天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1389–1403.doi: 10.11764/j.issn.1672-1926.2020.03.002

• 天然气地质学 • 上一篇    下一篇

塔里木盆地古城地区上寒武统碳酸盐岩储层发育特征及主控因素

王珊1(),曹颖辉1,张亚金2,杜德道1,齐井顺2,白莹1,闫磊1,杨敏1,张君龙2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.大庆油田有限责任公司勘探开发研究院,黑龙江 大庆 163712
  • 收稿日期:2019-12-11 修回日期:2020-03-09 出版日期:2020-10-10 发布日期:2020-09-30
  • 作者简介:王珊(1986-),女,河北保定人,工程师,硕士,主要从事碳酸盐岩沉积储层研究. E-mail:wangshanchina@petrochina.com.cn.
  • 基金资助:
    中国石油天然气股份有限公司“十三五”专项“古老碳酸盐岩油气成藏分布规律与关键技术”(2019B-04);中国石油重大科技专项“塔东天然气成藏理论及勘探配套技术研究”(2016E-0204)

Characteristics and main controlling factors of Upper Cambrian carbonate reservoir in Gucheng area, Tarim Basin, NW China

Shan WANG1(),Ying-hui CAO1,Ya-jin ZHANG2,De-dao DU1,Jing-shun QI2,Ying BAI1,Lei YAN1,Min YANG1,Jun-long ZHANG2   

  1. 1.PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
    2.PetroChina Daqing Oilfield Company,Daqing 163712,China
  • Received:2019-12-11 Revised:2020-03-09 Online:2020-10-10 Published:2020-09-30
  • Supported by:
    The 13th Five-Year Plan of CNPC(2019B-04);The Major Science and Technology Project of CNPC(2016E-0204)

摘要:

古城地区下古生界碳酸盐岩是塔里木盆地塔东探区重点勘探领域。近年来古城6井、古城8井、古城9 井相继在中下奥陶统白云岩中获高产气流,展现了该区良好的勘探潜力,而针对寒武系钻探的城探1井、城探2井均未取得突破。白云岩储层的成因及主控因素成为制约寒武系碳酸盐岩勘探的关键因素之一。在前人研究基础之上,结合岩心观察、薄片鉴定、同位素、主微量元素等各种地球化学分析,对古城地区上寒武统碳酸盐岩储层进行了深入研究。古城地区上寒武统碳酸盐岩储层主要发育在白云岩中,岩性以颗粒云岩、藻(礁)微生物云岩、角砾云岩以及晶粒云岩为主。储集空间以粒间溶孔、粒内溶孔,晶间孔、晶间溶孔及溶蚀孔洞为主。研究区上寒武统储层分为4类,包括颗粒云岩孔隙型储层、角砾云岩裂缝—孔洞型储层、结晶云岩孔隙型储层以及结晶云岩裂缝—孔洞型储层。研究表明礁滩相沉积是储层发育的物质基础;准同生期溶蚀作用和白云石化作用为储层形成的关键;埋藏—热液溶蚀作用是储层发育的重要补充。

关键词: 塔里木盆地, 古城地区, 上寒武统, 碳酸盐岩储层, 储层特征, 储层主控因素

Abstract:

The Lower Paleozoic carbonate rock in Gucheng area is a significant exploration area in eastern Tarim Basin. In recent years, Gucheng 6, Wells Gucheng 8 and Gucheng 9 have obtained high capacity gas flow in the Middle and Lower Ordovician dolomite reservoir, which shows good exploration potential in this area. But Wells Chengtan1 and Chengtan 2 aiming at Cambrian have made no breakthrough. The main controlling factor of dolomite reservoir has become one of the critical problems restricting the exploration of Cambrian carbonate rocks. On the basis of previous studies, the Upper Cambrian carbonate reservoir in Gucheng area has been deep studied in combination with core description, thin section observation, isotope analysis, main and trace elements analysis and other geochemical analysis. The Upper Cambrian carbonate reservoir in Gucheng area is mainly developed in dolostone. The lithologies are mainly grain dolomite, algae (reef) microbial dolomite, breccia dolomite and crystalline dolomite. The main reservoir spaces are intergranular dissolved pores, intragranular dissolved pores, intercrystalline dissolved pores and dissolved caves. The Upper Cambrian reservoirs in the study area can be divided into four types, including grain dolomite pore reservoir, crystalline dolomite pore reservoir, breccia dolomite fracture-pore reservoir and crystalline dolomite fracture-pore reservoir. Reef-shoal facies are the material basis of dolostone reservoir; dissolution and dolomitization in the penecontemporaneous period is the key to reservoir formation and burial-hydrothermal dissolution is an important complement to reservoir development.

Key words: Tarim Basin, Gucheng area, Upper Cambrian, Carbonate reservoir, Reservoir characteristics, Main controlling factors of reservoir

中图分类号: 

  • TE122.2+2

图1

古城地区构造区划图(a)及寒武系综合地层柱状图(b)"

图2

古城地区上寒武统白云岩储层岩石类型及储集空间特征(a)古城8井,6 733.51 m,残余砂屑结构粉晶云岩,水平分布的粒间溶孔、溶蚀孔洞方解石充填,铸体薄片,(—);(b)城探2井,6 729.74 m,残余包粒结构粉晶云岩,岩心;(c)城探2井,6 734.01 m,残余包粒结构粉细晶云岩,铸体薄片,(—);(d)城探1井,6 890.78 m,残余鲕粒结构粉晶云岩,铸模孔,铸体薄片,(—);(e)城探1井,6 888.28 m,硅化表附菌白云岩,普通薄片,(—);(f)城探1井,6 888.28 m,含核形石粉晶云岩,核形石被硅化,铸体薄片,(—);(g)城探1井,7 125.6 m,残余砂屑球粒凝块结构细晶云岩,铸体薄片,(—);(h)城探1井,6 876.9 m,角砾云岩,溶蚀孔洞发育,岩心;(i)城探1井,6 923.46 m,角砾云岩,角砾成分为残余颗粒结构粉晶云岩,溶蚀缝洞中2期白云石充填,铸体薄片,(—);(j)城探1井,6 875.43 m,角砾云岩,角砾成分为硅化表附菌粉晶云岩,见核形石,铸体薄片,(—);(k)古城8井,6 732.2 m,细中晶云岩,晶间孔发育,铸体薄片,(—);(l)古城15井,4-1/38,粗晶云岩,见鞍状白云石,晶间孔发育,连晶方解石充填,铸体薄片,(—);(m)城探1井,6 879.48 m,残余颗粒结构粉晶云岩,粒间溶孔,铸体薄片,(—);(n)城探2井,6 729.50 m,残余包粒结构粉晶云岩,粒内溶孔,铸体薄片,(—);(o)古城8井,6 735.05 m,中粗晶云岩,晶间孔,铸体薄片,(—);(p)古城8井,6 734.5 m,粗晶云岩,溶蚀孔洞、晶间溶孔,铸体薄片,(—);(q)古城8井,6 732.51 m,粗晶云岩,溶蚀孔洞,岩心;(r)古城15井,6 997.35 m,粗晶云岩,溶蚀缝、溶蚀孔洞,铸体薄片,(—);(s)古城15井,7 000.55 m,中粗晶云岩,构造缝、晶间孔,铸体薄片,(—);(t)古城8井,6 734.1 m,粗晶云岩,沿缝合线发育孔隙,铸体薄片,(—);(u)古城15井,7 001.75 m,粗晶云岩,白云石见环带结构,晶间方解石充填,铸体薄片,(—);(v)古城15井,6 997.35 m,中粗晶云岩,溶洞重晶石充填,铸体薄片,(—);(w)城探1井,6 888.05 m,粗晶云岩,去白云石化,铸体薄片,(—);(x)城探2井,6 733.05 m,残余包粒结构粉晶云岩,溶蚀孔硅质、方解石充填,铸体薄片,(—)"

图3

古城地区上寒武统孔洞、裂缝成像测井特征(a)城探1井,溶蚀孔洞发育,少量裂缝,上寒武统;(b)古城8井,溶蚀孔洞发育,上寒武统;(c)古城15井,溶蚀孔洞发育,裂缝较发育,裂缝周围发育溶蚀孔洞,上寒武统;(d)城探1井,裂缝发育,溶蚀孔洞较发育,上寒武统;(e)古城9井,裂缝发育,上寒武统;(f)古城15井,裂缝发育,溶蚀孔洞较发育,上寒武统"

表1

古城地区上寒武统碳酸盐岩储层类型与特征"

储层类型储集相带储层岩性储集空间储层物性代表井
颗粒云岩孔隙型储层礁坪— 礁脊残余砂屑结构粉晶云岩、残余包粒结构粉细晶云岩粒间、粒内溶孔,晶间(颗粒幻影)溶孔,基质孔发育测井孔隙度为1.2%~2.5%,平均为1.8%;实测孔隙度主要分布在0.7%~1.1%之间,平均为1%;渗透率为(0.01~10.1)×10-3 μm2,平均为0.1×10-3 μm2(样品数=10),为中低孔中低渗储层

城探2

城探1

角砾云岩裂缝—孔洞型储层礁前角砾云岩,角砾成分为藻(礁)微生物云岩岩溶崩塌角砾架空空间遭受热液溶蚀充填改造后的残余孔洞,非均质性强测井孔隙度主要在1.5%~4%之间,平均为3.6%;实测孔隙度主要在1.2%~5.1%之间,平均为2.4%,渗透率为(0.06~3.24)×10-3 μm2,平均为1.03×10-3 μm2(样品数=5),为中低孔中低渗储层城探1
结晶云岩孔隙型储层

局限台地

颗粒滩

中粗晶白云岩,无残余结构晶间孔、晶间溶孔、溶蚀孔洞,均质性较好测井孔隙度主要在0.8%~3.2%之间,平均为1.6%;渗透率为(0.01~10)×10-3 μm2,为中低孔中低渗储层古城8
结晶云岩裂缝—孔洞型储层

局限台地

颗粒滩

中粗晶白云岩,无残余结构沿裂缝发育溶蚀孔洞,呈蜂窝状分布,非均质性较强测井孔隙度主要在1.1%~5.5%之间,平均为2.5%,实测孔隙度主要在1.0%~6.6%之间,平均为2.9%;渗透率为(0.12~1.05)×10-3 μm2,平均为0.96×10-3 μm2(样品数=10),为中低孔中低渗储层古城15

图4

古城地区上寒武统白云岩储层成岩作用"

表2

古城地区上寒武统碳酸盐岩C—O—Sr同位素值"

样品号岩性δ13C/‰(PDB)δ18O/‰(PDB)87Sr/86Sr
CT1-1角砾云岩-0.30-9.900.709 585
CT1-2角砾云岩-0.30-9.300.709 629
CT1-3角砾云岩-0.50-10.100.709 497
CT1-4角砾云岩-1.30-8.50
CT1-5角砾云岩-0.40-8.80
CT1-6角砾云岩-0.30-10.00
CT1-7角砾云岩-0.50-9.50
CT1-8角砾云岩-0.30-9.40
CT1-9角砾云岩-0.40-9.70
CT1-10角砾云岩-0.50-9.20
CT1-11角砾云岩-1.05-10.380.709 488
CT1-12角砾云岩-0.62-8.920.709 699
CT1-13角砾云岩-1.45-8.130.709 390
CT1-14角砾云岩-0.61-10.570.709 850
CT1-15角砾云岩-0.67-9.320.709 660
CT1-16角砾云岩-0.47-10.190.709 473
CT1-17角砾云岩-0.55-8.110.710 795
CT2-1硅质岩0.09-10.47
CT2-2硅质岩-0.26-9.79
CT2-3硅质岩0.02-10.15
CT1-18充填粗晶白云石-0.70-9.20
CT1-19充填粗晶白云石-0.90-9.40
CT1-20充填粗晶白云石-0.80-9.60
CT1-21充填粗晶白云石-0.90-9.60
CT1-22充填粗晶白云石-1.00-10.40
CT1-23充填粗晶白云石-1.10-8.70
CT1-24充填方解石-1.80-11.60
CT1-25充填方解石-1.30-13.80
CT1-26充填方解石-1.50-12.00
CT1-27残余颗粒结构云岩0.04-8.57
CT1-28残余颗粒结构云岩0.92-8.87
CT1-29残余颗粒结构云岩1.13-8.69
CT1-30残余颗粒结构云岩0.43-7.28
CT2-4残余颗粒结构云岩-0.11-7.29
CT2-5残余颗粒结构云岩-0.09-7.27
CT2-6残余颗粒结构云岩0.30-7.00
CT2-7残余颗粒结构云岩0.20-6.80
GC8-1中粗晶云岩-0.62-9.12
GC8-2中粗晶云岩-0.12-9.64
GC8-3中粗晶云岩0.04-10.06
GC8-4粗晶云岩-0.56-10.41
GC8-5粗晶云岩-0.88-10.26
GC8-6粗晶云岩-0.69-9.18
GC8-7粗晶云岩1.35-8.06
GC8-8粗晶云岩-0.31-9.13
GC8-9粗晶云岩-0.61-8.89
GC8-10粗晶云岩-0.41-8.98
GC8-11粗晶云岩-0.37-10.09
GC15-1粗晶云岩,晶间方解石充填-0.90-9.800.709 105
GC15-2粗晶云岩,晶间方解石充填-1.10-11.100.709 640
GC15-3粗晶云岩,晶间方解石充填-1.20-11.000.709 203
GC15-4粗晶云岩,晶间方解石充填-1.10-9.700.708 776
GC15-5粗晶云岩,晶间方解石充填-1.10-10.700.708 925
GC15-6粗晶云岩,晶间泥质充填-0.80-7.500.708 773
GC15-7粗晶云岩,晶间泥质充填-1.20-8.000.708 829
GC15-8粗晶云岩,晶间泥质充填-0.90-7.000.708 918
GC15-9粗晶云岩,晶间泥质充填-0.40-5.600.709 008
GC15-10粗晶云岩,晶间泥质充填-0.40-6.400.708 937

表3

古城地区上寒武统碳酸盐岩REE分析结果"

样品号岩性

La

/10-6

Ce

/10-6

Pr

/10-6

Nd

/10-6

Sm

/10-6

Eu

/10-6

Gd

/10-6

Tb

/10-6

Dy

/10-6

Ho

/10-6

Er

/10-6

Tm

/10-6

Yb

/10-6

Lu

/10-6

ΣREE

/10-6

ΣLREE

/10-6

ΣHREE

/10-6

LREE/HREEδEuδCe
CT1-31粗晶云岩1.242.200.281.000.210.060.180.040.150.040.090.030.080.025.624.990.637.891.440.86
CT1-11角砾云岩0.601.100.140.560.110.020.090.020.080.020.050.010.040.012.852.530.328.031.130.88
CT1-32硅质云岩1.202.300.281.100.210.050.190.030.150.030.090.020.070.015.745.150.608.651.140.91
CT1-12角砾云岩0.761.400.180.720.150.030.100.020.100.020.060.010.050.013.603.230.378.751.010.88
CT1-33硅质云岩1.302.300.261.100.190.050.160.020.140.030.080.010.060.015.715.200.5110.141.280.90
CT1-34粗晶云岩0.470.890.120.490.080.020.080.010.070.010.040.010.030.012.322.060.258.131.220.88
CT1-35残余颗粒结构粉晶云岩1.192.440.261.120.210.040.180.020.130.030.090.010.070.015.805.260.549.810.871.01
CT1-28残余颗粒结构粉晶云岩1.022.020.220.920.210.040.160.020.130.020.080.010.070.014.924.430.508.900.980.98
CT1-36残余颗粒结构粉晶云岩1.733.800.401.670.320.060.280.040.240.050.130.020.120.028.877.970.908.900.931.05
CT1-29残余颗粒结构粉晶云岩1.032.280.241.050.220.040.160.030.150.030.090.020.070.015.414.850.568.730.891.06
CT1-30残余颗粒结构粉晶云岩1.532.810.351.390.290.050.260.040.210.040.120.020.100.017.216.410.798.070.800.89
GC8-12中—粗晶云岩0.861.770.220.860.250.100.020.120.020.060.010.060.014.354.040.3013.442.370.94
GC8-13中—粗晶云岩0.460.830.090.350.130.060.030.080.010.070.000.040.012.151.920.248.111.690.93
GC8-2中—粗晶云岩5.1410.631.314.951.080.560.190.910.170.480.080.390.0625.9423.662.2810.362.340.94
GC8-3中粗晶云岩0.731.180.150.570.120.030.020.110.020.070.010.060.013.092.780.319.091.090.81
GC8-14粗晶云岩1.502.750.351.190.420.180.070.240.040.150.020.110.027.036.390.649.962.020.88
GC8-4粗晶云岩0.651.560.130.400.090.030.010.070.010.040.010.030.013.042.860.1716.461.401.22
GC8-15粗晶云岩2.753.990.431.470.260.090.040.180.030.100.020.090.019.468.990.4719.141.720.83
GC8-5粗晶云岩0.150.200.020.350.120.070.020.040.010.020.000.010.001.000.900.109.123.090.79
GC8-6粗晶云岩0.952.230.180.540.120.040.020.090.020.040.010.040.014.274.050.2218.681.491.24
GC8-7粗晶云岩10.0021.192.479.061.800.360.301.460.270.790.120.690.1048.6144.873.7412.000.920.98
GC8-8粗晶云岩0.651.120.120.470.090.020.010.070.010.040.010.040.012.652.480.1813.981.330.91
GC8-9粗晶云岩1.594.130.320.910.220.050.030.170.030.100.020.100.027.667.210.4615.841.011.33
GC8-10粗晶云岩4.9712.691.083.250.770.290.160.920.200.610.110.650.1025.7823.032.748.401.551.26
GC8-11粗晶云岩0.530.980.120.490.220.120.010.080.010.040.010.040.012.642.450.1912.773.660.91
GC15-1粗晶云岩,晶间方解石充填0.982.160.220.840.170.030.160.020.130.030.080.010.080.014.934.410.528.450.931.06
GC15-2粗晶云岩,晶间方解石充填1.833.740.441.670.320.080.300.040.240.050.130.020.100.028.968.070.899.061.180.96
GC15-3粗晶云岩,晶间方解石充填3.677.580.812.980.540.120.480.060.350.060.180.020.160.0217.0315.691.3411.701.061.01
GC15-4粗晶云岩,晶间方解石充填1.122.130.220.830.150.030.130.020.120.020.070.010.070.014.954.490.469.801.120.97
GC15-5粗晶云岩,晶间方解石充填2.264.520.522.000.380.080.340.050.290.060.180.030.180.0310.909.751.158.471.000.96
GC15-6粗晶云岩,晶间泥质充填1.603.180.341.310.260.050.220.030.180.040.110.020.110.027.476.740.739.291.030.98
GC15-7粗晶云岩,晶间泥质充填2.384.640.521.990.380.070.310.040.240.050.140.020.140.0210.949.970.9610.340.930.96
GC15-8粗晶云岩,晶间泥质充填1.192.200.240.910.170.030.170.020.140.030.080.010.080.015.314.760.568.570.890.94
GC15-9粗晶云岩,晶间泥质充填1.142.220.250.930.180.030.150.020.120.030.070.010.070.015.244.750.499.760.780.95
GC15-10粗晶云岩,晶间泥质充填1.322.530.281.060.200.040.180.020.140.030.080.010.080.015.985.430.559.880.940.95

表4

古城地区上寒武统碳酸盐岩主微量元素分析数据"

样品编号岩性Sr/10-6Mn/10-6Na/10-6Fe/10-6
CT1-14角砾云岩49.80497.30300.005 500.00
CT1-16角砾云岩40.00319.70200.002 300.00
CT1-11角砾云岩41.80370.00600.003 400.00
CT2-8硅质岩23.00735.10300.009 600.00
CT2-9硅质岩12.501 537.80400.0020 600.00
CT2-10硅质岩11.302 186.90400.0029 200.00
CT2-11硅质岩17.901 281.90400.0015 600.00
CT2-12残余颗粒结构云岩152.0060.001 780.00950.00
CT2-13残余颗粒结构云岩164.0070.001 880.001 270.00
CT2-14残余颗粒结构云岩148.0060.002 090.007 310.00
CT2-15残余颗粒结构云岩148.0080.001 980.001 850.00
CT2-16残余颗粒结构云岩82.0040.001 880.001 650.00
GC8-16砂屑灰岩238.6130.02
GC8-12中粗晶云岩80.88103.16
GC8-13中粗晶云岩89.1740.60
GC8-2中粗晶云岩126.05138.54
GC8-3中粗晶云岩86.9066.48
GC8-8粗晶云岩77.50114.78
GC8-7粗晶云岩152.1966.36
GC8-6粗晶云岩91.50126.97
GC8-14粗晶云岩43.7884.96
GC8-4粗晶云岩81.18115.38
GC8-15粗晶云岩209.24108.32
GC8-5粗晶云岩71.0742.12
GC8-9粗晶云岩109.0149.73
GC8-10粗晶云岩166.28169.81
GC8-11粗晶云岩73.64175.28
GC15-1粗晶云岩,晶间方解石充填95.0452.89
GC15-2粗晶云岩,晶间方解石充填152.7655.57
GC15-3粗晶云岩,晶间方解石充填140.1350.39
GC15-4粗晶云岩,晶间方解石充填87.3872.73
GC15-5粗晶云岩,晶间方解石充填107.4656.49
GC15-6粗晶云岩,晶间泥质充填214.1861.46
GC15-7粗晶云岩,晶间泥质充填190.7168.92
GC15-8粗晶云岩,晶间泥质充填212.9245.05
GC15-9粗晶云岩,晶间泥质充填224.7542.61
GC15-10粗晶云岩,晶间泥质充填269.7539.42

图5

城探1井、城探2井上寒武统白云岩储层地球化学特征(a)城探1井、城探2井礁滩体白云岩C、O同位素特征;(b)城探1井残余颗粒结构白云岩稀土元素配分图;(c)城探1井角砾云岩、粗晶云岩、硅质云岩稀土元素配分图;(d)城探1井、城探2井礁滩体白云岩Fe、Mn交会图;(e)城探1井、城探2井礁滩体白云岩Sr、Na交会图"

图6

古城8井上寒武统白云岩储层地球化学特征(a)古城8井上寒武统白云岩C、O同位素特征;(b)古城8井上寒武统白云岩稀土元素配分图;(c)古城8井上寒武统白云岩Sr含量直方图;(d)古城8井上寒武统白云岩Mn含量直方图"

图7

古城15井上寒武统白云岩储层地球化学特征(a)古城15井寒武系白云岩C、O同位素特征;(b)古城15井粗晶云岩(晶间孔泥质充填)稀土元素配分图;(c)古城15井粗晶云岩(晶间孔方解石充填)稀土元素配分图;(d)古城15井寒武系白云岩Sr、Mn交会图"

1 贺锋,林畅松,刘景彦,等.古城地区碳酸盐岩沉积特征及其主控因素[J].特种油气藏,2016,23(5):17-21.
HE F,LIN C S,LIU J Y,et al. Carbonate rock sedimentation and its main-controlling factors in Gucheng[J].Special Oil and Gas Reservoirs,2016,23(5):17-21.
2 王坤,刘伟,黄擎宇,等.塔里木盆地塔中—古城地区寒武系沉积体系发育特征与演化[J].地质科技情报,2015,34(6):116-124.
WANG K,LIU W,HUANG Q Y,et al. Development characteristics and evolution of the Cambrian sedimentary system in Tazhong and Gucheng area,Tarim Basin[J].Geological Science and Technology Information,2015,34(6):116-124.
3 刘洋.塔东地区寒武系储层沉积相特征研究[J].长江大学学报:自然科学版,2014,11(31):17-20.
LIU Y. The characteristics of sedimentary facies in the Cambrian reservoirs of Tadong area[J].Journal of Yangtze University:Natural Science Edition,2014,11(31):17-20.
4 沈安江,付小东,张友,等.塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J].天然气地球科学,2018,29(1):1-16.
SHEN A J,FU X D,ZHANG Y,et al. A study of source rocks & carbonate reservoirs and its implication on exploration plays from Sinian to Lower Paleozoic in the east of Tarim Basin, northwest China[J].Natural Gas Geoscience,2018,29(1):1-16.
5 刘伟,沈安江,柳广弟,等.塔里木盆地塔东地区下古生界碳酸盐岩储层特征与勘探领域[J].海相油气地质,2016,21(2):1-12.
LIU W,SHEN A J,LIU G D,et al. Characteristics and exploration domains of Lower Paleozoic carbonate reservoirs in eastern Tarim Basin[J].Marine Origin Petroleum Geology,2016,21(2):1-12.
6 卢曦.塔里木盆地古城地区下古生界碳酸盐岩成岩作用及储层孔隙特征[J].大庆石油地质与开发,2016,35(4):15-21.
LU X. Lower Paleozoic carbonate reservoir diageneses and pore characteristics in Gucheng area of Tarim Basin[J]. Petroleum Geology and Oilfield Development in Daqing,2016,35(4):15-21.
7 郑兴平,张友,陈希光,等.塔里木盆地东部碳酸盐岩储层特征与天然气勘探方向[J].天然气地球科学,2016,27(5):765-771.
ZHENG X P,ZHANG Y,CHEN X G,et al. Natural gas exploration domains and analysis of carbonate reservoir characteristics in the east of Tarim Basin,NW China[J]. Natural Gas Geoscience,2016,27(5):765-771.
8 符浩,李国蓉,王冬娅,等.塔东地区寒武系碳酸盐岩成岩作用及储层成因机理[J].科学技术与工程,2016,16(7):18-26.
FU H,LI G R,WANG D Y,et al. The carbonate diagenesis and formation mechanism of the reservoir of Cambrian in east Tarim Basin[J]. Science Technology and Engineering,2016,16(7):18-26.
9 刘永福,殷军,孙雄伟,等.塔里木盆地东部寒武系沉积特征及优质白云岩储层成因[J].天然气地球科学,2008,19(1):126-132.
LIU Y F,YIN J,SUN X W,et al. Cambrian sedimentary characteristics and origin of high-quality dolomite reservoirs in eastern Tarim Basin[J]. Natural Gas Geoscience,2008,19(1):126-132.
10 马锋,许怀先,顾家裕,等.塔东寒武系白云岩成因及储集层演化特征[J].石油勘探与开发,2009,36(2):144-155.
MA F,XU H X,GU J Y,et al. Cambrian dolomite origin and reservoir evolution in east Tarim Basin[J]. Petroleum Exploration and Development, 2009,36(2):144-155.
11 金振奎,杨有星,余宽宏,等.塔里木盆地东部地区寒武系白云岩成因类型[J].古地理学报,2012,14(6):747-756.
JIN Z K,YANG Y X,YU K H,et al. Genetic types of dolostones in the Cambrian,eastern Tarim Basin[J]. Journal of Palaeogeography,2012,14(6):747-756.
12 胡九珍,刘树根,冉启贵,等.塔东地区寒武系—下奥陶统成岩作用特征及对优质储层形成的影响[J].成都理工大学学报:自然科学版,2009,36(2):138-146.
HU J Z,LIU S G,RAN Q G,et al. Diagenetic characteristics and their effect on the formation of good-quality reservoirs of the Cambrian system to Lower Ordovician in the east of Tarim Basin,Xinjiang,China[J]. Journal of Chengdu University of Technology:Science & Technology Edition,2009,36(2):138-146.
13 符浩,李国蓉,陈兰朴,等.塔东地区寒武系白云岩地球化学特征与成因模式[J].东北石油大学学报,2016,40(2):47-57.
FU H, LI G R,CHEN L P,et al. Geological characteristics and genetic model of Cambrian dolomite in East Tarim Basin[J].Journal of Northeast Petroleum University,2016,40(2):47-57.
14 王坤,胡素云,胡再元,等.塔里木盆地古城地区寒武系热液作用及其对储层发育的影响[J].石油学报,2016,37(4):439-453.
WANG K,HU S Y,HU Z Y, et al. Cambrian hydrothermal action in Gucheng area, Tarim Basin and its influences on reservoir development[J]. Acta Petrolei Sinica,2016,37(4): 439-453.
15 王坤,胡素云,刘伟,等.塔里木盆地古城地区上寒武统热液改造型储层形成机制与分布预测[J].天然气地球科学,2017,28(6):939-951.
WANG K,HU S Y,LIU W,et al. The formation mechanism and distribution prediction of the hydrothermal reformed reservoir of the Upper Cambrian in Gucheng area,Tarim Basin,China[J]. Natural Gas Geoscience,2017,28(6):939-951.
16 闫博.塔东热液地质作用机制及对储层的改造意义[J].西南石油大学学报:自然科学版, 2018,40(4):17-28.
YAN B. Mechanism of geological activities of eastern Tarim basin hydrothermal fluids and its significance in reservoir transformation[J]. Journal of Southwest Petroleum University :Science & Technology Edition,2018,40(4):17-28.
17 王招明,杨海军,齐英敏,等.塔里木盆地古城地区奥陶系天然气勘探重大突破及其启示[J].天然气工业,2014,34(1):1-9.
WANG Z M,YANG H J,QI Y M,et al. Ordovician gas exploration breakthrough in the Gucheng lower uplift of the Tarim Basin and its enlightenment[J]. Natural Gas Industry,2014,34(1):1-9.
18 倪新峰,沈安江,陈永权,等.塔里木盆地寒武系碳酸盐岩台地类型、台缘分段特征及勘探启示[J].天然气地球科学,2015,26(7):1245-1255.
NI X F,SHEN A J,CHEN Y Q,et al. Cambrian carbonate platform tupes, platform margin segmentation characteristics and exploration enlightenment in Tarim Basin[J]. Natural Gas Geoscience,2015,26(7):1245-1255.
19 赵宗举,罗家洪,张运波,等.塔里木盆地寒武纪层序岩相古地理[J].石油学报,2011,32(6):937-948.
ZHAO Z J,LUO J H,ZHANG Y B,et al. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin[J].Acta Petrolei Sinica,2011,32(6):937-948.
20 黄擎宇,胡素云,潘文庆,等.塔里木盆地巴楚地区寒武系储层特征及主控因素[J].天然气地球科学,2016,27(6):982-993.
HUANG Q Y,HU S Y,PAN W Q,et al. Characteristics and controlling factors of Cambrian carbonate reservoirs in Bachu area,Tarim Basin,NW China[J]. Natural Gas Geoscience,2016,27(6):982-993.
21 王珊,曹颖辉,杜德道,等.塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J].天然气地球科学,2018,29(6):784-795.
WANG S,CAO Y H,DU D D,et al. The facies and characteristics of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area,Tarim Basin,NW China[J].Natural Gas Geoscience,2018,29(6):784-795.
22 汤朝阳,王敏,姚华舟,等.白云石化作用及白云岩问题研究述评[J] .东华理工学院学报:自然科学版,2006,29(3):205-210.
TANG C Y,WANG M,YAO H Z,et al. Current topics about dolomitization and the problem of dolostones[J]. Journal of East China Institute of Technology :Natural Science Edition,2006,29(3):205-210.
23 VEIZER J,ALA D,AZMY K,et al. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J].Chemical Geology,1999,161(1):59-88.
24 黄思静,碳酸盐岩的成岩作用[M].北京:地质出版社,2010:121-122.
HUANG S J,Carbonate Diagensis[M].Beijing:Geological Pu-blishing House,2010:121-122.
[1] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[2] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
[3] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[4] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[5] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[6] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[7] 王珂, 张荣虎, 余朝丰, 杨钊, 唐雁刚, 魏红兴. 塔里木盆地库车坳陷北部构造带侏罗系阿合组储层特征及控制因素[J]. 天然气地球科学, 2020, 31(5): 623-635.
[8] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[9] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[10] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[11] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[12] 王珊, 曹颖辉, 张亚金, 杜德道, 徐兆辉, 杨敏, 赵一民. 塔里木盆地古城地区奥陶系鹰三段硅质岩地球化学特征及成因[J]. 天然气地球科学, 2020, 31(5): 710-720.
[13] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[14] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[15] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 阎存凤;袁剑英;赵应成;魏东涛;李在光. 蒙、甘、青地区侏罗纪孢粉组合序列及古气候[J]. 天然气地球科学, 2006, 17(5): 634 -639 .
[3] 毛治超, 彭德堂, 旷红伟. 塔里木盆地大宛齐油田康村组沉积特征[J]. 天然气地球科学, 2004, 15(2): 196 -200 .
[4] 何家雄;陈刚;. 莺歌海盆地CO_2分布、富集特征及初步预[J]. 天然气地球科学, 1997, 8(3): 9 -17 .
[5] 于俊峰;夏斌;许静;. 对渤海湾盆地张扭、压扭性构造的一点认识[J]. 天然气地球科学, 2006, 17(4): 473 -476 .
[6] 张忠民;李春生;龙胜祥;许化政;. 华北地区东部上古生界天然气勘探前景[J]. 天然气地球科学, 2006, 17(3): 330 -334 .
[7] 刘化清,李相博,白云来,李天顺. 甘肃省油气勘探开发现状及资源潜力[J]. 天然气地球科学, 2006, 17(5): 612 -615 .
[8] Т А Крылова等;В А Кривошея,史斗(译). 深层气相系统构成:据第聂伯―顿涅茨盆地同位素―地球化学资料[J]. 天然气地球科学, 2002, 13(5-6): 1 -7 .
[9] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[10] 王连生;刘立;郭占谦;马志红;迟东辉;. 大庆油田伴生气中硫化氢成因的探讨[J]. 天然气地球科学, 2006, 17(1): 51 -54 .