 周波, 申银民, 陈延贵. 塔里木盆地哈拉哈塘地区东河砂岩段成岩作用及对孔渗影响[J]. 天然气地球科学, 2019, 30(1): 51-61.
[15] 陈俊飞, 李琦, 朱如凯, 毛治国. 鄂尔多斯盆地陕北地区长101低孔低渗储层孔隙演化及其定量模式[J]. 天然气地球科学, 2019, 30(1): 83-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587 -601 .
[2] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612 -622 .
[3] 马德波,崔文娟,陶小晚,董洪奎,徐兆辉,李婷婷,陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647 -657 .
[4] 杜锦,马德波,刘伟,曹颖辉,赵一民,齐景顺,杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658 -666 .