天然气地球科学 ›› 2020, Vol. 31 ›› Issue (9): 1316–1325.doi: 10.11764/j.issn.1672-1926.2020.03.004

• 天然气地球化学 • 上一篇    下一篇

含铁矿物对高成熟有机质有水体系热解生气的影响

张文军1,2,3,4(),何坤3,4(),李贤庆1,2,米敬奎3,4,胡国艺3,4   

  1. 1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
    3.中国石油勘探开发研究院,北京 100083
    4.中国石油天然气集团公司油气地球化学重点实验室,北京 100083
  • 收稿日期:2020-02-12 修回日期:2020-03-06 出版日期:2020-09-10 发布日期:2020-09-04
  • 通讯作者: 何坤 E-mail:zhangwj178@126.com;hekun1@petrochina.com.cn
  • 作者简介:张文军(1995-),男,甘肃定西人,硕士研究生,主要从事油气地球化学研究. E-mail: zhangwj178@126.com.
  • 基金资助:
    国家自然科学基金(41973068);国家科技重大专项(2016ZX05007-001);中国石油勘探开发研究院科学研究与技术开发项目(2018ycq01)

Effect of iron-bearing minerals on gas generation from pyrolysis of high-mature organic matter in hydrothermal conditions

Wen-jun ZHANG1,2,3,4(),Kun HE3,4(),Xian-qing LI1,2,Jing-kui MI3,4,Guo-yi HU3,4   

  1. 1.State Key Laboratory of Coal Resources and Sofe Mining, China Univeristy of Mining and Technology, Beijing 100083, China
    2.Collega of Geoscience and Surveying Engineering, China University of Mining and Technology,Beijing 100083, China
    3.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    4.State Key Laboratory of Petroleum Geochemistry, China National Petroleum Corporation, Beijing 100083, China
  • Received:2020-02-12 Revised:2020-03-06 Online:2020-09-10 Published:2020-09-04
  • Contact: Kun HE E-mail:zhangwj178@126.com;hekun1@petrochina.com.cn
  • Supported by:
    The National Natural Science Foundation of China(41973068);The China National Science & Technology Major Project(2016ZX05007-001);The Scientific Research and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(2018Ycq01)

摘要:

为了探讨含铁矿物对水—有机质生气的影响,基于黄金管热模拟装置,选用了高熟干酪根样品开展了3组有水体系(干酪根+水、干酪根+黄铁矿+水、干酪根+磁铁矿+水)的恒温热解实验。气体产物的定量分析结果表明,黄铁矿和磁铁矿的加入均导致干酪根在有水体系下气态烃产率一定程度的降低。比如,水—黄铁矿体系和水—磁铁矿体系在Easy%RO=3.08%时CH4产率相比单独有水体系分别降低8.5 mL/gTOC和13.3 mL/gTOC。水—黄铁矿体系CO2产率及碳稳定同位素值明显高于单独有水体系和水—磁铁矿体系,含铁矿物(尤其是磁铁矿)加入的热解体系的H2S产率明显低于单独有水体系。气体组成分析结果表明,含铁矿物的加入明显提高了烃类气体的干燥系数,同时导致异构烷烃相对含量的降低。水—磁铁矿体系气体产物氢同位素值相对低于单独有水体系,表明磁铁矿的加入促进了早期H2的生成而与有机质之间发生了加氢作用。这些结果表明,含铁矿物的加入可能抑制了碳正离子的反应,水—有机质的加氢生气可能主要是自由基反应。

关键词: 干酪根, 黄铁矿, 磁铁矿, 催化抑制作用, 有机—无机作用

Abstract:

In order to ascertain the effect of iron-bearing minerals on gas generation from water-organics reactions, three groups of isothermal pyrolysis involving a high-mature kerogen (kerogen + water, kerogen + pyrite + water, kerogen + magnetite + water) were conducted in hydrothermal conditions by a gold-tube system. Through determination of the yields of gas products, it is indicated that the presence of pyrite and magnetite both led to a certain decrease in the yields of hydrocarbon gases. For instance, the methane yields at Easy%RO of 3.08% in hydrothermal experiments with pyrite and magnetite are about 8.5 and 13.3 mL/gTOC lower than that in pyrolysis with only water. The yield and carbon isotopic ratios of CO2 in pyrolysis involving water and pyrite are evidently higher than those in pyrolysis involving only water and involving water and magnetite. The H2S yields in hydrothermal experiments with Fe-bearing minerals (especially magnetite) are much lower compared with those without minerals. The analysis of gas compositions shows that the presence of pyrite apparently resulted in the increase of gas dryness and the decrease of relative content of isomeric hydrocarbons. The hydrogen isotope of the gas product of the water-magnetite system is relatively lower than that of the water-only system, indicating that the addition of magnetite promoted the formation of early H2 and hydrogenation occurred with the organic matter. These results indicate that the addition of iron-bearing minerals may inhibit the carbocation reaction, and the hydrogenation of water-organic matter may be mainly a radical reaction.

Key words: Kerogen, Pyrite, Magnetite, Catalytic inhibition, Organic-inorganic interaction

中图分类号: 

  • TE122.1+1

表 1

干酪根地球化学组成"

层组

TOC

/%

Tmax

/℃

S1

/(mg/g)

S2

/(mg/g)

IH

/(mg/gTOC)

IO

/(mg/gTOC)

干酪根样
H/CO/CS/C
玉尔吐斯组8.454920.334.6354.792.010.620.080.08

表2

模拟实验气体产物产率、组成与碳氢同位素特征"

温度 /℃时间 /d

Easy%

R0

/%

气体产率/(mL/gTOC

碳同位素

/‰(VPDB)

氢同位素 /‰(VSMOW)含水体质种类
C1C2C3iC4nC4iC5nC5H2CO2H2Sδ13C1δ13C2δ13CCO2δD1
33010.790.0860.00514.05-29.2

+

33071.050.0670.004-—10.08-29.1
330101.110.2230.0480.0140.001 00.001 10.000 20.000 222.54-24.5-29.1-274.7
36011.020.1890.0150.0020.000 30.000 40.000 30.000 419.17-24.4-29.8-269.1
36051.290.5720.0280.0020.000 30.000 40.000 40.000 626.41-45.4-25.3-29.3-272.2
36071.420.9570.0450.0020.000 40.000 40.000 20.000 327.77-44.0-26.2-29.1-275.3
360101.50.7150.0290.0010.000 30.000 30.000 30.000 120.96-45.6-26.4-29.3-266.6
38011.240.4370.0270.0010.000 40.000 40.000 20.000 220.79-47.8-25.9-29.5-266.9
38051.560.7210.0290.0000.000 30.000 30.000 40.000 411.090.01-46.4-25.6-29.4-273.5
38071.722.4190.1000.0020.000 50.000 50.000 70.000 30.00827.860.30-43.5-25.1-29.6-282.1
380101.823.4710.1300.0020.000 40.000 30.000 20.000 20.00630.210.8142.3-24.8-29.0-280.8
40011.491.0190.0510.0030.000 30.000 20.000 30.000 30.00624.170.08-41.3-24.6-29.1-276.6
40051.885.4460.1740.0050.000 20.000 20.001 50.003 30.00531.330.40-38.5-25.1-28.7-279.6
40072.076.6820.2150.0030.004 40.003 70.015 40.008 10.01731.502.63-38.1-24.5-28.7-275.0
400102.1910.9950.3120.0060.005 30.008 00.008 90.006 70.00538.645.76-37.9-24.7-29.0-255.8
45012.3110.3340.3800.0090.001 20.002 00.001 50.001 10.06240.749.35-37.7-24.6-28.6-251.4
45052.8422.5270.4890.0120.000 50.000 70.005 00.003 91.11354.2313.91-34.8-23.6-27.7-184.5
45073.0827.4190.5470.0140.000 50.000 40.016 10.005 11.47460.4314.79-33.6-23.2-28.0-165.3
33010.790.0560.00510.10-29.1

+

+

33050.950.0830.00513.26-28.5
33071.050.1130.00420.08-28.8
330101.110.1120.00321.28-28.5-252.4
36011.020.2000.01117.25-46.2-26.4-256.7
36051.290.3450.0070.00123.05-45.2-26.2-28.4-263.2
36071.420.3430.0050.00122.03-43.1-25.8-27.9-260.3
360101.50.6190.0070.0030.000 30.000 50.000 20.000 138.68-41.5-25.7-27.5-269.1
38011.240.4000.0180.0060.000 30.000 60.000 60.000 423.01-43.9-25.4-28.8-266.8
38051.560.9120.0230.0160.003 10.004 80.005 50.005 733.42-42.6-25.1-28.7-265.4
38071.720.9610.0100.0030.001 30.002 00.002 10.002 435.99-42.5-25.2-28.6-260.8
380101.821.4220.0110.0030.001 00.001 30.002 10.003 20.00647.51-39.9-26.4-29.1-265.4
40011.490.7980.0610.0490.017 70.021 70.001 40.006 00.00527.20-40.6-26.1-29.5-266.8
40051.882.2330.0200.0110.006 00.007 70.010 20.003 90.00739.81-39.8-24.6-28.7-265.1
40072.073.0880.0190.0040.002 50.003 30.002 90.002 30.00744.61-37.8-25.1-28.6-261.5
400102.192.8480.0150.0050.001 90.002 30.003 30.002 80.00645.04-37.4-25.9-28.5-256.4
45012.315.8570.0520.0090.000 40.000 40.000 90.000 70.00050.130.06-37.0-25.8-28.6-241.7
45052.848.3870.0440.0070.000 30.000 30.001 40.001 00.35776.8511.10-32.4-24.2-28.4-168.4
45073.0818.9350.1880.0060.000 40.000 40.71364.8431.55-31.8-24.1-28.2-155.6
33010.790.0830.0050.0010.000 20.000 40.000 20.000 15.60-31.0-30.7

+

+

33050.950.1320.0060.0000.000 60.000 90.002 80.000 87.46-29.4-30.4
33071.050.1380.0070.0010.000 90.001 10.002 80.001 28.17-29.3-30.1
330101.110.1860.0090.0000.000 70.000 80.001 60.001 98.24-29.8-30.0
36011.020.2310.0120.0010.000 60.000 60.002 00.000 86.26-48.6-31.2-30.4-262.7
36051.290.5380.0180.0010.000 40.000 40.001 10.001 28.91-47.1-28.6-30.1-281.1
36071.420.7740.0210.0010.000 30.000 30.005 40.002 513.76-45.8-25.4-30.0-276.8
360101.50.8140.0220.0020.002 10.001 90.000 50.002 511.01-44.9-25.8-30.1-275.1
38011.240.5250.0210.0010.000 60.000 50.000 20.000 47.09-43.9-26.0-30.4-276.3
38051.561.4750.0290.0050.001 80.001 70.000 30.000 418.00-42.3-24.3-30.0-276.6
38071.721.9400.0460.0010.00411.03-42.6-23.8-30.2-289.1
380101.821.8340.0230.0010.00417.37-41.6-23.3-30.0-281.1
40011.491.0770.0410.0010.00410.40-40.8-23.8-29.9-270.8
40051.883.7200.0510.0010.00521.62-39.7-23.1-29.4-266.4
40072.074.7730.0360.0010.00522.72-38.8-22.6-29.3-259.5
400102.194.2300.0160.0010.00626.91-38.9-22.6-28.6-256.3
45012.319.3120.1140.0030.00623.08-36.2-18.2-28.9-249.6
45052.8413.0410.0170.0040.00542.76-33.7-19.6-28.7-189.7
45073.0814.1280.0340.0090.00953.22-33.3-19.4-28.3-171.4

图1

气体产率和组成随Easy%RO的变化"

图2

气体产物同位素随Easy%RO的变化"

1 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. Berlin:Springer Verlag, 1984:330-381.
2 LEWAN M D, WINTERS J C, MCDONALD J H. Generation of oil-like pyrolyzates from organicrich shales[J]. Science,1979, 203(4383): 897-899.
3 LEWAN M D. Experiments on the role of water in petroleum formation[J]. Geochimica et Cosmochimica Acta,1997,61(17): 3691-3723.
4 BEHAR F, LEWAN M D, LORANT M, et al. Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions[J]. Organic Geochemistry, 2003, 34(4):575-600.
5 PAN C C,GENG A S,ZHONG N N, et al.Kerogen pyrolysis in the presence and absence of water and minerals:Amounts and compositions of bitumen and liquid hydrocarbons[J]. Fuel, 2009, 88(5):909-919.
6 GAO L, SCHIMMELMANN A. TANG Y C,et al. Isotope rollover in shale gas observed in laboratory pyrolysis experiments: Insight to the role of water in thermogenesis of mature gas[J]. Organic Geochemistry, 2014, 68:95-106.
7 HE K, ZHANG S C, MI J K, et al. Pyrolysis involving n-hexadecane, water and minerals: Insight into the mechanisms and isotope fractionation for water-hydrocarbon reaction[J].Jou-rnal of Analytical and Applied Pyrolysis,2018,130:198-208.
8 LEWAN M D, ROY S. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation[J].Organic Geochemistry,2011,42(1): 31-41.
9 HOERING T C. Thermal reactions of kerogen with added water, heavy water and pure organic substances[J]. Organic Geochemistry,1984,5(4): 267-278.
10 SCHIMMELMANN A, BOUDO J P, LEWAN M D, et al. Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis[J]. Organic Geochemistry,2001,32(8): 1009-1018.
11 LEIF R N, SIMONEIT B R T. The role of alkenes produced during hydrous pyrolysis of a shale[J]. Organic Geochemistry,2000, 31(11): 1189-1208.
12 SEEWALD J S. Organic-inorganic interactions in petroleum-producing sedimentary basins[J]. Nature,2003, 426(6964): 327-333.
13 ZHANG S C, HE K, HU G Y, et al. Unique chemical and isotopic characteristics and origins of natural gases in the Paleozoic marine formations in the Sichuan Basin, SW China: Isotope fractionation of deep and high mature carbonate reservoir gases[J]. Marine and Petroleum Geology, 2018, 89: 68-82.
14 HE K, ZHANG S C, MI J K, et al. Carbon and hydrogen isotope fractionation for methane from non-isothermal pyrolysis of oil in anhydrous and hydrothermal conditions[J]. Energy Exploration & Exploitation, 2019, 37(5): 1558-1576.
15 SEEWALD J S, EGLINTON L B, OEG Y L. An experimental study of organic-inorganic interactions during vitrinite maturation[J]. Geochimica et Cosmochimica Acta,2000, 64(9): 1577-1591.
16 SEEWALD J S. Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures: Constraints from mineral buffered laboratory experiments[J]. Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.
17 MILESI V, PRINZHOFER A, GUYOT F, et al. Contribution of siderite-water interaction for the unconventional generation of hydrocarbon gases in the Solimoes Basin, north-west Brazil[J]. Marine and Petroleum Geology,2016, 71: 168-182.
18 CAI Y W, ZHANG S C, HE K, et al. Effects of U-ore on the chemical and isotopic composition of products of hydrous pyrolysis of organic matter[J]. Petroleum Science,2017,14(2):315-329.
19 张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展,1996,11(3):282-287.
ZHANG J L, ZHANG P Z. Discussion of pyrite catalysis on the hydrocarbon generation process[J]. Advance in Earth Scicences, 1996,11(3):282-287.
20 MA X X, ZHENG J J, ZHENG G D, et al. Influence of pyrite on hydrocarbon generation during pyrolysis of type-III kerogen[J]. Fuel, 2016, 167:329-336.
21 REEVES E P, SEEWALD J S, SYLVA S P. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions[J]. Geochimica et Cosmochimica Acta,2012,77: 582-599.
22 毛榕,米敬奎,张水昌,等.不同煤系源岩生烃特征的黄金管热模拟实验对比研究[J].天然气地球科学,2012,23(6):1127-1134.
MAO R, MI J K, ZHANG Y C, et al. Study on the hydrocaron generation characteristics of different coaly source rocks by gold-tube pyrolysis experiments[J].Natural Gas Geoscien-ce,2012,23(6):1127-1134.
23 MI J K, ZHANG S C, HE K. Experimental investigations about the effect of pressure on gas generation from coal[J]. Organic Geochemistry, 2014,74:116-122.
24 KISSIN Y V. Free-radical reactions of high molecular weight isoalkanes[J]. Industrial and Engineering Chemistry Research, 1987, 26(8):1633-1638.
25 KISSIN Y V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes[J]. Geochimica et Cosmochimica Acta,1987,51(9): 2445-2457.
26 于林平,潘长春,刘金钟,等.氧化作用对气态烃组成和碳同位素组成的影响[J].地球化学,2005,34(3):269-277.
YU L P, PAN C C, LIU J Z, et al. Effects of oxidation on gaseous hydrocarbon composition and carbon isotope composition [J]. Geochemistry, 2005,34(3):269-277.
27 HE K, ZHANG S C, MI J K, et al. Mechanism of catalytic hydropyrolysis of sedimentary organic matter with MoS2[J]. Petroleum Science, 2011,8(2):134-142
28 SACKETT W M. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochimica et Cosmochimica Acta, 1978,42(6):571-580.
29 CRAMER B, KROOSS B M, LITTKLE R. Modelling isotope fractionation during primary cracking of natural gas: A reaction kinetic approach[J]. Chemical Geology,1998, 149(3): 235-250.
30 HE K, ZAHNG S C, MI J K, et al. The evolution of chemical groups and isotopic fractionation at different maturation stages during lignite pyrolysis[J]. Fuel, 2018,211: 492-506.
31 TANG Y C, PERRY J K, JENDEN P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimica et Cosmochimica Acta,2000, 64(15): 2673-2687.
32 王晓峰,刘文汇,徐永昌,等.水在有机质形成气态烃演化中作用的热模拟实验研究[J].自然科学进展,2006,16(10):1275-1281.
WANG X F, LIU W H, XU Y C, et al. Thermal simulation experimental study on the role of water in the evolution of organic matter forming gaseous hydrocarbons[J]. Progress in Natural Science, 2006,16(10):1275-1281.
33 孙丽娜,张明峰,吴陈君,等.水对不同生烃模拟实验系统产物的影响[J].天然气地球科学,2015,26(3):524-532.
SUN L N, ZHANG M F, WU C J, et al. The effect of water medium on the products of different pyrolysis system[J]. Natural Gas Geoscience, 2015,26(3):524-532.
34 马跃, 李术元, 王娟,等. 水介质条件下油页岩热解机理研究[J]. 燃料化学学报, 2011,39(12):881-886.
MA Y, LI S Y, WANG J, et al. Mechanism of oil shale pyrolysis under high pressure water[J].Journal of Fuel Chemistry and Technology, 2011,39(12):881-886.
[1] 马风华, 潘进礼, 马瑞赟, 张勇, 马小娟. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学, 2019, 30(9): 1370-1377.
[2] 刘田, 冯明友, 王兴志, 陈波, 张良华, 刘小洪, 王珏博. 渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制[J]. 天然气地球科学, 2019, 30(5): 740-750.
[3] 康广星, 徐学敏, 汪双清, 杨佳佳, 孙玮琳, 沈斌, 秦婧, 芦苒, 张小涛, 郭望. 古生界干酪根热演化模拟实验[J]. 天然气地球科学, 2019, 30(4): 593-602.
[4] 韩盛博,李伍. 上扬子区龙马溪组页岩中黄铁矿成因[J]. 天然气地球科学, 2019, 30(11): 1608-1618.
[5] 王强, 张大勇, 王杰, 陶成, 腾格尔, 刘文汇. 烃类与非烃综合判识干酪根与原油裂解气[J]. 天然气地球科学, 2018, 29(9): 1231-1239.
[6] 王朋飞, 姜振学, 吕鹏, 金璨, 李鑫, 黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[7] 曹涛涛,邓模,宋之光,刘光祥,黄俨然,Andrew Stefan Hursthouse. 黄铁矿对页岩油气富集成藏影响研究[J]. 天然气地球科学, 2018, 29(3): 404-414.
[8] 谢增业, 李志生, 魏国齐, 李剑, 王东良, 王志宏, 董才源. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J]. 天然气地球科学, 2016, 27(6): 1057-1066.
[9] 屈振亚,孙佳楠,史健婷,詹兆文,邹艳荣,彭平安. 页岩气稳定碳同位素特征研究[J]. 天然气地球科学, 2015, 26(7): 1376-1384.
[10] 杨显成,蒋有录,耿春雁. 济阳坳陷深层裂解气成因鉴别及其成藏差异性[J]. 天然气地球科学, 2014, 25(8): 1226-1232.
[11] 熊德明,马万云,张明峰,吴陈君,妥进才. 干酪根类型及生烃潜力确定新方法[J]. 天然气地球科学, 2014, 25(6): 898-905.
[12] 张劼, 雷怀彦, 欧文佳, 杨玉峰, 龚楚君, 史春潇. 南海北部陆坡973-4柱沉积物中硫酸盐—甲烷转换带(SMTZ)研究及其对水合物的指示意义[J]. 天然气地球科学, 2014, 25(11): 1811-1820.
[13] 李智锋,李治平,苗丽丽,付应坤,王 杨,谢 姗. 页岩气藏纳米孔隙气体渗流特征分析[J]. 天然气地球科学, 2013, 24(5): 1042-1047.
[14] 陈晓明,李建忠,,郑民,,郑曼. 干酪根溶解理论及其在页岩气评价中的应用探索[J]. 天然气地球科学, 2012, 23(1): 14-18.
[15] 张景廉;张虎权;张宁;朱炳泉;. 非生物(无机)成因油气基础科学问题[J]. 天然气地球科学, 2006, 17(1): 19-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[4] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[5] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[6] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[7] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[8] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[9] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[10] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .