天然气地球科学 ›› 2020, Vol. 31 ›› Issue (8): 1041–1051.doi: 10.11764/j.issn.1672-1926.2020.02.011

• 非常规天然气 •    下一篇

川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考

魏祥峰(),刘珠江,王强,魏富彬,袁桃   

  1. 中国石化勘探分公司,四川 成都 610041
  • 收稿日期:2019-10-30 修回日期:2020-02-23 出版日期:2020-08-10 发布日期:2020-07-29
  • 作者简介:魏祥峰(1984-), 男, 山东济宁人,研究员,博士,主要从事沉积学、非常规油气地质研究. E-mail: weixiangfeng1984@163.com.
  • 基金资助:
    国家科技重大专项项目“重点地区页岩气富集规律与勘探评价方法”(2017ZX05036-001)

Analysis and thinking of the difference of Wufeng-Longmaxi shale gas enrichment conditions between Dingshan and Jiaoshiba areas in southeastern Sichuan Basin

Xiang-feng WEI(),Zhu-jiang LIU,Qiang WANG,Fu-bin WEI,Tao YUAN   

  1. SINOPEC Exploration Company, Chengdu 610041, China
  • Received:2019-10-30 Revised:2020-02-23 Online:2020-08-10 Published:2020-07-29

摘要:

四川盆地东南缘(川东南)丁山构造五峰组—龙马溪组页岩气勘探已取得突破,但相比涪陵页岩气田焦石坝构造,其富集高产因素又体现出其自身的特殊性。以四川盆地丁山和焦石坝地区五峰组—龙马溪组为研究对象,综合利用钻井、测井、地震及分析化验等资料,明确了两地区主要富集条件的差异性,建立了2种目标类型页岩气成藏富集模式,研究发现:(1)丁山优质页岩层段TOC≥3%的页岩仅发育于五峰组—龙马溪组一段①—③层,厚15~19 m,明显比焦石坝薄(焦页1井近38 m);(2)丁山构造保存条件明显受齐岳山断裂控制,平面上远离齐岳山断裂、埋深更大的斜坡带和深埋平缓带页岩气层压力系数、孔隙度和含气量明显增大,而焦石坝构造保存条件明显受周边控制构造的断裂影响,压力系数、孔隙度和含气量仅在断裂附近出现明显的降低;(3)丁山优质页岩层段在自身脆性方面与焦石坝无明显差异,但由于埋深变化较大,埋深处于3 500~4 500 m富集区的优质页岩层段的地应力、岩石破裂压力明显增大。研究认为沉积环境造成了两地区页岩原生品质具有一定的差异,其中丁山属于“较快速海退型”陆棚相沉积,而焦石坝属于“缓慢海退型”陆棚相沉积;而控制构造的断裂是造成页岩气逸散方式和程度不同的主要因素。根据以上特点,建立了丁山 “齐岳山断裂带主体控制、浅埋藏区垂向、横向联合逸散、深埋藏区富集”的盆缘“鼻状断背斜富集型”、焦石坝盆内“控边断裂垂向逸散为主、横向逸散微弱、主体稳定区富集”的“断背斜富集型”成藏富集模式。

关键词: 页岩气, 富集条件, 差异性, 成藏模式, 五峰组-龙马溪组, 丁山与焦石坝构造, 川东南地区

Abstract:

A breakthrough in Wufeng-Longmaxi shale gas exploration has been made in Dingshan tectonic area in the southeastern margin of Sichuan Basin, however, compared with the Jiaoshiba structure in Fuling shale gas field, its enrichment and high yield factors reflect its own particularity. Therefore, this paper takes Dingshan and Jiaoshiba Wufeng-Longmaxi formations in Sichuan Basin as the research object. Through the comprehensive use of drilling, logging, seismic and laboratory data, the differences of the main enrichment conditions in the two regions are identified, and two types of shale gas accumulation and enrichment models are established. The results show that: (1) For the Dingshan high-quality shale, the layer with TOC≥3% is only developed in the ①-③ layers of the first segment of Wufeng-Longmaxi formations, with a thickness of 15-19 m, which is significantly thinner than that of Jiaoshiba area (nearly 38 m of Well JY1); (2) The preservation conditions of the Dingshan structure are obviously controlled by the Qiyueshan fault, and the pressure coefficient, porosity and gas content of the shale gas layer increase significantly in the area far away from the Qiyueshan fault, deeper buried slope zone and in the deep buried gentle zone. However, the preservation condition of Jiaoshiba structure is obviously affected by the fault of the surrounding control structure, and the pressure coefficient, porosity and gas content are only significantly reduced near the fault; (3) There is no significant difference in brittleness between the high quality shale segment in Dingshan and that in Jiaoshiba. However, due to the large change of burial depth in Dingshan area, the in-situ stress and rock fracture pressure of the high quality shale segment with burial depth of 3 500-4 500 m increase obviously. The study shows that the sedimentary environment has caused some differences in the primary shale quality between the two regions. Dingshan area is “relatively rapid regressive” continental shelf facies, and Jiaoshiba area belongs to “slow regression type” continental shelf facies. The fault, which controls the structure characteristics, is the main factor that causes the different way and degree of shale gas escape. According to the above characteristics, the “nosed fault-anticline enrichment” accumulation model in basin margin of “Qiyueshan fault zone main body control, shallow burial zone vertical and horizontal joint escape, enrichment in deep buried areas” is established in the Dingshan area, and the accumulation model of “fault-anticline enrichment” in Jiaoshiba area of internal Sichuan basin is characterized by “vertical dispersion of the control edge fault is dominant, the transverse dispersion is weak and the main stable region is enriched”.

Key words: Shale gas, Preservation condition, Difference, Reservoiring pattern, Wufeng-Longmaxi formations, Tectonic of Dingshan and Jiaoshiba, Southeast Sichuan areaFoundation item: The China National Science &, Technology Major Project(Grant No. 2017ZX05036-001).

中图分类号: 

  • TE132.2

图1

川东南丁山、焦石坝构造位置及五峰组底界构造特征(a) 丁山、焦石坝构造位置;(b) 丁山构造五峰组底界构造特征;(c) 焦石坝构造五峰组底界构造特征"

图2

DY4井五峰组—龙马溪组页岩气层综合评价图"

图3

JY1井五峰组—龙马溪组页岩气层综合评价图"

表1

丁山、焦石坝地区五峰组—龙马溪组优质页岩气层段(TOC≥2%)主要参数对比"

构造位置井号深度/m厚度/mTOC/%孔隙度/%总含气量/(m3/t)黏土矿物/%
丁山浅埋平缓带DY12 024.0~2 054.030.03.183.032.1239.9
斜坡带DY32 242.0~2 272.030.03.523.214.9836.9
DY43 702.0~3 730.928.93.335.906.6440.8
DY53 786.0~3 787.731.73.034.736.3838.3
深埋平缓带DY24 332.0~4 367.535.53.26(测井)5.26(测井)5.73(测井)36.8(测井)
焦石坝主体JY12 377.0~2 415.038.03.564.655.8534.3
JY42 557.0~2 596.039.03.676.195.9330.7

图4

丁山、焦石坝地区主要探井优质页岩层段①—③层(a)、④—⑤层(b)厚度及TOC直方图"

图5

川东南丁山、焦石坝地区构造过典型钻井剖面及压力系数分布特征"

表2

丁山、焦石坝地区不同埋深探井五峰组—龙马溪组页岩可压性主要参数对比"

井号井深/m埋深范围/m矿物成分岩石力学参数三主应力大小优质页岩层段岩石破裂压力/MPa

黏土矿物

/%

杨氏模量

/GPa

泊松比上覆岩层压力/MPa水平最大主应力/MPa水平最小主应力/MPa
DY12 045.12 000~2 50030.0626.790.20048.7348.5943.6052~81
DY32 266.239.3029.460.21254.7254.4846.265~85
JY12 391.640.8932.390.21050.1755.2448.6865~80
2 393.838.5431.220.21250.1853.3849.92
2 395.237.3333.430.19853.6855.5248.63
DY43 722.43 500~4 50037.2141.400.22191.70110.0087.8097~106
DY24 353.540.7532.320.201145.00121.60109.0084~95

图6

DY4井、JY2井五峰组—龙马溪组页岩气层段古氧相柱状图"

图7

丁山和焦石坝地区五峰组—龙马溪组早期沉积演化"

图8

丁山鼻状断背斜页岩气保存与富集模式"

图9

焦石坝箱状断背斜页岩气保存与富集模式"

1 郭旭升.南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探及实践认识[J].地质学报, 2014, 88(7):1209-1218.
GUO X S. Rules of two-factor enrichment for marine shale gas in southern China: Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J].Acta Geologica Sinica,2014,88(7): 1209-1218.
2 郭旭升, 胡东风, 李宇平, 等. 涪陵页岩气田富集高产主控地质因素[J]. 石油勘探与开发, 2017, 44(4): 481-491.
GUO X S, HU D F, LI Y P, et al. Geological factors controlling shale gas enrichment and high production in Fuling shale gas field[J]. Petroleum Exploration and Development, 2017, 44(4): 481-491.
3 郭彤楼, 张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J].石油勘探与开发, 2014, 41(1): 28-36.
GUO T L, ZHANG H R. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
4 郭彤楼.中国式页岩气关键地质问题与成藏富集主控因素[J].石油勘探与开发, 2016,43(3): 317-326.
GUO T L. Key geological issues and main controls on accumulation and enrichment of Chinese shale gas[J]. Petroleum Exploration and Development, 2016,43(3): 317-326.
5 胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业, 2014, 34(6):17-23.
HU D F, ZHANG H R, NI K, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014,34 (6):17-23.
6 何治亮, 胡宗全, 聂海宽, 等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J].天然气地球科学, 2017, 28(5):724-733.
HE Z L, HU Z Q, NIE H K, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction transformation evolution sequence[J].Natural Gas Geoscience, 2017, 28(5): 724-733.
7 金之钧, 胡宗全, 高波, 等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘, 2016, 23(1) :1-10.
JIN Z J,HU Z Q,GAO B,et al.Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi formations,southeastern Sichuan Basin[J].Earth Science Frontiers,2016,23 (1): 1-10.
8 孙健, 罗兵. 四川盆地涪陵页岩气构造变形特征及对含气性的影响[J]. 石油与天然气地质, 2016, 37(6) :809-818.
SUN J, LUO B. Structural deformation and its influences on gas storage in Fuling shale gas play, the Sichuan Basin[J]. Oil and Gas Geology, 2016, 37(6): 809-818.
9 王志刚.涪陵页岩气勘探开发重大突破与启示[J].石油与天然气地质, 2015, 36(1) :1-6.
WANG Z G. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J]. Oil & Gas Geology, 2015,36(1):1-6.
10 刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J].地学前缘,2016,23(1):11-28.
LIU S G, DENG B, ZHONG Y, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28.
11 刘若冰, 李宇平, 王强, 等. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J].沉积学报,2015,33(4):817-827.
LIU R B, LI Y P, WANG Q, et al. Analyses on influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in south-eastern part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827.
12 腾格尔, 申宝剑, 俞凌杰, 等. 四川盆地五峰组—龙马溪组页岩气形成与聚集机理[J].石油勘探与开发,2017,44(1):69-78.
TENGER, SHEN B J, YU L J, et al. Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng- Longmaxi Formation, Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2017,44(1) : 69-78.
13 魏志红. 四川盆地及其周缘五峰组—龙马溪组页岩气的晚期逸散[J].石油与天然气地质, 2015, 36 (4) : 659-665.
WEI Z H. Late fugitive emission of shale gas from Wufeng-Longmaxi Formation in Sichuan Basin and its peripher [J]. Oil & Gas Geology, 2015, 36(4): 659-665.
14 魏祥峰, 李宇平, 魏志红, 等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J].石油实验地质,2017,39(2):147-153.
WEI X F,LI Y P,WEI Z H,et al.Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment,2017,39(2) : 147-153.
15 魏祥峰, 赵正宝, 王庆波, 等. 川东南綦江丁山地区上奥陶统五峰组—下志留统龙马溪组页岩气地质条件综合评价[J]. 地质论评,2017,63(1):153-164.
WEI X F, ZHAO Z B, WANG Q B,et al. Comprehensive evaluation on geological conditions of the shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Dingshan area, Qijiang, Southeastern Sichuan[J]. Geological Review, 2017, 63(1): 153-164.
16 张金川, 聂海宽, 徐波, 等. 四川盆地页岩气成藏地质条件[J].天然气工业,2008,28(2):151-156.
ZHANG J C, NIE H K, XU B, et al. Geological condition of shale gas accumulation in Sichuan Basin[J]. Natural Gas Industry, 2008, 28(2): 151-156.
17 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报, 2009, 30(4):484-491.
NIE H K,TANG X,BIAN R K. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica,2009,30(4):484-491.
18 蒋廷学, 卞晓冰, 王海涛, 等. 深层页岩气水平井体积压裂技术[J].天然气工业,2017, 37(1):90-96.
JIANG T X, BIAN X B, WANG H T, et al. Volume fracturing of deep shale gas horizontal wells[J]. Natural Gas Industry, 2017, 37(1): 90-96.
19 曾义金, 陈作, 卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J].天然气工业,2016, 36(1):61-67.
ZENG Y J, CHEN Z, BIAN X B. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J].Natural Gas Industry, 2016, 36(1): 61-67.
20 陈旭, 戎嘉余, 周志毅, 等.上扬子区奥陶—志留纪之交的黔中隆起和宜昌上升[J].科学通报, 2001,46(12):1052-1056.
CHEN X, RONG J Y,ZHOU Z Y, et al.The central Guizhou and Yichang uplifts,Upper Yangtze region,between Ordovician and Silurian[J].Chinese Science Bulletion, 2001,46(12):1052-1056.
21 张水昌,张宝民,边立曾,等.中国海相烃源岩发育控制因素[J].地学前缘,2005,12(3):39-48.
ZHANG S C, ZHANG B M, BIAN L Z, et al.Development constraints of marine source rocks in China[J].Earth Science Frontiers,2005,12(3):39-48.
22 李双建,肖开华,沃玉进,等.南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J].沉积学报,2008,26(5):872-880.
LI S J,XIAO K H,WO Y J, et al.Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.
23 林治家, 陈多福, 刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报, 2008, 27(1): 72-80.
LIN Z J, CHEN D F, LIU Q. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(1): 72-80.
24 陈旭, 樊隽轩, 王文卉, 等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学,2017, 47(6):720-732.
CHEN X, FAN J X, WANG W H, et al.Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China[J]. Scientia Sinica Terrae,2017, 47(6):720-732.
[1] 罗胜元,陈孝红,岳勇,李培军,蔡全升,杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[2] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[3] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[4] 李斌, 梅文华, 李琪琪, 卓勤功, 鲁雪松, 郭强. 四川盆地西北部前陆盆地构造演化对古生界海相油气成藏的影响[J]. 天然气地球科学, 2020, 31(7): 993-1003.
[5] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[6] 易士威, 李明鹏, 徐淑娟, 崔宝文, 蒙启安, 武雪琼, 程宏岗. 松辽盆地双城断陷结构特征及控藏模式[J]. 天然气地球科学, 2020, 31(6): 761-772.
[7] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[8] 彭泽阳, 龙胜祥, 张永贵, 卢婷, 王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[9] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[10] 丁麟, 程峰, 于荣泽, 邵昭媛, 刘佳琪, 刘官贺. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020, 31(4): 559-566.
[11] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[12] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[13] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[14] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[15] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张林, 魏国齐, 李熙喆, 汪泽成, 肖贤明. 四川盆地震旦系—下古生界高过成熟烃源岩演化史分析[J]. 天然气地球科学, 2007, 18(5): 726 -731 .
[2] 郭彤楼,刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学, 2013, 24(4): 643 -651 .
[3] 周庆华,宋宁,王成章,李博,王先德,彭传圣,任玉秀. 湖南花垣页岩气区块地质评价与勘探展望[J]. 天然气地球科学, 2014, 25(1): 130 -140 .
[4] 冷济高,韩建辉,李飞,李鹏,孟兰. 湘西北地区花垣页岩气区块勘探潜力[J]. 天然气地球科学, 2014, 25(4): 624 -631 .
[5] 林拓,张金川,包书景,杨升宇,李博,何伟. 湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征——以常页1井为例[J]. 天然气地球科学, 2015, 26(2): 312 -319 .
[6] 孟强,王晓锋,王香增,张丽霞,姜呈馥,李孝甫,史宝光. 页岩气解析过程中烷烃碳同位素组成变化及其地质意义——以鄂尔多斯盆地伊陕斜坡东南部长7页岩为例[J]. 天然气地球科学, 2015, 26(2): 333 -340 .
[7] 陈尚斌,秦勇,王阳,张寒,左兆喜. 中上扬子区海相页岩气储层孔隙结构非均质性特征[J]. 天然气地球科学, 2015, 26(8): 1455 -1463 .
[8] 程凌云,雍自权,王天依,兰宁,于俊友,邓宾. 强改造区牛蹄塘组页岩气保存条件指数评价[J]. 天然气地球科学, 2015, 26(12): 2408 -2416 .
[9] 梁峰,朱炎铭,漆麟,王红岩,拜文华,马超,张琴,会英,武瑾. 湖南常德地区牛蹄塘组富有机质页岩成藏条件及含气性控制因素[J]. 天然气地球科学, 2016, 27(1): 180 -188 .
[10] 张冲,张超谟,张占松,秦瑞宝,余杰. 致密气储层岩心束缚水饱和度实验对比[J]. 天然气地球科学, 2016, 27(2): 352 -358 .