天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 915–922.doi: 10.11764/j.issn.1672-1926.2020.03.005

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据

曹自成1(),尤东华2,漆立新1,云露1,胡文瑄3,李宗杰1,钱一雄2,刘永立1   

  1. 1.中国石化西北油田分公司,新疆 乌鲁木齐 830011
    2.中国石化石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214126
    3.南京大学地球科学与工程学院,江苏 南京 210093
  • 收稿日期:2019-12-18 修回日期:2020-03-16 出版日期:2020-07-10 发布日期:2020-07-02
  • 作者简介:曹自成(1979-),男,湖北红安人,高级工程师,主要从事塔里木盆地海相碳酸盐岩油气勘探部署工作.E-mail:caozc.xbsj@sinopec.com.
  • 基金资助:
    国家自然科学联合基金“深层—超深层规模性白云岩储层形成机理与地质模式”(U1663209);国家自然科学基金“含油气盆地溶蚀流体类型判识标志、水—岩作用机理及溶蚀型储层成因模式”(41830425);中国石化科技开发部项目“顺北地区地质流体对碳酸盐岩储层的改造作用”(P18047-1);国家科技重大专项“塔里木—鄂尔多斯盆地海相碳酸盐岩层系大中型油气田形成规律与勘探评价”(2017ZX05005-002)

New insights of the genesis of ultra-deep dolomite reservoirs in Well TS1, Tarim Basin: Evidence from in situ carbon and oxygen isotope analysis

Zi-cheng CAO1(),Dong-hua YOU2,Li-xin QI1,Lu YUN1,Wen-xuan HU3,Zong-jie LI1,Yi-xiong QIAN2,Yong-li LIU1   

  1. 1.Northwest Oilfield Company of SINOPEC, Urumqi 830011, China
    2.Wuxi Research Institute of Petroleum Geology, Petroleum Exploration & Production Research Institute, SINOPEC, Wuxi 214126, China
    3.School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China
  • Received:2019-12-18 Revised:2020-03-16 Online:2020-07-10 Published:2020-07-02
  • Supported by:
    National Natural Science Foundation of China(U1663209);Technology Department Program of SINOPEC(P18047-1);China National Science and Technology Major Project(2017ZX05005-002)

摘要:

塔里木盆地超深层钻井塔深1井揭示在埋深8 408 m条件下依然具有优质白云岩储层,但储集空间的成因机制存在较大争议。在详细的岩心描述、显微岩石学观察与孔洞胶结物充填序列分析基础上,对阴极发光分析后的加厚薄片,通过原位微区取样方法分别获取基质、早期白云石胶结物和晚期白云石胶结物样品并进行碳氧同位素分析。早期白云石胶结物与白云岩基质具有相对一致的碳氧同位素分布特征,而晚期白云石胶结物δ13C值和δ18O值偏负。胶结物充填序列与碳氧同位素分析结果表明,不同类型白云石是多阶段白云石化作用的产物,即孔洞在白云石化作用发生的时候已经形成并随着埋深增加不断消亡。中寒武统阿瓦塔格组深灰色孔洞型白云岩储集空间的形成可能与准同生期近地表成岩事件有关。

关键词: 原位碳氧同位素分析, 白云岩, 寒武系, 塔深1井, 塔里木盆地

Abstract:

The ultra-deep Well TS1 in the Tarim Basin revealed high-quality dolomite reservoirs at the depth of 8 408 m, but the genesis mechanism of the reservoir space is controversial. Based on detailed core description, microscopic petrological observation, and analysis of filling sequence of the cements in pores, micromill samples of matrix, early dolomite cements and late dolomite cements were obtained by in situ sampling method after the cathodoluminescenece analysis of the thickeded thin sections and analyzed for carbon and oxygen isotopes. The early dolomite cements and the dolomite matrix had relatively consistent results of carbon and oxygen isotope distribution characteristics, while the later dolomite cements had more negative δ13C and δ18O values. The cements filling sequence in pores and carbon and oxygen isotope analysis results show that different types of dolomite are the products of multi-stage dolomitization, which means that pores had been formed when the the dolomitization occureed and continued to disappear with increasing depth. The formation of the dark gray dolomite reservoir space of Avatage Formation in the Middle Cambrian should be related to the near-subsurface diagenetic events during the penecontemporaneous period.

Key words: In situ carbon and oxygen isotope analysis, Dolomite, Cambrian, Well TS1, Tarim Basin

中图分类号: 

  • TE122.1+13

图1

塔里木盆地中寒武统沉积相(据文献[17]修改)"

图2

塔深1井阿瓦塔格组岩性柱状图"

图3

塔深1井阿瓦塔格组典型白云岩储层发育特征(a)深灰色粉晶—细晶白云岩,杂乱孤立不规则孔洞大量发育,∈2a,7 874.17~7 873.78 m;(b)发育大量针状孔隙的灰白色细晶白云岩,向上部突变为青灰色致密硅化粉晶白云岩,∈2a,7 874.40~7 874.20 m;(c)深灰色粉晶白云岩,发育顺层状、似层状孔洞, ∈2a,7 875.82~7 876.00 m;(d)灰色粉晶—细晶白云岩,具高角度的扩溶缝洞,1~2 mm之间的鞍形白云石胶结物半充填, ∈2a,8 406.45~8 406.25 m;(e)深灰色粉晶白云岩,以孤立孔洞为特征,局部呈近似层面分布, ∈2a,8 407.30~8 406.95 m;(f)灰色细晶白云岩,以针状小孔为主, 发育高角度裂缝并局部扩溶形成孔洞, ∈2a,8 407.65~8 408.00 m"

图4

塔深1井阿瓦塔格组白云岩显微岩石学特征(MD:基质白云石;CD1:早期白云石胶结物;Qtz:石英胶结物;CD2:晚期白云石胶结物;Pore:残留孔隙)(a)藻白云岩,早期直面自形白云石晶间具石英胶结物,∈2a,7 875.25 m;(b)藻白云岩,早期直面自形白云石晶间具石英胶结物,∈2a,7 875.79 m;(c)深灰色粉晶白云岩,发育早期与晚期白云石胶结物, ∈2a,8 406.95 m;(d)阴极发光下基质与早期白云石呈砖红色,晚期白云石具环带结构,∈2a,8 406.95 m;(e)深灰色粉晶白云岩局部在早期白云石胶结物之后充填了石英胶结物, ∈2a,8 406.95 m;(f)阴极发光下石英胶结物不发光呈黑色,早期白云石与基质部分的阴极发光差异不大,∈2a,8 406.95 m"

表1

塔深1井原位微区白云石样品碳氧同位素分析结果"

样品编号样品深度/m样品类型描述δ13C/‰(VPDB)δ18O/‰(VPDB)
4-3-17 873.93基质,粉晶—细晶白云石1.0-3.9
4-3-20.8-4.2
4-15-1m7 875.79基质,灰色细晶白云石0.4-6.7
4-15-1c晚期白云石胶结物-1.1-5.7
4-15-2m基质,灰色细晶白云石0.5-5.0
4-15-2c晚期白云石胶结物-0.2-5.0
5-19-1m8 406.95基质,泥粉晶白云石1.1-4.2
5-19-1c-e早期白云石胶结物1.1-4.2
5-19-1c-l晚期白云石胶结物-0.4-8.5
5-19-2m基质,泥粉晶白云石1.4-3.9
5-19-2c-e早期白云石胶结物1.2-4.0
5-19-2c-Q早于石英的早期白云石胶结物1.0-4.6
5-19-2c-l晚期白云石胶结物-0.6-6.9
5-19-3m基质,泥粉晶白云石1.1-4.4
5-19-3c-e早期白云石胶结物1.0-4.6
5-19-3c-l晚期白云石胶结物-1.1-8.2
5-19-4m基质,泥粉晶白云石1.1-4.6
5-19-4c晚期白云石胶结物-1.1-7.9
5-19-5m基质,泥粉晶白云石1.2-4.3
5-19-5c-e早期白云石胶结物0.4-6.4
5-19-5c-l晚期白云石胶结物-0.3-6.8
5-19-6c-e早期白云石胶结物0.8-4.5
5-19-6c-l晚期白云石胶结物-0.3-7.1
5-25-1m8 407.9基质,泥粉晶白云石0.5-5.4
5-25-2m基质,泥粉晶白云石0.7-4.8
5-25c晚期白云石胶结物-1.1-6.1

图5

白云岩基质与白云石胶结物碳氧同位素分析"

1 WARREN J. Dolomite: Occurrence, evolution and economically important associations[J].Earth-Science Reviews, 2000, 52: 1-81.
2 黄思静,王春梅,黄培培,等. 碳酸盐成岩作用的研究前沿和值得思考的问题[J]. 成都理工大学学报:自然科学版, 2008, 35(1): 1-10.
HUANG S J, WANG C M, HUANG P P, et al. Scientific research frontiers and considerable questions of carbonate diagenesis[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2008, 35(1): 1-10.
3 陈代钊,钱一雄. 深层—超深层白云岩储集层:机遇与挑战[J]. 古地理学报, 2017, 19(2): 187-196.
CHEN D Z, QIAN Y X. Deep or super-deep dolostone reservoirs: Opportunities and challenges[J]. Journal of Palaeogeography, 2017, 19(2): 187-196.
4 GIVEN R K, WILKINSON B H. Dolomite abundance and stratigraphic age, constraints on rates and mechanisms of phanerozoic dolostone formation[J]. Journal of Sedimentary Research, 1987, 57: 1068-1078.
5 SUN S Q. A reappraisal of dolomite abundance and occurrence in the Phanerozoic[J].Journal of Sedimentary Research, 1994, B64: 396-404.
6 翟晓先,顾忆,钱一雄,等. 塔里木盆地塔深1井寒武系油气地球化学特征[J]. 石油实验地质, 2007, 29(4): 329-333.
ZHAI X X, GU Y, QIAN Y X, et al. Geochemical characteristics of the Cambrian oil and gas in Well Tashen1, the Tarim Basin[J]. Petroleum Geology & Experiment, 2007, 29(4): 329-333.
7 云露,翟晓先. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质, 2008, 29(6): 726-732.
YUN L, ZHAI X X. Discussion on characteristics of the Cambrian reservoirs and hydrocarbon accumulation in Well Tashen-1,Tarim Basin[J].Oil & Gas Geology,2008, 29(6): 726-732.
8 孟祥豪,张哨楠,蔺军,等. 塔深1井寒武系白云岩储层同位素流体地球化学示踪[J]. 矿物岩石, 2009, 29(4): 75-82.
MENG X H, ZHANG S N, LIN J, et al. Geochemical tracing of isotopic fluid of the Cambrian dolomite reservoir in Well Tashen 1[J]. Journal of Mineralogy and Petrology, 2009, 29(4): 75-82.
9 孟祥豪,张哨楠,李秀华,等. 塔深1井寒武系超深层优质储集空间特征[J]. 四川地质学报, 2010, 30(1): 31-34.
MENG X H, ZHANG S N, LI X H, et al. Reservoir space in the Cambrian in the ultradeep Well No.1, Tarim Basin[J]. Acta Geologica Sichuan, 2010, 30(1): 31-34.
10 孟祥豪,张哨楠,蔺军,等. 中国陆上最深井塔深1井寒武系优质储集空间主控因素分析[J]. 断块油气田, 2011, 18(1): 1-5.
MENG X H, ZHANG S N, LIN J, et al. Analysis on main controlling factors of Cambrian reservoir space with high quality for Well Tashen 1, the deepest subaerial well in China[J]. Fault-Block Oil & Gas Field, 2011, 18(1): 1-5.
11 蔺军,周芳芳,袁国芬. 塔河地区寒武系储层深埋藏白云石化特征[J]. 石油与天然气地质, 2010, 31(1): 13-21.
LIN J, ZHOU F F, YUAN G F. Features of deep-burial dolomitization of the Cambrian reservoirs in Tahe region[J]. Oil & Gas Geology, 2010, 31(1): 13-21.
12 朱东亚,孟庆强,胡文瑄,等. 塔里木盆地深层寒武系地表岩溶型白云岩储层及后期流体改造作用[J]. 地质论评, 2012, 58(4): 691-701.
ZHU D Y, MENG Q Q, HU W X, et al. Deep Cambrian surface-karst dolomite reservoir and its alteration by later fluid in Tarim Basin[J]. Geological Review, 2012, 58(4): 691-701.
13 ZHU D Y, MENG Q Q, JIN Z J, et al. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China[J].Marine and Petroleum Geology, 2015, 59: 232-244.
14 EHRENBERG S N, BJØRLYKKE K. Comments regarding hydrothermal dolomitization and porosity development in the paper “Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China” by Zhuet al. (2015)[J].Marine and Petroleum Geology,2016,76: 480-481.
15 郑和荣,吴茂炳,邬兴威,等. 塔里木盆地下古生界白云岩储层油气勘探前景[J]. 石油学报, 2007, 28(2): 1-8.
ZHENG H R, WU M B, WU X W, et al. Oil-gas exploration prospect of dolomite reservoir in the Lower Paleozoic of Tarim Basin[J]. Acta Petrolei Sinica, 2007, 28(2): 1-8.
16 尤东华,王亮,胡文瑄,等. 从成岩—蚀变特征探讨塔深1井白云岩储层成因[J]. 岩石矿物学杂志, 2018, 37(1): 34-46.
YOU D H, WANG L, HU W X, et al. Formation of deep dolomite reservoir of Well TS1: Insights from diagenesis and alteration investigations[J].Acta Petrologica et Mineralogica, 2018, 37(1): 34-46.
17 赵宗举,罗家洪,张运波,等. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报, 2011, 32(6): 937-948.
ZHAO Z J, LUO J H, ZHANG Y B, et al. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica, 2011, 32(6): 937-948.
18 郑剑锋,沈安江,刘永福,等. 塔里木盆地寒武系与蒸发岩相关的白云岩储层特征及主控因素[J]. 沉积学报, 2013, 31(1): 89-98.
ZHENG J F, SHEN A J, LIU Y F, et al. Main controlling factors and characteristics of Cambrian dolomite reservoirs related to evaporite in Tarim Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1): 89-98.
19 DONG S F, CHEN D Z, QING H R, et al. In situ stable isotopic constraints on dolomitizing fluids for the hydrothermally-originated saddle dolomites at Keping, Tarim Basin[J]. Chinese Science Bulletin, 2013, 58: 2877-2882.
20 孟祥豪. 塔河深层寒武系优质储层特征及形成机理研究[D]. 成都: 成都理工大学, 2012.
MENG X H. A Research of the Deep Cambrian High-Quality Reservoir Characteristics and Formation Mechanism in Tahe Area[D].Chengdu: Chengdu University of Technology, 2012.
21 WALLMANN K. The geological water cycle and the evolution of marine δ18O values[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2469-2485.
22 LAND L S. The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments[C]// Stable Isotopes in the Sedimentary Geology. Tulsa: SEPM Short Course 10, 1983: 4.1-4.22.
23 焦存礼,何治亮,邢秀娟,等. 塔里木盆地构造热液白云岩及其储层意义[J]. 岩石学报, 2011, 27(1): 277-284.
JIAO C L, HE Z L, XING X J, et al. Tectonic hydrothermal dolomite and its significance of reservoirs in Tarim Basin[J]. Acta Petrologica Sinica, 2011, 27(1): 277-284.
[1] 石书缘, 王铜山, 刘伟, 姜华, 李秋芬, 刘鑫, 曾乙洋, 邹翔, 胡丽. 四川盆地寒武系洗象池组储层特征及天然气勘探潜力[J]. 天然气地球科学, 2020, 31(6): 773-785.
[2] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[3] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[4] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[5] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[6] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[7] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[8] 闫磊, 杨敏, 张君龙, 曹颖辉, 杜德道, 王珊, 徐兆辉, 李洪辉, 赵一民. 塔里木盆地塔东地区寒武系烃源岩分布及有利区带评价优选[J]. 天然气地球科学, 2020, 31(5): 667-674.
[9] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[10] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[11] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[12] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[13] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[14] 刘金华, 郭瑞, 马洪涛, 夏步余, 先伟, 蒋阿明, 葛政俊. 塔里木盆地塔河地区东部阿克库勒组阿四段条带状砂体成因再认识[J]. 天然气地球科学, 2019, 30(9): 1253-1262.
[15] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李树同,王多云,王彬,陶辉飞,刘志伟 . 坳陷型湖盆缓坡边缘沉积坡折带的识别—以鄂尔多斯盆地三叠纪延长期沉积坡折带为例[J]. 天然气地球科学, 2008, 19(1): 83 -88 .
[2] 郑建京;温德顺;孟仟祥;吉利明;孙国强;. 煤系烃源岩热模拟演化过程的地球化学参数特征――以准噶尔盆地侏罗系煤系烃源岩为例[J]. 天然气地球科学, 2003, 14(2): 134 -139 .
[3] 杨帆;李治平;. 石蜡沉积对储层孔隙度和渗透率的影响[J]. 天然气地球科学, 2006, 17(6): 848 -850 .
[4] 苏勤, 贺振华, 田彦灿, 李斐. 山前带复杂构造成像中叠前深度偏移方法研究及应用[J]. 天然气地球科学, 2009, 20(4): 571 -575 .
[5] 鲁新川,孔玉华,常娟,史基安,张顺存. 准噶尔盆地西北缘克百地区二叠系风城组砂砾岩储层特征及主控因素分析[J]. 天然气地球科学, 2012, 23(3): 474 -481 .
[6] 易定红,石亚军,倪祥龙,马新民,吴武军. 柴达木盆地西部英雄岭东段下油砂山组油气地质条件及勘探潜力[J]. 天然气地球科学, 2014, 25(6): 818 -823 .
[7] 王宇,李晓,王金波,郑博,张搏,赵志恒. 水力压裂中的应力阴影效应与数值计算[J]. 天然气地球科学, 2015, 26(10): 1941 -1950 .
[8] 胡慧婷,苏瑞,刘超,孟令威. 广义ΔLgR技术预测陆相深层烃源岩有机碳含量方法及其应用[J]. 天然气地球科学, 2016, 27(1): 149 -155 .
[9] 张阳, 邱隆伟, 杨保良, 王军, 李际, 田美荣, 隋淑玲. 河控三角洲河口坝沉积特征及其形成过程中受水位变化的影响[J]. 天然气地球科学, 2016, 27(5): 809 -819 .
[10] 马安来. 金刚烷类化合物在有机地球化学中的应用进展[J]. 天然气地球科学, 2016, 27(5): 851 -860 .