天然气地球科学 ›› 2020, Vol. 31 ›› Issue (8): 1082–1091.doi: 10.11764/j.issn.1672-1926.2020.03.006

• 非常规天然气 • 上一篇    下一篇

国内外低煤阶煤层气地质差异性与聚气模式探讨

王刚1(),杨曙光1,李瑞明2,伏海蛟3   

  1. 1.新疆维吾尔自治区煤田地质局煤层气研究开发中心,新疆 乌鲁木齐 830091
    2.新疆维吾尔自治区煤田地质局,新疆 乌鲁木齐 830091
    3.中国地质大学(武汉),湖北 武汉 430074
  • 收稿日期:2020-01-19 修回日期:2020-03-15 出版日期:2020-08-10 发布日期:2020-07-29
  • 作者简介:王刚(1990-),男,山西运城人,工程师,硕士,主要从事煤层气地质研究及勘探开发研究.E-mail:wangganghunter@163.com.
  • 基金资助:
    新疆维吾尔自治区自然科学基金项目(2019D01B43);国家科技重大专项课题(2016ZX05043-001);国家自然科学基金项目(U1703126)

Geological differences and accumulation modes between domestic and foreign low-rank coalbed methane

Gang WANG1(),Shu-guang YANG1,Rui-ming LI2,Hai-jiao FU3   

  1. 1.CBM R&D Center on Xinjiang Coal Geological Bureau, Urumqi 830091, China
    2.Xinjiang Coal Geological Bureau, Urumqi 830091, China
    3.China University of Geosciences, Wuhan 430074, China
  • Received:2020-01-19 Revised:2020-03-15 Online:2020-08-10 Published:2020-07-29
  • Supported by:
    The Natural Science Foundation of Xinjiang Uygur Autonomous Region, China(2019D01B43);The China National Science and Technology Major Project(2016ZX05043-001);The National Natural Science Foundation of China(U1703126)

摘要:

全球低煤阶煤层气资源丰富,煤层厚度大、含气量偏低、渗透性好、单井产量高,成为煤层气地质评价与产业发展的重点。国外低煤阶煤层气产量已占煤层气总产量的80%,而中国仅为1.8%。通过国内外低煤阶煤层气资源分布、勘探开发进展、地质差异性、成藏共性特点及聚气模式等研究,得出以下结论:中国低煤阶煤层气资源丰富,主要赋存于新疆侏罗系、内蒙古东部白垩系及中国东北地区古近系煤层;在以挤压、碰撞为主的构造演化背景下,中国低煤阶煤层物性显著变差,湿润气候区降雨或干旱气候区山前冰川融水的补给使煤层产生次生生物气,但区域动力变质、岩浆接触热变质所产生的热成因气,使新疆、中国东北地区低煤阶煤层含气量普遍偏高;地质差异性导致中国低煤阶煤层气风化带深、聚气模式多样、产气量偏低;气候条件、构造演化对低煤阶煤层气聚集影响显著,“淡水补给生气”、“圈闭聚气”是国内外低煤阶煤层气成藏且气井高产的共性主控因素,但生气、聚气阶段的差异会形成不同特点的煤层气藏;中国低煤阶煤层气“甜点”区评价应注重一定埋深、高煤层水矿化度、单斜/向斜的承压水滞留区或断块、背斜等圈闭部位。

关键词: 低煤阶煤层气, 地质差异, 次生生物气, 气候条件, 聚气模式

Abstract:

Global low-rank coalbed methane(CBM) resources are abundant. The coal seam has large thickness, low gas content and good permeability, which lead to high production. Foreign low-rank CBM accounts for 80% of total production, while China is 1.8%. Based on the study of the resources characteristics, exploration and development progress, geological differences and accumulation models, the conclusions were obtained. Abundant low-rank CBM are mainly found in Jurassic, Cretaceous and Paleogene coal seam in Xinjiang, eastern Inner Mongolia, and Northeast China. The plate tectonic evolution is dominated by extrusion and collision in China, the physical properties of coal seams have deteriorated significantly. Regional dynamic metamorphism and magma contact thermal metamorphism have caused thermogenic gas in Xinjiang and Northeast China, and secondary biogas generated by rainfall or glacial meltwater in mountain fronts, which lead to high gas content. Geological differences result in the deep weathering zone, diversified gas accumulation modes, and low gas production in China. Climatic conditions and tectonic evolution have a significant impact on the accumulation of low-rank CBM, whose characteristics are “freshwater supply gas” and “trap accumulation gas”. The differences of gas generation and accumulation stages will form different characteristics of CBM reservoirs. China's low-rank CBM exploration should focus on certain depth, high salinity water, monocline/syncline confined water retention area or trapped parts such as fault blocks and anticline.

Key words: Low-rank coalbed methane, Geological differences, Secondary biogas, Climatic conditions, Accumulation modes

中图分类号: 

  • TE122.3

图1

美国(a)、澳大利亚(b)煤炭热演化程度与气候分区图(据文献[10]修改)"

图2

中国煤炭热演化程度与气候分区图(据文献[10]修改)"

图3

美国(a)、澳大利亚(b)煤层气产量趋势与影响因素"

图4

中国煤层气历年产量与发展阶段"

表1

国内外低煤阶煤层气地质特征及产出情况数据"

国家美国澳大利亚加拿大中国中国中国
低煤阶煤层气重点区落基山脉 地区澳洲东南部落基山脉以东地区新疆地区内蒙古东部东北地区

现今气候

类型

山地—温带大陆性气候亚热带湿润气候温带大陆性 气候大陆性干旱气候温带半湿润季风气候温带湿润、半湿润季风气候
代表性盆地粉河、尤因塔、绿河、风河等苏拉特阿尔伯塔准噶尔、吐哈、三塘湖、塔里木二连、海拉尔阜新、铁法、依兰、珲春、鸡西等
盆地类型前陆盆地克拉通盆地前陆盆地前陆盆地断陷盆地断陷盆地

主要煤系

地层

上白垩统—古近系中侏罗统上白垩统侏罗系白垩系古近系

镜质体

反射率/%

0.3~0.50.4~0.60.3~0.50.4~0.650.32~0.60.42~0.67
煤类褐煤褐煤-长焰煤褐煤褐煤—长焰煤褐煤褐煤—长焰煤,岩墙周围为气肥煤
煤层总厚度/m13~7010~505~3030~31020~2205~40
煤层含气量/(m3/t)0.5~41~83~141~151~6.534~11
煤层气成因次生生物气

次生生物气

热成因气

次生生物气

热成因气

次生生物气

原生生物气

热成因气

次生生物气次生生物-热解混合成因气
煤层渗透率/ (10-3 μm210~1 500500~1 60020~5000.01~150.01~10.1~1,岩墙裂隙带500~1 500
煤层水矿化度/(mg/L)270~2 720100~500淡水

山前*:2 000~17 000

盆缘*:9 000~36 000

5 300~6 4005 000~12 100
风化带深度 /m30~10050~150100~200

山前*:350~600

盆缘*:700~1 100

250~300200~300

有利聚气

部位

斜坡带微幅构造圈闭鼻状隆起型、微背斜—水动力封堵型等圈闭斜坡带微幅构造圈闭背斜、逆断层圈闭,向斜/单斜地层水滞留区向斜核部地层水滞留区,斜坡带微构造圈闭岩浆侵入带两侧裂隙带与地层水滞留区
重点开发 深度/m70~600200~800200~800500~1 500350~900300~900
地层倾角 /(°)0~150~20~5

山前*:5~30

盆缘*:30~90

5~152~15
典型开发 工程技术U型井、洞穴完井技术直井+煤系地层段裸眼(预射孔套管)完井+多层合采直井+氮气无支撑剂压裂 技术定向井+水力加砂 压裂直井+低浓度胍胶加砂压裂技术(试采*直井+水力加砂 压裂
直井产水量/ (m3/d)32~15975~3000~0.55~153~20(试采)5~60
一般区直井产气量/ (m3/d)1 100~6 0001 000~3 5001 000(平均)500~1 8001 000~2 356(试采*/
甜点区直井产气量/ (m3/d)4 000~9 00040 000~80 00012 000~ 15 0002 500~28 000/3 000~15 000

图5

低煤阶煤层气的“生气—聚集”模式"

1 刘爱华,傅雪海,梁文庆,等.不同煤阶煤孔隙分布特征及其对煤层气开发的影响[J].煤炭科学技术,2013,41(4):104-108.
LIU A H, FU X H, LIANG W Q, et al. Pore distribution features of different rank coal and influences to coal bed methane development[J]. Coal Science and Technology,2013,41(4):104-108.
2 徐凤银,肖芝华,陈东,等.我国煤层气开发技术现状与发展方向[J].煤炭科学技术,2019,47(10):205-215.
XU F Y, XIAO Z H, CHEN D, et al. Current status and development direction of coalbed methane exploration technology in China[J]. Coal Science and Technology,2019,47(10):205-215.
3 门相勇,韩征,高白水,等.我国煤层气勘查开发现状与发展建议[J].中国矿业,2017,26(S2):1-4.
MEN X Y, HAN Z, GAO B S, et al. Present situation and development suggestion of CBM exploration and development in China[J]. China Mining Magazine,2017,26(S2):1-4.
4 张群,降文萍.我国低煤阶煤层气地面开发产气潜力研究[J].煤炭科学技术,2016,44(6):211-215.
ZHANG Q, JIANG W P. Study on coalbed methane surface development and production potential of low rank coal in China[J]. Coal Science and Technology,2016,44(6):211-215.
5 单衍胜,毕彩芹,张家强,等.准噶尔盆地南缘探获中侏罗统低煤阶煤层气高产工业气流[J].中国地质,2018,45(5):1078-1079.
SHAN Y S, BI C Q, ZHANG J Q, et al. Productive industrial gas flow obtained in Middle Jurassic low-rank coalbed methane seam in southern Junggar Basin[J].Geology in China,2018,45(5):1078-1079.
6 孙钦平,王生维,田文广,等.二连盆地吉尔嘎朗图凹陷低煤阶煤层气富集模式[J].天然气工业,2018,38(4):59-64.
SUN Q P, WANG S W, TIAN W G, et al. Accumulation patterns of low-rank coalbed methane gas in the Jiergalangtu Sag of the Erlian Basin[J]. Natural Gas Industry,2018,38(4):59-64.
7 邹才能,杨智,黄士鹏,等.煤系天然气的资源类型、形成分布与发展前景[J].石油勘探与开发,2019,46(3): 433-442.
ZOU C N, YANG Z, HUANG S P, et al. Resource types, formation, distribution and prospects of coal-measure gas[J]. Petroleum Exploration and Development,2019,46(3):433-442.
8 邹才能,陶士振,侯连华,等.非常规油气地质(第二版)[M].北京:地质出版社,2013,169-170.
ZOU C N, TAO S Z, HOU L H, et al. Unconventional Petroleum Geology(Ⅱ)[M]. Beijing: Geological Publishing House,2013,169-170.
9 王仁农,李桂春.中国含煤盆地的聚煤规律[J].地质论评,1995,41(6):487-497.
WANG R N, LI G C. Coal accumulation characteristics of coal-bearing basins in China[J]. Geological Review,1995,41(6):487-497.
10 李登华,高煖,刘卓亚,等.中美煤层气资源分布特征和开发现状对比及启示[J].煤炭科学技术,2018,46(1):252-261.
LI D H, GAO X, LIU Z Y, et al. Comparison and revelation of coalbed methane resources distribution characteristics and development status between China and America[J]. Coal Science and Technology,2018,46(1):252-261.
11 RIGHTMIRE C T. Coal beds: Source rock and reservoir[J]. AAPG Bulletin,1984,68(4):521.
12 冯宁,彭小龙,王祎婷,等.澳大利亚煤层气开发现状综述[J].中国煤层气,2019,16(1):44-47.
FENG N, PENG X L, WANG Y T, et al. Review on CBM exploration and production in Australia[J]. China Coalbed Methane,2019,16(1):44-47.
13 李乐忠.低煤阶、薄互层煤层气的成藏特征及开发技术——以澳大利亚苏拉特盆地为例[J].中国煤层气,2016,13(6):15-19.
LI L Z. Reservoir formation characteristics and development technology for low rank CBM with thin interbed:Taking Surat Basin in Australia as an example[J]. China Coalbed Methane,2016,13(6):15-19.
14 龙胜祥,李辛子,叶丽琴,等.国内外煤层气地质对比及其启示[J].石油与天然气地质,2014,35(5):696-702.
LONG S X, LI X Z, YE L Q, et al. Comparison and enlightenment of coalbed methane geology at home and abroad[J]. Oil & Gas Geology,2014,35(5):696-702.
15 鲍清英,东振,张义,等.低煤阶应力敏感性机理及其对产气的影响——以二连盆地为例[J].煤炭学报,2017,42(3):671-679.
BAO Q Y, DONG Z, ZHANG Y, et al. Stress sensitivity mechanism of low-rank coal and its influence on gas production: A case study from Erlian Basin[J]. Journal of China Coal Society,2017,42(3):671-679.
16 朱志敏,沈冰,崔洪庆,等.阜新盆地煤层气成因分析[J].地质科技情报,2007,26(3):67-71.
ZHU Z M, SHEN B, CUI H Q, et al. Genetic analysis of coal-bed methane in Fuxin Basin[J]. Geological Science and Technology Information,2007,26(3):67-71.
17 SCOTT A R, KAISER W R, AYERS W B. Thermogenic and secondary biogenic gases San Juan Basin, Colorado and New Mexico-Implications for coalbed gas producibility[J]. AAPG Bulletin,1994, 78(8):1186-1209.
18 皇甫玉慧,康永尚,邓泽,等.低煤阶煤层气成藏模式和勘探方向[J].石油学报,2019,40(7):786-797.
HUANGFU Y H, KANG Y S, DENG Z, et al. Low coal rank coalbed methane accumulation model and exploration direction[J]. Acta Petrolei Sinica,2019,40(7):786-797.
19 李志军,李新宁,梁辉,等.吐哈和三塘湖盆地水文地质条件对低煤阶煤层气的影响[J].新疆石油地质,2013,34(2):158-161.
LI Z J, LI X N, LIANG H, et al. Effect of hydrogeological conditions on low⁃rank coalbed methane in Tuha and Santanghu Basins[J].Xinjiang Petroleum Geology,2013,34(2):158-161.
20 MICHAEL S G, KEITH C F, PATRICK C G. Characterization of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, U.S.A.[J]. International Journal of Coal Geology,2008,76:34-45.
21 TANG Y, GU F, WU X D, et al. Coalbed methane accumulation conditions and enrichment models of Walloon coal measure in the Surat Basin[J].Natural Gas Industry B,2018,5(3):235-244.
22 孙粉锦,李五忠,孙钦平,等.二连盆地吉尔嘎朗图凹陷低煤阶煤层气勘探[J].石油学报,2017,38(5):485-492.
SUN F J, LI W Z, SUN Q P, et al. Low-rank coalbed methane exploration in Jiergalangtu Sag, Erlian Basin[J]. Acta Petrolei Sinica,2017,38(5):485-492.
23 李玲,姚海鹏,李文华,等.海拉尔盆地伊敏凹陷煤层气成藏条件及成藏模式[J].东北石油大学学报,2019,43(4):78-84.
LI L, YAO H P, LI W H, et al. Accumulation condition and reservoir formation model of coalbed methane in Yimin Sag, Hailaer Basin[J]. Journal of Northeast Petroleum University,2019,43(4):78-84.
24 王一兵,赵双友,刘红兵,等.中国低煤阶煤层气勘探探索——以沙尔湖凹陷为例[J].天然气工业,2004,24(5):21-23.
WANG Y B, ZHAO S Y, LIU H B, et al. Discussion on low rank coalbed methane exploration in China:By taking Shaerhu Sag as an example[J].Natural Gas Industry,2004,24(5):21-23.
25 晋香兰.鄂尔多斯盆地侏罗系煤层含气性分析及地质意义[J].煤炭科学技术,2015,43(7):111-117.
JIN X L. Geological significances and analysis of gas potential for Jurassic coal seam in Ordos Basin[J]. Coal Science and Technology,2015,43(7):111-117.
26 俞益新,唐玄,吴晓丹,等.澳大利亚苏拉特盆地煤层气地质特征及富集模式[J].煤炭科学技术,2018,46(3):160-167.
YU Y X, TANG X, WU X D, et al. Geological characteristics and accumulation mode of coalbed methane in Surat Basin of Australia[J]. Coal Science and Technology,2018,46(3):160-167.
27 韩旭,田继军,冯烁,等.准南煤田玛纳斯矿区向斜—承压式煤层气富集模式[J].天然气地球科学,2017,28(12):1891-1897.
HAN X, TIAN J J, FENG S, et al. Syncline-confined-water model of coalbed methane enrichment in Manasi mining area, southern Junggar Coal-field[J]. Natural Gas Geoscience,2017,28(12):1891-1897.
28 李宏为,齐秋红,韩峰,等.二连盆地低煤阶煤层分布及煤层气富集条件分析[J].中国煤层气,2019,16(5):19-23.
LI H W, QI Q H, HAN F, et al. Analysis of low-rank coal distribution and coalbed methane enrichment rules in Erlian Basin[J]. China Coalbed Methane,2019,16(5):19-23.
29 王刚,杨曙光,舒坤,等.新疆乌鲁木齐河东矿区煤系气的地质特征及气测录井评价方法[J].地质科技情报,2018,37(6):148-153.
WANG G, YANG S G, SHU K, et al. Geological features and gas logging evaluation method of the unconventional gas in coal measures in Hedong coal district, Urumqi, Xinjiang Region[J]. Geological Science and Technology Information,2018,37(6):148-153.
30 杨师宇,魏韧,袁学浩,等.新疆乌鲁木齐河东矿区煤层含气特征及主控因素[J].天然气地球科学,2019,30(11):1667–1676.
YANG S Y, WEI R, YUAN X H, et al. Analysis of coal reservoir gas characteristics and main controlling factors in Hedong mining area, Urumqi city, Xinjiang Uygur Autonomous Region[J]. Natural Gas Geoscience,2019,30(11):1667-1676.
[1] 陶明信, ;解光新 . “煤层气的形成演化、成因类型及资源贡献”课题研究进展[J]. 天然气地球科学, 2008, 19(06): 894-896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张林, 魏国齐, 李熙喆, 汪泽成, 肖贤明. 四川盆地震旦系—下古生界高过成熟烃源岩演化史分析[J]. 天然气地球科学, 2007, 18(5): 726 -731 .
[2] 郭彤楼,刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643 -651 .
[3] 周庆华,宋宁,王成章,李博,王先德,彭传圣,任玉秀. 湖南花垣页岩气区块地质评价与勘探展望[J]. 天然气地球科学, 2014, 25(1): 130 -140 .
[4] 冷济高,韩建辉,李飞,李鹏,孟兰. 湘西北地区花垣页岩气区块勘探潜力[J]. 天然气地球科学, 2014, 25(4): 624 -631 .
[5] 林拓,张金川,包书景,杨升宇,李博,何伟. 湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征——以常页1井为例[J]. 天然气地球科学, 2015, 26(2): 312 -319 .
[6] 孟强,王晓锋,王香增,张丽霞,姜呈馥,李孝甫,史宝光. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333 -340 .
[7] 陈尚斌,秦勇,王阳,张寒,左兆喜. 中上扬子区海相页岩气储层孔隙结构非均质性特征[J]. 天然气地球科学, 2015, 26(8): 1455 -1463 .
[8] 程凌云,雍自权,王天依,兰宁,于俊友,邓宾. 强改造区牛蹄塘组页岩气保存条件指数评价[J]. 天然气地球科学, 2015, 26(12): 2408 -2416 .
[9] 梁峰,朱炎铭,漆麟,王红岩,拜文华,马超,张琴,会英,武瑾. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素[J]. 天然气地球科学, 2016, 27(1): 180 -188 .
[10] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352 -358 .