天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 1016–1027.doi: 10.11764/j.issn.1672-1926.2020.02.010

• 非常规天然气 • 上一篇    下一篇

四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比

于萍1(),张瑜2,闫建萍1,邵德勇2,张六六1,罗欢1,乔博1,张同伟2()   

  1. 1.兰州大学地质科学与矿产资源学院,甘肃省西部矿产资源重点实验室,甘肃 兰州 730000
    2.西北大学地质学系, 大陆动力学国家重点实验室,陕西 西安 710069
  • 收稿日期:2020-01-17 修回日期:2020-02-24 出版日期:2020-07-10 发布日期:2020-07-02
  • 通讯作者: 张同伟 E-mail:yup14@lzu.edu.cn;zhangtw@lzb.edu.cn
  • 作者简介:于萍(1989-),女,蒙古族,内蒙古呼和浩特人,硕士,主要从事油气与有机地球化学研究.E-mail: yup14@lzu.edu.cn.
  • 基金资助:
    国家自然科学基金重点项目“中国南方寒武系页岩有机质、流体和孔隙演化耦合机制研究”(41730421)

The characteristics of water uptake and the comparative studies on three methods of determining porosity in organic-rich shale of Longmaxi Formation in Sichuan Basin

Ping YU1(),Yu ZHANG2,Jian-ping YAN1,De-yong SHAO2,Liu-liu ZHANG1,Huan LUO1,Bo QIAO1,Tong-wei ZHANG2()   

  1. 1.School of Earth Sciences & Key Laboratory of Western China’s Mineral Resources of Gansu Province, Lanzhou University, Lanzhou 730000, China
    2.State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
  • Received:2020-01-17 Revised:2020-02-24 Online:2020-07-10 Published:2020-07-02
  • Contact: Tong-wei ZHANG E-mail:yup14@lzu.edu.cn;zhangtw@lzb.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(41730421)

摘要:

为研究分析页岩的吸水特征,有效测量页岩孔隙度,选取四川盆地黔浅1井龙马溪组5件页岩岩心样品开展吸水实验,分别从每件岩心样品中钻取一组不同直径(或不同长度)的页岩柱体,测量和计算每组各个小柱体的饱和绝对吸水量及骨架体积,建立二者的线性关系,由斜率K值表征各页岩样品单位体积的饱和吸水量,再据此计算出各页岩样品的有效孔隙度为3.51%~8.90%。为评价该方法所确定吸水孔隙度的准确性,又测定了样品的氮气吸附孔隙度和氦孔隙度,三者进行对比分析。结果显示:样品氮气吸附孔隙度为2.38%~7.04%,全部小于吸水孔隙度,二者相差0.54%~1.96%不等,这可能是由于氮气吸附实验无法探测泥页岩中孔径大于350 nm的宏孔,导致测定结果不包含这部分孔隙所贡献孔隙度而偏低。样品氦孔隙度为4.55%~8.09%,与吸水孔隙度相差仅为0.23%~0.81%,二者具有良好的一致性和可对比性,特殊地,QQ?45号样品的氦孔隙度比吸水孔隙度大2.65%,这是由于页岩柱体含微裂缝所导致的误差,而吸水实验可快速识别出含有微裂缝的柱体,能有效避免测量误差。由此可见,页岩柱体吸水实验法在有效保留页岩原生孔隙结构的前提下,通过统计分析多个页岩小柱体孔隙度测定结果而获得了页岩样品整体的吸水孔隙度,受页岩非均质性影响小,更接近页岩实际孔隙度。龙马溪组页岩孔隙度的变化与TOC含量具有良好的正相关性,与黏土及脆性矿物的相关程度不等,表明有机质是控制龙马溪组页岩孔隙度变化的主要因素。

关键词: 龙马溪组, 泥页岩, 吸水实验, 吸水特征, 孔隙度

Abstract:

An experimental investigation of water uptake on five shale core plugs of Silurian Longmaxi Formation from Well Qianqian 1 in Sichuan Basin was conducted. The saturated water quantities on a series of shale cylinders with different diameters or lengths from one sample were determined, and a linear relationship between water uptake and the skeleton volumes of the shale cylinders was obtained. The slope of line, which is “K” value, represents the saturated water quantity per unit skeleton volume, and the water uptake porosity which is calculated by multiplying “K” value and the rock bulk density is from 3.51% to 8.90%. In order to evaluate the accuracy of the water uptake porosity determined from water uptake method, the nitrogen adsorption porosity and helium porosity of the same series of samples were comparatively measured. The results show that the nitrogen adsorption porosity ranges from 2.38% to 7.04%, which is less than the water uptake porosity, and the difference is about 0.54%-1.96%. The low-temperature nitrogen adsorption method failed to detect macropores with apertures larger than 350 nm in the shales, leading to the lower values of the nitrogen adsorption porosity without accounting the pore volumes of those macropores. GRI helium porosity ranges from 4.55% to 8.09%, and there are good consistency and comparability between the water uptake porosity and the helium porosity except for sample QQ-45, and the difference is only 0.23%-0.81%. For the sample QQ-45, the helium porosity is 2.65% larger than the water uptake porosity, and the difference is attributed to the microcracks in the shale cylinders. The water uptake experiment can discern the microcracks in the shale cylinders based on the rapid increase of water uptake curve at the early stage of water adsorption. The shale cylinders effectively retain the original pore structures and pore networks of the shales, and the water uptake porosity is a statistical result which was measured with varied sizes of shale cylinders and affected slightly by the shale heterogeneity. Therefore, water uptake porosity is more representative to the actual porosity of the shales. A good positive correlation exists between total organic carbon(TOC) and porosity values, but no direct correlation with clay minerals, suggesting that TOC is the one of key controls on the change of the Longmaxi shale porosity.

Key words: Longmaxi Formation, Shale, Water uptake experimental, Water uptake characteristic, Porosity.

中图分类号: 

  • TE122.2

图1

黔浅1井采样剖面地层综合柱状图"

表1

黔浅1井样品基本特征"

样品号层位距龙马溪组底界/mTOC/%黏土矿物/%石英/%碳酸盐矿物/%
QQ-02S1l2.493.17
QQ-05S1l5.693.582.8563.6424.90
QQ-06S1l6.496.098.4748.0129.66
QQ-17S1l17.052.2915.1837.7817.87
QQ-45S1l67.160.7730.7130.846.27

图2

吸水实验主要装置示意"

图3

页岩柱体饱和绝对吸水量与柱体体积关系"

图4

不同直径页岩柱体吸水曲线(温度30 ℃,相对湿度99.9%)"

图5

页岩样品BJH孔径分布"

表2

3种方法测定的黔浅1井页岩样品孔隙度及相关结果"

样品号TOC/%K值”/(mg/cm3)比表面积/(m2/g)平均孔径/nm骨架密度/(g/cm3)吸水孔隙度/%氮气孔隙度/%氦孔隙度/%
QQ-023.1761.8923.9184.8032.6615.835.295.09
QQ-053.5875.7418.9127.5812.6367.045.086.81
QQ-066.0997.7133.7524.4002.6368.907.048.09
QQ-172.2950.2517.5564.1032.7004.783.944.55
QQ-450.7736.3510.0324.7652.6423.512.386.16

图6

各样品页岩柱体饱和绝对吸水量与柱体体积的关系(温度30 ℃,湿度99.9%)"

图7

页岩样品吸水孔隙度与氮气吸附孔隙度对比"

图8

页岩样品吸水孔隙度与氦孔隙度对比"

图9

QQ-45号页岩样品不同直径柱体的吸水量柱状图"

图10

QQ-45号页岩样品饱和绝对吸水量与柱体体积的关系(温度30 ℃,湿度99.9%)"

图11

黔浅1井页岩样品孔隙类型及有机质与矿物的组成特征(a)热解沥青固体残余物内部发育的“海绵状”有机质孔隙,QQ-02;(b)不规则状分布的有机质,QQ-02;(c)矿物骨架支撑的粒间孔隙,QQ-02;(d)条带状顺层分布的有机质、草莓状黄铁矿及颗粒状分散黄铁矿晶体,QQ-06注:OM为有机质;qtz为石英;albite为钠长石;clay为黏土矿物;chl为绿泥石;ill为伊利石"

图12

页岩样品吸水孔隙度与其影响因素关系"

1 谭静强,张煜麟,罗文彬,等. 富有机质泥页岩微纳米孔隙结构研究进展[J].矿物岩石地球化学通报,2019,38(1): 18-29.
TAN J Q,ZHANG Y L,LUO W B,et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(1): 18-29.
2 李博,于炳松,史淼. 富有机质页岩有机质孔隙度研究——以黔西北下志留统五峰—龙马溪组为例[J]. 矿物岩石,2019,39(1): 92-101.
LI B,YU B S,SHI M. Pore characteristics of organic-rich shale with high thermal maturity: A case study of the Lower Silurian Wufeng-Longmaxi Formation marine shale in northwestern Guizhou,China[J]. Journal of Mineralogy and Petrology,2019,39(1): 92-101.
3 苟启洋,徐尚,郝芳,等. 纳米CT页岩孔隙结构表征方法——以JY-1井为例[J]. 石油学报,2018,39(11): 1253-1261.
GOU Q Y,XU S,HAO F,et al. Characterization method of shale pore structure based on nano-CT: A case study of Well JY-1[J]. Acta Petrolei Sinica, 2018,39(11): 1253-1261.
4 陈生蓉,帅琴,高强,等.基于扫描电镜—氮气吸脱附和压汞法的页岩孔隙结构研究[J].岩矿测试,2015,34(6): 636-642.
CHEN S R,SHUAI Q,GAO Q,et al. Analysis of the pore structure of shale in ordos basin by SEM with nitrogen gas adsorption-desorption[J]. Rock and Mineral Analysia,2015,34(6): 636-642.
5 蔡潇,靳雅夕,叶建国,等. 一种页岩有机孔与无机孔定量表征的方法[J]. 油气藏评价与开发,2020, 10(1): 30-36.
CAI X,JIN Y X,YE J G,et al. A quantitative characterization method for organic and inorganic pores in shale[J]. Reservoir Evaluation and Development,2020, 10(1): 30-36.
6 田华,柳少波,洪峰,等. 关于页岩孔隙度与渗透率测定国家标准(GB/T 34533—2017)的思考与建议[J], 中国标准化. 2018(S1): 36-39.
TIAN H,LIU S B,HONG F,et al. Consideration and suggestion on shale porosity and permeability measurement standard (GB/T 34533-2017)[J],China Standardization,2018(S1): 36-39.
7 赵斌,尚彦军. 基于复杂网络理论的页岩纳米孔隙连通性表征[J]. 工程地质学报,2018,26(2): 504-509.
ZHAO B,SHANG Y J. Characterizing connectivity of nano-sized pores of shale based on complex network theory[J]. Journal of Engineering Geology,2018,26(2) : 504-509.
8 肖贤明,王茂林,魏强,等. 中国南方下古生界页岩气远景区评价[J]. 天然气地球科学,2015,27(8): 1433-1445.
XIAO X M,WANG M L,WEI Q,et al. Evaluation of Lower Paleozoic shale with shale gas prospect in south China[J]. Natural Gas Geoscience,2015,27(8): 1433-1445.
9 付永红,司马立强,张楷晨,等. 页岩岩心气测孔隙度测量参数初探与对比[J]. 特种油气藏,2018, 25(3): 144-148.
FU Y H,SIMA L Q,ZHANG K C,et al. Preliminary study and comparison of shale core gas:Porosity test parameters[J]. Special Oil and Gas Reservoirs,2018,25(3): 144-148.
10 鲍云杰,李志明,杨振恒,等. 孔隙度测定误差及其控制方法研究[J]. 石油实验地质,2019,41(4): 593-597.
BAO Y J,LI Z M,YANG Z H,et al. Porosity measurement error and its control method[J],Petroleum Geology & Experiment,2019,41(4): 593-597.
11 ROUQUEROL J,AVNIR D,EVERETT D H,et al. Guidelines for the characterization of porous solids[J]. Studies in Surface science and Catalysis, 1994, 87: 1-9.
12 焦堃,姚素平,吴浩,等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报,2014,20(1): 151-161.
JIAO K,YAO S P,WU H,et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities,2014,20(1): 151-161.
13 SONDHI N. Petrophysical Characterization of Eagle Ford shale[D]. Oklahoma:University of Oklahoma,2011:32-40.
14 赵蕾. 核磁共振在储层物性测定中的研究及应用[D]. 北京:中国石油大学,2010:1-23.
ZHAO L. Research and Application of NMR in Measurement of Reservoir Physical[D]. Beijing: China University of Petroleum,2010: 1-23.
15 肖立志. 我国核磁共振测井应用中的若干重要问题[J]. 测井技术,2007,31(5): 401-407.
XIAO L Z. Some important issues for NMR logging applications in China[J]. Well Logging Technology,2007,31(5): 401-407.
16 毕赫,姜振学,李鹏,等. 渝东南地区龙马溪组页岩吸附特征及其影响因素[J]. 天然气地球科学, 2014,25(2): 302-310.
BI H,JIANG Z H,LI P,et al. Adsorption characteristic and influence factors of Longmaxi shale in southeastern Chongqing[J]. Natural Gas Geoscience,2014,25(2): 302-310.
17 张瑜,闫建萍,贾祥娟,等. 四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J]. 天然气地球科学,2015,27(9): 1755-1762.
ZHANG Y,YAN J P,JIA X J,et al. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formation,Sichuan Basin[J]. Natural Gas Geoscience,2015,27(9): 1755-1762.
18 张小龙,李艳芳,吕海刚,等. 四川盆地志留系龙马溪组有机质特征与沉积环境的关系[J]. 煤炭学报, 2013,38(5): 851-856.
ZHANG X L,LI Y F,LV H G,et al. Relationship between organic matter characteristics and depositional environment in the Silurian Longmaxi Formation in Sichuan Basin[J]. Journal of China Coal Society,2013,38(5): 851-856.
19 吕海刚. 四川盆地志留系龙马溪组泥页岩吸水模拟实验及对孔隙连通性的指示意义[D]. 兰州:兰州大学, 2015:32-40.
LV H G. Experimental Investigation of Water Absorption and Its Significance to Pore Network Connectivity in Mudstone from Silurian Longmaxi Formation, Sichuan Basin, China[D]. Lanzhou: Lanzhou University,2015:32-40.
20 杨巍,薛莲花,唐俊,等. 页岩孔隙度测量实验方法分析与评价[J]. 沉积学报,2015,33(6): 1258-1264.
YANG W,XUE L H,TANG J,et al. Analysis and evaluation of different measuring methods for shale porosity[J]. Acta Sedimentologica Sinica,2015,33(6): 1258-1264.
21 张涛,王小飞,黎爽,等. 压汞法测定页岩孔隙特征的影响因素分析[J]. 岩矿测试,2016,35(2): 178-185.
ZHANG T,WANG X F,LI S,et al. Study on influencing factors in determining pore characteristics of shale by mercury intrusion [J]. Rock and Mineral Analysis,2016,35(2):178-185.
22 田华,张水昌,柳少波,等. 压汞法和气体吸附法研究富有机质页岩孔隙特征[J]. 石油学报,2012,33(7): 419-427.
TIAN H,ZHANG S C,LIU S B,et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(7):419-427.
23 CHALMERS G R,BUSTIN R M,POWER I M. Characterization of gas shale pore systems by porosimetry, pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig unit[J]. AAPG Bulletin,2012,96(6): 1099-1119.
24 CHEN J,XIAO X. Evolution of nanoporosity in organic-rich shales during thermal maturation[J].Fuel,2014,129(4):173-181.
25 钟太贤. 中国南方海相页岩孔隙结构特征[J]. 天然气工业,2012,32(9): 1-4.
ZHONG T X.Characteristics of pore structure of marine shales in south China[J].Natural Gas industry,2012,32(9):1-4.
26 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘,2013,20(4): 211-220.
YU B S. Classification and characterization of gas shale pore system[J]. Earth Science Frontiers,2013,20(4): 211-220.
27 张琴,刘畅,梅啸寒,等. 页岩气储层微观储集空间研究现状及展望[J]. 石油与天然气地质,2015,36(4): 666-674.
ZHANG Q,LIU C,MEI X H, et al. Status and prospect of research on microscopic shale gas reservoir space[J]. Oil & Gas Geology,2015,36(4): 666-674.
28 SLATT R M,O'BRIEN N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin,2011,95(12): 2017-2030.
29 LOUCK R G,REED R M,RUPPEL S C,et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin,2012,96(6): 1071-1098.
30 闫建萍,贾祥娟,邵德勇,等. 四川盆地龙马溪组页岩有机孔隙SEM表征及成因分析[J]. 天然气地球科学,2015,26(8): 1540-1546.
YAN J,JIA X J,SHAO D Y,et al. Characterization of organic matter-hosted pores by SEM method and their formation mechanisms for shales of Longmaxi Formation,Sichuan Basin[J]. Natural Gas Geoscience,2015,26(8): 1540-1546.
31 薛华庆,周尚文,蒋雅丽,等. 水化作用对页岩微观结构与物性的影响[J]. 石油勘探与开发,2018,45(6): 1075-1081.
XUE H Q,ZHOU S W,JIANG Y L,et al. Effects of hydration on the microstructure and physical properties of shale[J]. Petroleum Exploration and Development,2018,45(6):1075-1081.
32 LOUCK R G,REED R M,RUPPEL S C,et al. Morphology, genesis, and distribution of nanometer-scale pores in Siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research,2009,79(12): 848-861.
33 CANDER H. Sweet spots in shale gas and liquids plays: Prediction of fluid composition and reservoir pressure[J]. Search & Discovery Article,2012(9):175-182.
34 王艿川,赵靖舟,丁文龙,等. 渝东南地区龙马溪组页岩裂缝发育特征[J]. 天然气地球科学,2015,26(4): 760-770.
WANG N C,ZHAO J Z,DING W L,et al. Development characteristics of shale fracture in Longmaxi Formation in southeasten Sichuan[J].Natural Gas Geoscience,2015,26(4):760-770.
35 TIAN H,PAN L,XIAO X,et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine & Petroleum Geology,2013,48(7): 8-19.
36 陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3): 438-444.
CHEN S B,ZHU Y M,WANG H Y,et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012,37(3): 438-444.
37 范明,何治亮,李志明,等. 碳酸盐岩溶蚀窗的形成及地质意义[J]. 石油与天然气地质,2011,32(4): 499-505.
FAN M,HE Z L,LI Z M,et al. Dissolution window of carbonate rocks and its geological significance[J]. Oil & Gas Geology,2011,32(4): 499-505.
[1] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[2] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[3] 谭伟, 何胜林, 张海荣, 丁磊, 梁玉楠. 基于自然伽马和电阻率曲线的高温高压气层孔隙度计算方法[J]. 天然气地球科学, 2020, 31(2): 307-316.
[4] 王玉满, 李新景, 王皓, 吴伟, 蒋珊, 陈波, 沈均均, 周国晓. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学, 2020, 31(2): 151-162.
[5] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[6] 张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 四川盆地深层页岩储层孔喉特征[J]. 天然气地球科学, 2019, 30(9): 1349-1361.
[7] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[8] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[9] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[10] 郭芪恒, 金振奎, 耿一凯, 赵建华, 常睿, 崔学敏, 王金艺. 四川盆地龙马溪组页岩中碳酸盐矿物特征及对储集性能的影响[J]. 天然气地球科学, 2019, 30(5): 616-625.
[11] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[12] 邓宇, 曾庆才, 陈胜, 管全中, 郭晓龙, 贺佩. 四川盆地威远地区五峰组—龙马溪组页岩TOC含量地震定量预测方法及应用[J]. 天然气地球科学, 2019, 30(3): 414-422.
[13] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[14] 王丹丹,周新桂,刘丽红,李世臻,张交东,张文浩,刘卫彬,刘旭锋,曾秋楠. 通化盆地下白垩统亨通山组泥页岩储层特征[J]. 天然气地球科学, 2019, 30(12): 1771-1781.
[15] 张成林,张鉴,李武广,田冲,罗超,赵圣贤,钟文雯. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!