天然气地球科学 ›› 2020, Vol. 31 ›› Issue (8): 1178–1184.doi: 10.11764/j.issn.1672-1926.2020.03.009

• 天然气勘探 • 上一篇    下一篇

页岩油储层DT2核磁共振解释方法

王志战1,2()   

  1. 1.页岩油气富集机理与有效开发国家重点实验室,北京 100101
    2.中国石化石油工程技术研究院测录井研究所,北京 100101
  • 收稿日期:2019-12-10 修回日期:2020-03-13 出版日期:2020-08-10 发布日期:2020-07-29
  • 作者简介:王志战(1969-),男,山东栖霞人,教授级高级工程师,博士,主要从事录井技术研究. E-mail: Wangzz.sripe@Sinopec.com.
  • 基金资助:
    页岩油气富集机理与有效开发国家重点实验室开放基金(P17014-9);国家自然科学基金(21427812);中国石化科技部项目(P14095);中国石化油田勘探开发事业部项目(YTXD-PT1203D);中国石化石油工程技术服务有限公司项目(SG16-46X)

Discuss on D-T2 NMR interpretation of oil shale

Zhi-zhan WANG1,2()   

  1. 1.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China
    2.Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
  • Received:2019-12-10 Revised:2020-03-13 Online:2020-08-10 Published:2020-07-29
  • Supported by:
    The China State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms Effective Development(P17014-9);The National Natural Science Foundation of China(21427812);The Sinopec Research Project of Science and Technology Ministry(P14095);The Sinopec Research Project of Oilfield Exploration and Development Ministry(YTXD-PT1203D);The Sinopec Research Project of Petroleum Engineering Technology Service Co., Ltd(SG16-46X)

摘要:

DT2二维核磁共振能够快速、直观地区分不同性质、不同赋存状态的孔隙流体,已成为储层评价的热门技术,但对于页岩油储层,常规储层的DT2孔隙流体解释图版并不适用,考虑受限扩散、内部梯度等影响因素的修正图版也难以满足页岩油储层油、水识别的要求。为此,采用理论分析与实验分析相结合的方法,对DT2孔喉尺度分辨率、流体含量分辨率、孔隙流体解释图版3个关键要素进行了深入研究。结果表明,DT2孔喉尺度分辨率、流体含量分辨率均低于T2一维核磁共振,难以检测到T2短于2 ms、含量低于0.2%的流体信号;DT2信号位置与流体含量有关,且随着流体含量的递增,具有随机游走特性。2口页岩油井的应用表明,基于流体含量信号响应轨迹的DT2流体解释图版能够实现页岩油储层的准确解释。

关键词: DT2核磁共振, 页岩油储层, 油水识别, 分辨率, 解释图版

Abstract:

D-T2 two-dimensional nuclear magnetic resonance (NMR) could quickly and visually distinguish different type, different occurrence state of pore fluid, and become the hot technology for reservoir evaluation, but for oil shale, D-T2 pore fluid interpretation chart of conventional reservoir is not suitable. The correction chart, considering restricted diffusion, internal gradient, etc., is also difficult to meet the requirements of oil and water recognition in oil shale. Therefore, three key scientific problems of D-T2 pore throat scale resolution, fluid content resolution and pore fluid interpretation chart are studied by combining theoretical analysis and experimental analysis. The results show that the pore throat scale resolution and fluid content resolution of D-T2 NMR was lower than that of T2 NMR, and it was difficult to detect the fluid signal with T2 shorter than 0.2ms and content less than 0.2%.The location of D-T2 signal is related to fluid content and has a random walk property as fluid content increases. The applications of two shale oil wells show that the D-T2 fluid interpretation chart based on the signal response trajectory can achieve accurate interpretation of oil shale.

Key words: D-T2 NMR, Oil shale, Oil and water identification, Resolution, Interpretation chart

中图分类号: 

  • TE132.1+4

图1

非受限扩散与受限扩散的D—T2解释图版(据文献[16-17]修改)"

图2

不同信号完整度的页岩D—T2二维谱"

图3

D—T2信号随流体质量增加的变化白油质量:(a) 0.002 6 g; (b) 0.020 7 g; (c) 0.038 5 g; (d) 0.060 3 g"

图4

D—T2信号面积、质心与流体质量之间的关系"

图5

Ya井核磁共振解释成果"

图6

Yb井核磁共振解释成果"

1 王志战,许小琼,周宝洁.孔隙流体核磁共振弛豫特征及油水层识别方法[J]. 油气地质与采收率,2011,18(2):41-44.
WANG Z Z, XU X Q, ZHOU B J. Relaxation features of pore fluid and water/oil bed recognition with NMR technolog[J]. Petroleum Geology and Recovery Efficiency, 2011,18(2):41-44.
2 WANG Z Z,YARDENIA M, KURT S, et al. Applications of NMR Mud Logging Technology in China[C]. Austin, Texas, USA: SPWLA 48th Annual Logging Symposium, 3-6 June, 2007.
3 MIROTCHNIK K, KRYUCHKOV S, STRACK K. A Novel Method to Determine NMR Petrophysical Parameters from Drill Cuttings[C]. Noordwijk, Netherlands: SPWLA 45th Annual Logging Symposium, 6-9 June, 2004.
4 房涛,张立宽,刘乃贵,等. 核磁共振技术定量表征致密砂岩气储层孔隙结构——以临清坳陷东部石炭系—二叠系致密砂岩储层为例[J]. 石油学报,2017,38(8):902-915.
FANG T, ZHANG L K, LIU N G, et al. Quantitative characterization of pore structure of tight gas sandstone reservoirs by NMR T2 spectrum technology: A case study of Carboniferous-Permian tight sandstone reservoir in Linqing Depression[J]. Acta Petrolei Sinica, 2017,38(8):902-915.
5 白松涛,程道解,万金彬,等. 砂岩岩石核磁共振T2谱定量表征[J]. 石油学报,2016,37(3):382-391.
BAI S T, CHENG D J, WAN J B, et al. Quantitative characterization of sandstone NMR T2 spectrum[J]. Acta Petrolei Sinica, 2016,37(3):382-391.
6 王志战,李新,李三国. 高分辨率核磁共振录井技术进展及前景展望[J]. 录井工程,2017,28(2):1-3.
WANG Z Z, LI X, LI S G. Progress and prospect of high resolution NMR logging technique[J]. Mud Logging Engineering, 2017,28(2):1-3.
7 UMAR I, GABOR H, SAMI E, et al. Application of 2D NMR for Formation Testing and Sampling in Heavy Oil Formations[C]. SPE 183943. Manama, Kingdom of Bahrain: SPE Middle East Oil & Gas Show and Conference, 6-9 March, 2017.
8 张宇晓.核磁共振测井在低孔低渗油气层识别中的应用[J]. 新疆地质,2004,22(3):315-318.
ZHANG Y X. The application of magnetic resonance image log (MRIL) in low porosity and permeability reservoir[J]. Xinjiang Geology, 2004,22(3):315-318.
9 王志战,翟慎德,周立发,等. 核磁共振录井技术在岩石物性分析方面的应用研究[J]. 石油实验地质,2005,27(6):619-623.
WANG Z Z, ZHAI S D, ZHOU L F, et al. Application of nuclear magnetic resonance logging technology in physical property analysis of rock[J].Petroleum Geology & Experiment, 2005,27(6):619-623.
10 EMMANUEL T, SUN B Q, ADIL M, et al. Revisiting Log-inject-log NMR for Remaining Oil Determination: A Field Application of T2-D NMR in the Permian Basin[C]. Colorado Springs, Colorado, USA: SPWLA 52nd Annual Logging Symposium, 14-18 May, 2011.
11 胡法龙,周灿灿,李潮流,等. 基于弛豫—扩散的二维核磁共振流体识别方法[J]. 石油勘探与开发,2012,39(5):552-559.
HU F L, ZHOU C C, LI C L, et al. Fluid identification method based on 2D diffusion-relaxation nuclear magnetic resonance (NMR) [J]. Petroleum Exploration and Development, 2012,39(5):552-559.
12 谢然红,肖立志. (T2, D)二维核磁共振测井识别储层流体的方法[J]. 地球物理学报,2009,52(9):2410-2418.
XIE R H, XIAO L Z. The (T2, D) NMR logging method for fluids characterization[J].Chinese Journal of Geophysics,2009, 52(9):2410-2418.
13 HÜRLIMANN M D, FREED D E, ZIELINSKI L J, et al. Hydrocarbon composition from NMR diffusion and relaxation data[J]. Petrophysics, 2009, 50(2):116-129.
14 EMMANUEL T, SUN B Q, MANZOOR A, et al. Revisiting Log-inject-log NMR for Remaining Oil Determination: A Field Application of T2-D NMR in the Permian Basin[C]. Colorado Springs, Colorado, USA:SPWLA 52nd Annual Logging Symposium, 14-18 May, 2011.
15 顾兆斌,刘卫,孙佃庆,等. 基于核磁共振二维谱技术识别储层流体类型[J]. 西南石油大学学报:自然科学版,2010,32(5):83-86.
GU Z B, LIU W, SUN D Q, et al. Identify reservoir fluid types with two dimensional NMR techniques[J]. Journal of Southwest Petroleum University: Science & Technology Edition, 2010,32(5):83-86.
16 LUKASZ Z, RAGHU R, CHANH C M, et al. Restricted Diffusion Effects in Saturation Estimates from 2D Diffusion-Relaxation NMR Maps[C]. SPE 134841. Florence, Italy: SPE Annual Technical Conference and Exhibition, 19-22 September, 2010.
17 CAO M C, CRARY S, ZIELINSKI L, et al. 2D-NMR Applications in Unconventional Reservoirs[C]. SPE 161578. Calgary, Alberta, Canada: SPE Canadian Unconventional Resources Conference, 30 October-1 November, 2012.
18 SONDERGELD C H, NEWSHAM E K, COMISKY J T, et al. Petrophysical Considerations in Evaluating and Producing Shale Gas[C]. SPE 131768. Pittsburgh, Pennsylvania, USA: SPE Unconventional Gas Conference, 23-25 February, 2010.
19 黄笃之,贺峰. 核磁共振及其应用[J].现代物理知识,1995, 7(1):31-32.
HUANG D Z, HE F. NMR and its application[J]. Modern Physics, 1995, 7(1):31-32.
20 ANDRE S, GIOVANNA C, LUKASZ Z, et al. Permeability Rediction Improvement Using 2D NMR Diffusion-T2 Maps[C]. SPWLA 54th Annual Logging Symposium, 2013.
21 王志战,李新,魏阳旭,等. 页岩油气层核磁共振评价技术综述[J]. 波谱学杂志,2015, 32(4): 688-698.
WANG Z Z, LI X, WEI Y X, et al. NMR technologies for evaluating oil & gas shale: A review[J]. Chinese Journal of Magnetic Resonance, 2015, 32(4): 688-698.
22 王志战,秦黎明,杜焕福,等. 钻井液粉末状荧光添加剂的核磁共振特性[J]. 波谱学杂志,2014, 31(3): 341-348.
WANG Z Z, QIN L M, DU H F, et al. Effects of powdered fluorescent additives on NMR characteristics of drilling fluids[J]. Chinese Journal of Magnetic Resonance, 2014, 31(3):341-348.
23 EMMANUEL T, CARLOS T V, SUN B Q, et al. Limits of 2D NMR interpretation techniques to quantify pore size, wettability, and fluid type: A numerical sensitivity study[J]. SPE Journal, 2006, 11(3): 354-363.
[1] 石新朴,史全党,廖伟,侯向阳,高辉,李江波. 基于广义S变换的处理技术及断层解释——以准噶尔盆地中拐凸起克022井区石炭系为例[J]. 天然气地球科学, 2017, 28(6): 882-887.
[2] 李斌,乐友喜,温明明. 同步挤压小波变换在储层预测中的应用[J]. 天然气地球科学, 2017, 28(2): 341-348.
[3] 许多年,尹路,瞿建华,王斌,张磊,曲永强,陈雪珍. 低渗透砂砾岩“甜点”储层预测方法及应用——以准噶尔盆地玛湖凹陷北斜坡区三叠系百口泉组为例[J]. 天然气地球科学, 2015, 26(S1): 154-161.
[4] 李洋,朱筱敏,赵东娜,董艳蕾,张明君,吴冬,杨朝强,王庆帅. 琼东南盆地崖13-1气田陵三段高分辨率层序地层及沉积体系研究[J]. 天然气地球科学, 2014, 25(7): 999-1010.
[5] 倪长宽, 苏明军, 刘化清, 蔡刚. 有关地层切片应用条件和分辨率的探讨[J]. 天然气地球科学, 2014, 25(11): 1830-1838.
[6] 张广权. 鄂尔多斯盆地大牛地气田本溪组—太原组高分辨率层序地层学研究[J]. 天然气地球科学, 2013, 24(5): 915-922.
[7] 陈建阳, 李国永, 于兴河, 王辉. 大庆长垣杏5X区块葡一组高分辨率层序叠加样式与沉积格局[J]. 天然气地球科学, 2012, 23(2): 244-250.
[8] 张增政. 海拉尔盆地苏31断块南屯组二段基准面旋回与沉积特征关系[J]. 天然气地球科学, 2010, 21(5): 793-800.
[9] 邢卫东, 向赞, 钱斌, 余芳, 何婉茹, 董莉. 枣园油田孔一段精细等时地层格架建立方法[J]. 天然气地球科学, 2010, 21(4): 617-620.
[10] 刘建锋 彭军 周康 殷孝梅 唐勇 刘金库. 川中—川南过渡带须家河组二段高分辨率层序地层学研究[J]. 天然气地球科学, 2009, 20(2): 199-203.
[11] 张静,;王彦春;陈启林;李延丽;张菊梅 . 储层特征曲线重构技术在储层预测中的应用研究[J]. 天然气地球科学, 2008, 19(3): 396-401.
[12] 董文举, 史基安, 吕宗伦, 张顺存, 李元奎 . 小层对比在柴达木盆地红柳泉地区的应用[J]. 天然气地球科学, 2007, 18(4): 540-544.
[13] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339-344.
[14] 李红哲;何琼英;吴青鹏;黄云锋;李在光;. 高分辨率层序地层学在吐哈盆地浅层中的应用[J]. 天然气地球科学, 2006, 17(1): 102-105.
[15] 汪彦;彭军;李凯军;游李伟;金晓波;. 高分辨率层序地层学在保山盆地永铸街凸起构造-沉积演化中的应用[J]. 天然气地球科学, 2005, 16(6): 741-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!