天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 904–914.doi: 10.11764/j.issn.1672-1926.2020.03.010

• 天然气地球化学 • 上一篇    下一篇

珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义

游君君(),杨希冰,雷明珠,梁刚,汪紫菱   

  1. 中海石油(中国)有限公司湛江分公司,广东 湛江 524057
  • 收稿日期:2020-01-19 修回日期:2020-03-28 出版日期:2020-07-10 发布日期:2020-07-02
  • 作者简介:游君君(1981-),男,湖南新化人,高级工程师,硕士,主要从事地球化学与成藏综合研究. E?mail:youjj@cnooc.com.cn.
  • 基金资助:
    中海石油(中国)有限公司科技项目“中海油‘十三五’油气资源评价”(YXKY-2018-KT-01)

The characteristics and significances of cheilanthane tricyclic terpanes and bicyclic sesquiterpanes in source rocks and oils under different depositional environments in Zhu Ⅲ Depression, Pearl River Mouth Basin

Jun-jun YOU(),Xi-bing YANG,Ming-zhu LEI,Gang LIANG,Zi-ling WANG   

  1. Zhanjiang Branch of China National Offshore Oil Corporation Ltd. , Zhangjiang 524057, China
  • Received:2020-01-19 Revised:2020-03-28 Online:2020-07-10 Published:2020-07-02
  • Supported by:
    The Science and Technology Project of China National Offshore Oil Corporation Limited(YXKY-2018-KT-01)

摘要:

应用长链三环萜烷、二环倍半萜烷系列标志化合物,对珠江口盆地珠三坳陷文昌A、B凹陷3类重要烃源岩及相关原油的沉积环境和油源进行了研究。结果显示,3类烃源岩及相关原油中萜烷分布特征差异明显,这种差异性主要受控于烃源岩的沉积环境及有机质输入类型,表现在:①文昌B凹陷文昌组中深湖相烃源岩及相关原油中,长链三环萜烷以C21为主峰碳,C20—C21—C23呈山峰型分布,二环倍半萜烷高含8β(H)?升补身烷,含很低的重排补身烷和补身烷,揭示其有机质输入以低等水生生物为主,形成于偏还原的沉积环境;②文昌B凹陷文昌组浅湖相烃源岩及相关原油中,代表沉积环境和有机质输入类型的指标分布形态和相对含量具有双重特征,其母源兼有湖相低等水生生物及陆源高等植物输入贡献,形成于弱氧化—氧化的沉积环境;③文昌A凹陷恩平组浅湖相烃源岩及相关原油中,长链三环萜烷以C20为主峰碳,峰形呈快速下降型,二环倍半萜烷高含重排补身烷,而含较低的8β(H)?升补身烷和补身烷,揭示其有机质输入以陆源高等植物为主,形成于偏氧化—氧化的沉积环境。

关键词: 珠三坳陷, 长链三环萜烷, 二环倍半萜烷, 沉积环境, 有机质输入, 油源对比

Abstract:

The depositional environments and the oil-source relationship of the three important source rocks and their relative oils in Wenchang A/B Sag of Pearl River Mouth Basin have been elaborated by applying biomarkers of cheilanthane tricyclic terpanes and bicyclic sesquiterpanes in this article. The results suggest that the distribution characteristics of these two biomarkers in source rocks and oils are controlled by different sedimentary environments and variety inputs: (1)The mid-deep lacustrine source rocks and oils from Wenchang Formation have a very low abundance of rearrange drimanes, but a high abundance of 8β(H)-drimane, the C20-C21-C23 tricyclic terpanes appear to have similar mountain type distribution, indicating they are dominated by Lower biological algaes and formed in a partial reducing environment. (2)The shallow lacustrine source rocks and oils from Wenchang Formation have a middle abundance of drimanes and rearrange drimanes, the C19-C23 tricyclic terpanes appear to be rising type distribution with C23 the highest or decline gradually with C20 the highest, indicating they are dominated both by lower biological algaes and high plants inputs and formed in a reduction-oxidation environment. (3)The shallow lacustrine source rocks and oils from Enping Formation have a rich abundance of rearrange drimanes, but low abundance of drimanes, and the C19-C26 tricyclic terpanes decline quickly with C20 the highest, indicating they are dominated by high plants input and formed in an oxidation environment.

Key words: Zhu Ⅲ Depression, Cheilanthane tricyclic terpanes, Bicyclic sesquiterpanes, Depositional environment, Organic matter input, Oil-source correlation

中图分类号: 

  • TE122.1+13

图1

研究区勘探概况"

图2

珠三坳陷地层综合柱状图"

图3

文昌A、B凹陷不同沉积环境下3类典型烃源岩及相关原油中生物标志物图谱特征注:1~5分别为: 4,4,8,8,9-五甲基十氢化萘、4,4,8,9,9-五甲基十氢化萘、8β(H)-补身烷、8α(H)-补身烷、8β(H)-升补身烷"

表1

文昌A、B凹陷不同沉积环境下烃源岩及原油中长链三环萜烷生物标志物相对含量"

样品类型长链三环萜烷/藿烷C21/(C19—C26)C20/(C19—C26)
分布范围/%平均值/%分布范围/%平均值/%分布范围/%平均值/%
文昌组中深湖相原油16.5~31.821.117.2~20.818.811.9~14.513.3
文昌组浅湖相原油12.0~15.813.512.8~17.014.211.5~17.714.2
恩平组浅湖相原油22.8~130.163.39.6~17.413.219.7~29.324.3
文昌组中深湖相烃源岩9.4~11.410.117.4~19.418.510.7~13.111.7
文昌组浅湖相烃源岩8.6~24.714.512.2~15.313.312.2~13.112.8
恩平组浅湖相烃源岩19.7~37.229.611.5~15.513.817.2~22.819.4

图4

文昌A、B凹陷不同沉积环境下烃源岩及原油中长链三环萜烷参数、姥植比相对含量关系"

表2

烃源岩和原油中二环倍半萜烷GC/MS鉴定"

峰号化合物化学式
14,4,8,10-四甲基十氢化萘C14H26
2*C14-倍半萜烷C14H26
3新C15-倍半萜烷C15H28
44,4,8,8,9-五甲基十氢化萘C15H28
54,4,8,9,9-五甲基十氢化萘C15H28
68β(H)-补身烷C15H28
74,4,9,9,10-五甲基十氢化萘C15H28
88α(H)-补身烷C16H30
9*C16-二环倍半萜C16H30
10*C16-二环倍半萜C16H30
118β(H)-升补身烷C16H30

图5

二环倍半萜烷分布特征及鉴定"

表3

文昌A、B凹陷不同沉积环境下烃源岩及原油中二环倍半萜烷生物标志物相对含量"

8β(H)-升补身烷/4,4,8,8,9 - 五甲基十氢化萘4,4,8,8,9 - 五甲基十氢化萘/8β(H)-补身烷4,4,8,9,9 - 五甲基十氢化萘/ 8β(H)-补身烷
分布范围平均值分布范围平均值分布范围平均值
文昌组中深湖相原油0.955~6.9192.7500.531~1.2370.9370.442~1.2160.994
文昌组浅湖相原油1.480~3.4022.3451.183~1.6321.3151.292~1.5441.410
恩平组浅湖相原油0.119~0.4580.2312.898~6.1644.2621.246~1.7811.473
文昌组中深湖相烃源岩2.603~19.88910.6630.481~0.7820.5990.934~1.0300.991
文昌组浅湖相烃源岩1.45~6.373.0000.461~1.6321.0690.319~1.5441.011
恩平组浅湖相烃源岩0.955~1.8741.2701.31~2.8012.1610.809~1.5361.340

图6

文昌A、B凹陷不同来源的原油中二环倍半萜烷参数、姥植比相对含量关系"

1 ANDERS D E, ROBINSON W E. Cycloalkane constituents of the bitumen from Green River shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(7): 661-678.
2 ATOYEBI A O, ADEKOLA S A, AKINLUA A. Tricyclic terpane geochemistry of source rocks from northwestern and central Niger Delta[J]. Petroleum Science and Technology, 2017, 35(22): 2094-2101.
3 SIMONEIT B R T, LEIF R N, AQUINO N F R, et al. On the presence of tricyclic terpane hydrocarbons in Permian tasmanite algae[J].Naturwissenschaften,1990,77:380-383.
4 包建平, 何丹, 朱翠山,等. 北部湾盆地迈陈凹陷徐闻X3井原油地球化学特征及其成因[J]. 天然气地球科学, 2017, 28(5): 665-676.
BAO J P, HE D, ZHU C S, et al. Geochemical characteristics and origin of a crude oil from Well Xuwen X3 in the Maichen Sag, Beibuwan Basin, China[J]. Nature Gas Geoscience, 2017, 28(5): 665-676.
5 ALBERDI M, MOLDOWAN J M, PETERS K E, et al. Stereoselective biodegradation of tricyclic terpanes in heavy oils from the Bolivar Coastal Fields, Venezuela[J]. Organic Geochemistry, 2001, 32: 181-191.
6 TAO S Z, WANG C Y, DU J G, et al. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467.
7 肖洪, 李美俊, 杨哲, 等. 不同环境烃源岩和原油中三环萜烷的分布特征及地球化学意义[J]. 地球化学, 2019, 48(2): 161-170.
XIAO H, LI M J, YANG Z, et al. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170.
8 陈哲龙, 柳广第, 卫延召, 等. 准格尔盆地玛湖凹陷二叠系烃源岩三环萜烷分布样式及影响因素[J]. 石油与天然气地质, 2017, 38(2): 311-322.
CHEN Z L, LIU G D, WEI Y Z, et al. Distribution pattern of tricyclic terpanes and its influencing factors in the Permian source rocks from Mahu Depression in the Junggar Basin[J]. Oil and Gas Geology, 2017, 38(2): 311-322.
9 PHILP R P, GILBERT T D, FRIEDRICH J. Bicyclic sesquiterpenoids and diterpenoids in Australian crude oils[J]. Geochimica et Cosmochimica Acta, 1981, 45(7): 1173-1180.
10 ALEXANDER R, KAGI R, NOBLE R. Identification of the bicyclic sesquiterpenes drimane and eudesmane in petroleum[J]. Journal of the Chemical Society, Chemical Communications, 1983, 5: 226-228.
11 ALEXANDER R, KAGI R L, NOBLE R, et al. Identification of some bicyclic alkanes in petroleum[J]. Organic Geochemistry, 1984, 6: 63-70.
12 JI L M, HE C, ZHANG M Z, et al. Bicyclic alkanes in source rocks of the Triassic Yanchang Formation in the Ordos Basin and their inconsistency in oil-source correlation[J]. Marine and Petroleum Geology, 2016, 72: 359-373.
13 YAN G,XU Y H, LIU Y, et al. Evolution and organic geochemical significance of bicyclic sesquiterpanes in pyrolysis simulation experiments on immature organic‑rich mudstone[J]. Petroleum Science, 2019, 16: 502-512.
14 HAN B, ZHENG L, YU S. Applicability evaluation of the diagnostic ratios consisting of bicyclic sesquiterpanes to source identification for seriously weathered spilled oils[J]. Analytical Methods, 2019, 11: 5997-6003.
15 OKUNOVA T V, BADMAEV C M, GIRUTS M V, et al. Characteristics of the distribution of bi-, tri-, tetra-, and pentacyclic terpanes in Kalmykia crude oils[J]. Chemistry and Technology of Fuels and Oils, 2010, 46: 119-126.
16 包建平, 陈希文, 朱翠山. 珠江口盆地原油中C15新倍半萜烷及其母源[J]. 中国科学: 地球科学, 2016, 46(9): 1241-1251.
BAO J P, CHEN X W, ZHU C S. Novel C15 sesquiterpanes and their origin in different crude oils from the Pearl River Mouth Basin of China[J]. Science China: Earth Sciences, 2016, 46(9): 1241-1251.
17 朱扬明, 谢建明, 孙林婷,等. 珠江口盆地原油中新二环、四环萜烷的检出及其地球化学意义[J]. 地球化学, 2015, 44(4): 314-322.
ZHU Y M, XIE J M, SUN L T, et al. Identification and geochemical significances of novel bicyclic and tetracyclic terpanes in crude oils from the Pearl River Mouth Basin[J]. Geochemica, 2015, 44(4): 314-322.
18 崔莎莎, 何家雄, 陈胜红, 等. 珠江口盆地发育演化特征及其油气成藏地址条件[J]. 天然气地球科学, 2009, 20(3): 384-391.
CUI S S, HE J X, CHEN S H, et al. Development characteristics of pearl river mouth basin and its geological conditions for oil and gas accumulation[J]. Natural Gas Geoscience, 2009, 20(3): 384-391.
19 雷保华, 郑求根, 李俊良, 等. 珠三坳陷珠三南断裂形成演化及其对沉积中心迁移的控制[J]. 石油学报, 2012, 33(5):807-813.
LEI B H, ZHENG Q G, LI J L, et al. Formation and evolution of Zhu-3 south fault and its control on the depocenter shift in Zhu-3 Depression, Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2012, 33(5): 807-813.
20 权永彬. 珠江口盆地珠三拗陷湖相烃源岩发育机理及其成藏贡献[D]. 武汉: 中国地质大学, 2018: 44-59.
QUAN Y B. Lacustrine Source Rock Development Mechanism and Its Contribution to Hydrocarbon Accumulation in Zhu Ⅲ Sub-basin, Pearl River Mouth Basin[D]. Wuhan: China University of Geosciences, 2018: 44-59.
21 傅宁, 李友川, 孙建新, 等. 珠三拗陷烃源岩及油源研究再认识[J]. 现代地质, 2011, 25(6): 1121-1130.
FU N, LI Y C, SUN J X, et al. Recognition of oil source and source rocks in Zhu Ⅲ Depression[J]. Geoscience, 2011, 25(6): 1121-1130.
22 周刚, 张迎朝, 陆江, 等. 珠江口盆地西部文昌B凹陷文昌组优质烃源岩再评价[J]. 中国海上油气, 2018, 30(3): 28-37.
ZHOU G, ZHANG Y Z, LU J, et al. Reevaluation of high-quality source rock in the Wenchang Formation of the Wenchang B sag, the western Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2018, 30(3): 28-37.
23 史玉玲. 惠州富烃凹陷油气成藏地球化学特征研究[D]. 北京: 中国地质大学, 2012: 42-55.
SHI Y L. Analysis on Geochemical Characteristics of Hydrocarbon Accumulation in Huizhou Depression Which Is Rich in Hydrocarbons[D]. Beijing: China University of Geosciences, 2012: 42-55.
24 薛罗. 恩平凹陷古近系烃源岩元素地球化学综合评价[D]. 武汉: 中国地质大学, 2013: 25.
XUE L. Element Geochemistry Evaluation of Paleogene Source Rocks in Enping Depression[D].Wuhan: China University of Geosciences, 2013: 25.
25 唐海忠, 赵建宇, 高岗, 等. 酒泉盆地营尔凹陷油-源地质分布关系[J]. 天然气地球科学, 2019, 30(11): 1590-1599.
TANG H Z, ZHAO J Y, GAO G, et al. Geologically distributing relation of crude oils and source rocks in Ying’er Sag,Jiuquan Basin[J].Natural Gas Geoscience,2019,30(11):1590-1599.
26 刘海磊, 李卉, 向辉, 等. 准格尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 259-267.
LIU H L, LI H, XIANG H, et al. Geochemistry, genesis and distribution of crude oils in the Fukang fault zones and their periphery in Junggar Basin[J]. Natural Gas Geoscience, 2020, 31(2): 259-267.
27 杨佰娟, 郑立, 张魁英, 等. 原油中双环倍半萜烷指纹的内标法分析[J]. 分析测试学报, 2012, 31(11): 1421-1425.
YANG B J, ZHENG L, ZHANG K Y, et al. Oil fingerprint analysis of bicyclic sesquiterpanes by internal standard method and oil identification[J]. Fenxi Ceshi Xuebao:Journal of Instrumental Analysis, 2012, 31(11): 1421-1425.
28 朱扬明. 塔里木盆地陆相原油的地球化学特征[J]. 沉积学报, 1997, 15(2): 26-30.
ZHU Y M. Geochemical characteristics of terrestrial oils of the Tarim Basin[J]. Acta Sedimentological Sinica, 1997, 15(2): 26-30.
29 徐真, 张春明, 刘强, 等. 冀中凹陷文安油田双环倍半萜烷的分布及其意义[J]. 地球科学与环境学报, 2010, 32(4): 368-371.
XU Z, ZHANG C M, LIU Q, et al. Distribution of bicyclic sesquiterpenes and its significance in Wen’an Oilfield, Jizhong Depression[J]. Journal of Earth Science and Environment, 2010, 32(4): 368-371.
30 施洋, 包建平, 朱翠山, 等. 柴达木盆地西部七个泉与咸水泉油田原油地球化学特征对比研究[J]. 天然气地球科学, 2010, 21(1): 132-138.
SHI Y, BAO J P, ZHU C S, et al. Comparative study on geochemistry between crude oils from Qigequan and Xianshuiquan Oilfields in western Qaidam Basin[J]. Natural Gas Geoscience, 2010, 21(1): 132-138.
[1] 赛彦明, 田辉, 李杰, 刘银山, 张彬, 刘俊杰. 含油气系统Re⁃Os定年及Re⁃Os元素和同位素体系研究新进展[J]. 天然气地球科学, 2020, 31(7): 939-951.
[2] 李婷婷, 朱光有, 赵坤, 王鹏举. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721-734.
[3] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[4] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[5] 马安来, 李慧莉, 李杰豪, 高晓鹏, 王凡, 姚尧, 冯帆. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
[6] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[7] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[8] 刘如红, 李剑, 肖中尧, 李谨 , 张海祖, 卢玉红, 张宝收, 马卫, 李德江, 刘满仓. 塔里木盆地库车坳陷吐格尔明地区油气地球化学特征及烃源探讨[J]. 天然气地球科学, 2019, 30(4): 574-581.
[9] 钟洪洋, 张道勇, 肖明国, 徐耀辉, . 洞庭盆地第四系极浅层天然气成因类型及地质意义[J]. 天然气地球科学, 2019, 30(3): 361-369.
[10] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[11] 韩盛博,李伍. 上扬子区龙马溪组页岩中黄铁矿成因[J]. 天然气地球科学, 2019, 30(11): 1608-1618.
[12] 唐海忠,赵建宇,高岗,马国福,赵乐义,杨智明,胡丹丹. 酒泉盆地营尔凹陷油—源地质分布关系[J]. 天然气地球科学, 2019, 30(11): 1590-1599.
[13] 梁兴,陈科洛,张廷山,张朝,张介辉,舒红林. 沉积环境对页岩孔隙的控制作用[J]. 天然气地球科学, 2019, 30(10): 1393-1405.
[14] 李梦茹, 唐友军, 刘岩, 胡辉, 贺其川. 江陵凹陷不同地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2018, 29(9): 1240-1251.
[15] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!