天然气地球科学 ›› 2020, Vol. 31 ›› Issue (7): 895–903.doi: 10.11764/j.issn.1672-1926.2020.02.006

• 天然气地球化学 •    下一篇

琼东南盆地低熟煤型气地球化学特征及勘探前景

梁刚(),甘军,游君君,李兴,雷明珠   

  1. 中海石油(中国)有限公司湛江分公司,广东 湛江 524057
  • 收稿日期:2019-12-26 修回日期:2020-02-28 出版日期:2020-07-10 发布日期:2020-07-02
  • 作者简介:梁刚(1983-),男,河北涿州人,高级工程师,主要从事油气地球化学和成藏研究.E-mail:lianggang@cnooc.com.cn.
  • 基金资助:
    “十三五”国家科技重大专项“琼东南盆地深水区大中型气田形成条件及关键勘探技术”(2016ZX05026-002)

Geochemical characteristics and exploration prospect of low mature coal-derived gas in Qiongdongnan Basin

Gang LIANG(),Jun GAN,Jun-jun YOU,Xing LI,Ming-zhu LEI   

  1. Zhanjiang Branch of CNOOC Ltd. , Zhanjiang 524057, China
  • Received:2019-12-26 Revised:2020-02-28 Online:2020-07-10 Published:2020-07-02
  • Supported by:
    The China National Science & Technology Major Project(2016ZX05026-002)

摘要:

琼东南盆地近年来发现的Y8等气田的天然气碳同位素值异常偏低,与以往发现的成熟—高成熟煤型气大不相同。在深入理解低熟气概念及进行详细地球化学分析后,认为研究区δ13C1值分布在-47‰~-42‰之间,δ13C2值分布在-28‰~-25‰之间的天然气是与吐哈盆地类似的低熟煤型气,天然气成熟度RO值介于0.5%~0.8%之间,主要来自凹陷斜坡、凸起区低成熟演化阶段的崖城组烃源岩及盆地内大范围发育的中新统烃源岩。低熟煤型气的发现极大拓展了琼东南盆地烃源岩的研究范围,为盆地下一步勘探提供了新的思路。

关键词: 低熟气, 煤型气, 碳同位素, 琼东南盆地

Abstract:

In recent years, the carbon isotope of natural gas from Y8 and other gas fields in Qiongdongnan Basin is relatively low, which is quite different from the mature & high mature coal-derived gas discovered in the past. After in-depth investigation of the concept of low mature gas and detailed geochemical analysis, it is considered that δ13C1 is distributed between -47‰ and -42‰, δ13C2 is distributed between -28‰ and -25‰, which is similar to the low mature coal-derived gas in Turpan-Hami Basin, and the maturity of natural gas RO is between 0.5% and 0.8%, which mainly comes from the source rocks with low maturity of the Yacheng Formation distributing in the depression slope and the uplift, and the Miocene source rocks developed in the basin with large-scale. The discovery of low mature coal-derived gas has greatly expanded the research scope of source rock in Qiongdongnan Basin and provided a new research idea for future exploration in the basin.

Key words: Low maturity gas, Coal type gas, Carbon isotope, Qiongdongnan Basin

中图分类号: 

  • TE122.1+13

图1

琼东南盆地构造纲要"

表1

琼东南盆地天然气地球化学特征"

气田井号海底以下埋深 /m层位烃类气/%非烃气/%干燥系数δ13C/‰RO/%
C1C2C3iC4nC4iC5nC5CO2N2C1/C1-5δ13C1δ13C2δ13C2-δ13C1
Y13Y13-13 484.5~3 496.8陵水组85.031.271.330.400.400.200.149.600.720.96-35.73-25.2010.531.68
Y13-23 619.8~3 636.6陵水组88.952.010.550.130.130.060.048.001.370.97-35.02-24.3710.651.77
Y13-43 751.17~3 780.17陵水组84.583.080.910.250.250.100.068.731.760.95-37.09-26.2910.801.50
Y13-33 725.3~3 696.7陵水组83.223.941.810.470.460.180.128.541.040.92-39.36-26.4712.891.21
Y13-63 682.9~3 725.2陵水组85.504.812.120.570.520.210.114.990.930.91-39.90-26.8013.101.14
L25L25-12 785.4黄流组85.174.771.580.430.360.190.112.381.580.92-39.50-25.6013.901.19
L25-12 939.6黄流组84.6084.604.601.580.410.390.214.163.340.92-36.11-24.0512.061.63
L25-12 914.6~2 944.6黄流组85.2585.174.771.580.430.360.196.090.960.92-38.20-25.1013.101.36
L25-23 134.3黄流组81.644.971.470.360.370.210.139.261.050.92-35.60-25.6010.001.69
L25-53 010.1黄流组87.844.981.820.460.460.250.153.910.020.92-36.70-25.1011.601.55
L25-52 864.1黄流组85.525.761.700.340.340.180.252.860.030.91-41.40-26.2015.200.83
L25-62 908.55~2 915.05黄流组88.685.371.760.400.400.220.201.360.630.91-46.80-26.2020.600.55
LS13L13-13 444.8梅山组65.269.985.781.241.420.650.303.848.320.77-43.94-25.6118.330.63
L13-23 603.5梅山组77.237.743.870.790.880.330.193.884.180.85-44.89-25.8119.080.60
L13-23 600.4~3 690.5梅山组76.468.274.260.921.070.390.243.703.500.83-45.40-26.3019.100.59
L17L17-11 873.8~1 903.8黄流组93.004.331.040.260.200.090.050.620.260.94-37.30-24.1013.201.47
L17-11 858.8黄流组90.074.281.080.220.210.090.060.912.940.94-36.81-23.5113.301.54
L17-11 919.2黄流组91.044.181.020.200.190.090.050.672.350.94-37.25-23.7713.491.48
L17-12 021.3黄流组91.684.271.050.210.190.090.050.701.660.94-36.83-24.0912.741.54
L17-21 681.4黄流组91.684.301.130.210.210.090.050.701.660.94-38.20-23.8014.401.36
L17-21 784.2黄流组91.514.271.140.220.220.090.050.072.150.94-37.40-24.1613.241.46
L17-31 876.5黄流组89.454.711.540.340.360.160.100.532.560.93-37.76-25.3012.461.42
L17-41 804.8黄流组86.894.791.600.370.400.200.140.184.050.92-39.07-25.3713.691.25
L17-41 998.8黄流组88.864.731.620.340.400.190.130.592.160.92-38.36-25.7712.591.34
L17-52 003.2黄流组91.165.041.490.340.340.160.110.310.550.92-39.20-26.2013.001.23
L17-52 016.7黄流组91.374.941.440.330.330.150.100.320.570.93-38.80-26.0012.801.28
L17-52 055.2黄流组91.534.951.390.320.310.140.100.320.550.93-39.20-26.0013.201.23
L17-81 940.2黄流组85.184.631.820.430.470.230.160.225.090.92-40.15-25.9414.220.93
L17-82 041.5黄流组88.794.501.620.370.410.190.130.362.630.92-38.89-25.9512.941.27
L17-72 225黄流组83.384.752.110.540.560.290.190.305.870.91-46.50-26.1020.400.56
L17-92 499.2黄流组83.934.842.170.540.590.270.190.704.950.91-45.12-26.0019.120.59
L18L18-11 131.2~1 158莺歌海组92.894.571.040.280.210.090.050.040.640.94-40.20-25.3014.900.92
L18-11 054.3莺歌海组84.174.441.540.580.710.580.420.114.820.91-40.30-26.4513.850.92
L18-11 146.8莺歌海组84.524.310.970.200.200.100.060.077.660.94-41.61-26.1515.460.81
L18-21 413.9黄流组95.793.010.610.050.050.010.000.080.370.96-42.80-26.2016.600.71
L18-21 374.6黄流组93.882.870.590.050.050.010.000.092.010.96-43.18-26.6816.500.65
S34S34-22 407.1~2 485.3三亚组93.601.820.610.210.160.100.051.581.520.97-38.30-23.9014.401.35
S34-12 142.8三亚组94.032.101.080.410.380.260.160.650.440.96-46.60-27.6019.000.55
S34-12 152.6三亚组92.802.251.280.550.540.420.270.720.390.95-46.72-25.6021.120.55
Y8Y8-1984.5崖城组92.022.290.430.050.050.030.020.603.490.97-45.20-28.0017.200.59
Y8-1999.6三叠系92.792.230.470.060.050.040.020.703.650.97-45.40-27.6017.800.59
Y8-21 098崖城组88.551.530.190.020.020.010.001.676.460.98-45.73-27.7018.030.58
Y8-21 154.8崖城组88.061.610.200.020.020.010.003.585.220.98-44.03-27.1316.910.63
Y8-3997.8~1 106三叠系95.652.580.460.060.060.020.010.830.190.97-43.73-26.7017.030.63

图2

琼东南盆地天然气甲烷碳同位素分布频率"

图3

琼东南盆地天然气δ13C2-δ13C1与RO关系"

图4

琼东南盆地天然气乙烷碳同位素分布频率"

图5

天然气甲烷—乙烷碳同位素判断天然气成因①张国华,黄保家,潘贤庄.莺—琼盆地天然气成因类型及海相烃源岩研究.国家“九五”攻关课题“中国大中型气田勘探开发研究”成果报告.内部资料,1998."

图6

S-6井录井气测剖面特征"

1 黄保家, 王振峰, 梁刚.琼东南盆地深水区中央峡谷天然气来源及运聚模式[J]. 中国海上油气, 2014, 26(5): 8-14.
HUANG B J, WANG Z F, LIANG G.Natural gas source and migration-accumulation pattern in the central canyon, the deep water area, Qiongdongnan Basin[J].China Offshore Oil and Gas, 2014, 26(5): 8-14.
2 HUANG B J, TIAN H, LI X S, et al. Geochemistry, origin and accumulation of natural gases in the deep water area of the Qiongdongnan Basin, South China Sea[J]. Marine and Petroleum Geology, 2016, 72: 254-267.
3 黄合庭, 黄保家, 黄义文, 等. 南海西部深水区大气田凝析油成因与油气成藏机制: 以琼东南盆地陵水17-2气田为例[J]. 石油勘探与开发, 2017, 44(3): 380-388.
HUANG H T, HUANG B J, HUANG Y W, et al.Condensate origin and hydrocarbon accumulation mechanism of the deepwater giant gas field in western South China Sea: A case study of Lingshui 17-2 Gas Field in Qiongdongnan Basin, South China[J]. Petroleum Exploration and Development, 2017, 44(3): 380-388.
4 梁刚, 甘军, 李兴.琼东南盆地陵水凹陷天然气成因类型及来源[J].中国海上油气, 2015, 27(4): 47-53.
LIANG G, GAN J, LI X.Genetic types and origin of natural gas in Lingshui Sag,Qiongdongnan Basin[J].China Offshore Oil and Gas, 2015, 27(4): 47-53.
5 张迎朝, 甘军, 徐新德, 等. 琼东南盆地深水东区Y8⁃1含气构造天然气来源及侧向运模式[J].地球科学, 2019, 44(8): 2609-2618.
ZHANG Y Z, GAN J, XU X D, et al. The source and natural gas lateral migration accumulation model of Y8-1 gas bearing strucure,east deep water in the Qiongdongnan Basin[J]. Earth Science, 2019, 44(8): 2609-2618.
6 徐永昌,王志勇,王晓锋,等.低熟气及我国典型低熟气田[J]. 中国科学: D辑, 2018, 38(1): 87-93.
XU Y C, WANG Z Y, WANG X F, et al. Low mature gases and typical low-mature gas fields in China[J]. Science in China: Series D, 2018, 38(1): 87-93.
7 GALIMOV E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary Rocks[J]. Chemical Geology, 1988, 71: 77-95.
8 徐永昌, 王晓峰, 史宝光. 低熟气—煤成其理念的延伸[J]. 石油勘探与开发, 2009, 36(3):408-412.
XU Y C, WANGXF, SHI B G. Low-mature gas: An extension of the concept of coal-formed gas[J]. Petroleum Exploration and Development, 2009, 36(3): 408-412.
9 刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J]. 地球化学, 1999, 28(4): 359-366.
LIU W H, XU Y C. A two stage model of carbon isotopic fractionation in coal gas[J]. Geochimica, 1999, 28(4): 359-366.
10 王晓锋, 徐永昌, 沈平, 等. 低熟气地球化学特征与判识指标[J]. 天然气地球科学, 2010, 21(1): 1-6.
WANG X F, XU Y C, SHEN P, et al. Geochemical characteristics and identification indexes of low-mature gases[J]. Natrual Gas Geoscience, 2010, 21(1): 1-6.
11 王晓锋, 刘文汇, 郑建京, 等. 乌连戈伊气田形成机制及其启迪[J]. 天然气工业, 2006, 26(5): 29-32.
WANG X F, LIU W H, ZHENG J J, et al. Formation mechanism of Urengoy Gas Field in the west Siberian Basin and its implication[J]. Natural Gas Industry, 2006, 26(5): 29-32.
12 王作栋,陶明信,孟仟祥,等.吐哈盆地烃源岩研究进展与低演化油气的形成[J].天然气地球科学,2008,19(6):753-760.
WANG Z D, TAO M X, MENG Q X, et al. Research progress of source rocks and formation of low evolution oil and Gas in Turpan-Hami Basin[J]. Natural Gas Geoscience, 2008, 19(6): 753-760.
13 刘丹, 吴伟, 房忱琛, 等. 渤海湾盆地古近系低熟煤成气地球化学特征[J]. 天然气地球科学, 2016, 27(5): 873-882.
LIU D, WU W, FANG C C, et al. Geochemistry of low- mature gas derived from Paleogene coal-measure rock of Bohai Bay Basin[J].Natural Gas Geoscience,2016, 27(5): 873-882.
14 甘军, 张迎朝, 梁刚, 等.琼东南盆地深水区天然气成藏过程及动力机制研究[J].地质学报, 2018, 92(11): 2359-2367.
GAN J, ZHANG Y Z, LIANG G, et al.On accumulation process and dynamic mechanism of natural gas in the deepwater area of central canyon, Qiongdongnan Basin[J]. Acta Geologica Sinica, 2018, 92(11): 2359-2367.
15 甘军, 张迎朝, 梁刚, 等.琼东南盆地深水区烃源岩沉积模式及差异热演化[J].地球科学, 2019, 44(8): 2627-2635.
GAN J, ZHANG Y Z, LIANG G, et al. Deposition pattern differential thermal evolution of source rocks, deep water of Qiongdongnan Basin[J].Earth Science, 2019, 44(8): 2627-2635.
16 杨计海, 黄保家, 杨金海. 琼东南盆地深水区松南低凸起天然气成藏条件与勘探潜力[J]. 中国海上油气, 2019, 31(2): 1-10.
YANG J H, HUANG B J, YANG J H. Gas accumulation conditions and exploration potentials of natural gases in Songnan low uplift, deep water area of Qiongdongnan Basin[J].China Offshore Oil and Gas, 2019, 31(2): 1-10.
17 张迎朝, 徐新德, 甘军, 等.琼东南盆地深水大气田地质特征、成藏模式及勘探方向研究[J]. 地质学报, 2017, 91(3): 1620-1633.
ZHANG Y Z, XU X D, GAN J, et al.Study on the geological characteristics, accumulation model and exploration direction of the giant deepwater gasfield in the Qiongdongnan Basin[J].Acta Geologica Sinica, 2017, 91(3): 1620-1633.
18 王元,李贤庆,王刚,等. 莺琼盆地中新统海相烃源岩地球化学特征及生烃潜力评价[J]. 现代地质, 2018, 32(3): 500-510.
WANG Y, LI X Q, WANG G, et al. Geochemical characteristics and hydrocarbon generation potential of Miocene marine source rocks in the Ying-Qiong Basin[J]. Geoscience, 2018, 32(3): 500-510.
19 戴金星, 戚厚发, 宋岩. 鉴别煤成气和油型气若干指标的初步探讨[J]. 石油学报, 1985, 6(2): 31-38.
DAI J X, QI H F, SONG Y. On the indicators for identifying gas from oil and gas from coal measure[J]. Acta Petrolei Sinica, 1985, 6(2): 31-38.
20 戴金星,邹才能,李伟,等.中国大气田及其气源[M]. 北京: 石油工业出版社,2014: 50-62.
DAI J X, ZOU C N, LI W, et al. China Giant Natural Gas Field and Gas Source[M]. Beijing: Petroleum Industry Press, 2014: 50-62.
21 沈平, 申歧祥, 王先彬, 等.气态烃同位素组成特征及煤型气判识[J]. 中国科学: B辑, 1987, 17(6): 647-656.
SHEN P, SHEN Q X, WANG X B, et al. Preliminary study on the identification indicators of the coal-formed gas and the oil-type gas[J].Science in China:Series B,1987,17(6):647-656.
22 STAHL W J, CAREY JR B D. Source rock identification by isotope analyses of natural gases from fields in the Val Varde Delaware basins, West Texas[J]. Chemical Geology, 1975, 16: 257-267.
23 戴金星, 戚厚发.我国煤成烃气的δ13C—RO关系[J]. 科学通报, 1989, 34(9): 690-692.
DAI J X, QI H F. δ13C-RO correlation of the coal-formed gas in China[J]. Chinese Science Bulletin, 1989, 34(9): 690-692.
24 沈平, 徐永昌. 中国陆相成因天然气同位素组成特征[J]. 地球化学, 1991, (2): 144-152.
SHEN P, XU Y C. The isotopic composition of natural gases from continental sediments in China[J]. Geochimica, 1991, (2): 144-152.
25 XIAO X M, LI N X, GAN H Y, et al. Tracing of deeply-buried source rock: A case study of the WC9-2 petroleum pool in the Pearl River Mouth Basin, South China Sea[J]. Marine and Petroleum Geology, 2009,26(8): 1365-1378.
26 刘大永, 彭平安, 林会喜, 等. 生烃动力学、同位素动力学方法在烃源岩研究中的应用[J]. 地质通报, 2006, 25(9/10): 1201-1204.
LIU D Y, PENG P A, LIN H X, et al. Application of hydrocarbon generation kinetics and isotopic distil-lation kinetics to the study of hydrocarbon source rocks[J]. Geological Bulletin of China, 2006, 25(9/10): 1201-1204.
27 李贤庆, 肖贤明, 唐永春, 等. 评价天然气成熟度的碳同位素动力学方法探讨[J]. 中国海上油气, 2005, 17(5): 11-16.
LI X Q, XIAO X M, TANG Y C, et al. A discussion on the evaluation method of gas maturity using carbon isotope kinetics[J]. China Offshore Oil and Gas, 2005, 17(5): 11-16.
28 帅燕华, 邹艳荣, 彭平安. 天然气甲烷碳同位素动力学模型与地质应用新进展[J]. 地球科学进展, 2003, 18(3): 405-411.
SHUAI Y H, ZOU Y R, PENG P A. Kinetic model for the stable carbon isotope of Methane: The state of the art[J]. Advance in Earth Sciences, 2003, 18(3): 405-411.
29 徐立恒, 陈践发, 卢双舫, 等. 徐家围子深层气田天然气甲烷碳同位素动力学分析[J]. 中国石油大学学报:自然科学版, 2009, 33(3): 39-44.
XU L H, CHEN J F, LU S F, et al. Carbon isotope kinetics analysis of natural gas methane for deep zone gas field in Xujiaweizi area[J]. Journal of China University of Petroleum:Edition of Natural Science, 2009, 33(3): 39-44.
30 李绪深, 肖贤明, 黄保家, 等. 崖南凹陷烃源岩生烃及碳同位素动力学应用[J]. 天然气工业, 2005,25(8): 9-12.
LI X S, XIAO X M, HUANG B J, et al. Hydrocarbon generation dynamics and carbon isotope dynamics of the source rocks in Yanan Sag[J].Natural Gas Industry,2005,25(8): 9-12.
31 ROONEY M A, CLAYPOOL G E, CHUNG H M. Modeling themogenic gas generation using carbon isotope rations of natural gas hydrocarbons[J]. Chemical Geology, 1995, 126(3/4): 219-232.
[1] 何春民, 甘军, 梁刚, 李兴, 王星, 田辉. 压力对III型有机质生成烃类气体及甲烷碳同位素的影响[J]. 天然气地球科学, 2020, 31(7): 931-938.
[2] 刘超威, 郭旭光, 王泽胜, 朱伶俐, 张蓉, 陈洪. 准噶尔盆地阜康凹陷东斜坡侏罗系头屯河组油气成藏期次[J]. 天然气地球科学, 2020, 31(7): 962-969.
[3] 胡维强, 李洋冰, 陈鑫, 马立涛, 刘成, 黄英, 乔方, 王朵, 刘再振. 鄂尔多斯盆地临兴地区上古生界天然气成因及来源[J]. 天然气地球科学, 2020, 31(1): 26-36.
[4] 马安来, 李慧莉, 李杰豪, 高晓鹏, 王凡, 姚尧, 冯帆. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
[5] 李二庭, 靳军, 曹剑, 马万云, 米巨磊, 任江玲. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369.
[6] 龚德瑜, 张越迁, 郭文建, 宋志华, 卢山, 吴卫安. 次生生物甲烷与生物降解作用的判识——以准噶尔盆地腹部陆梁油气田为例[J]. 天然气地球科学, 2019, 30(7): 1006-1017.
[7] 杨帆, 宋永, 陈洪, 龚德瑜, 卞保力, 刘海磊. 准噶尔盆地阜东地区石炭系松喀尔苏组烃源岩评价及气源对比[J]. 天然气地球科学, 2019, 30(7): 1018-1026.
[8] 胡自龙, 卞保力, 刘海磊, 赵龙, 卢山, 王绍清. 准噶尔盆地大井地区天然气成因、来源与成藏过程[J]. 天然气地球科学, 2019, 30(6): 850-859.
[9] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉. 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
[10] 马遵青, 陈国俊, 杨海长, 李超, 赵燚林, . 大型有孔虫壳体对砂岩储集空间及物性的影响——以琼东南盆地松南凹陷三亚组一段为例[J]. 天然气地球科学, 2019, 30(5): 712-720.
[11] 范东稳, 卢振权, 刘晖, 肖睿, 王伟超, 李永红, 唐世琪. 南祁连盆地哈拉湖坳陷天然气水合物科学钻孔岩心顶空气组成及其地质意义[J]. 天然气地球科学, 2019, 30(4): 526-538.
[12] 刘杰, 杨睿, 邬黛黛, 金光荣. 基于生烃思路的微生物成因水合物资源量估算——以琼东南盆地西南深水区为例[J]. 天然气地球科学, 2019, 30(4): 539-548.
[13] 刘如红, 李剑, 肖中尧, 李谨 , 张海祖, 卢玉红, 张宝收, 马卫, 李德江, 刘满仓. 塔里木盆地库车坳陷吐格尔明地区油气地球化学特征及烃源探讨[J]. 天然气地球科学, 2019, 30(4): 574-581.
[14] 孔庆芬 , 张文正, 李剑锋, 昝川莉, . 鄂尔多斯盆地奥陶系盐下天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(3): 423-432.
[15] 张帆, 冉清昌, 吴玉明, 任志高. 松辽盆地北部古中央隆起带天然气地球化学特征及成藏条件[J]. 天然气地球科学, 2019, 30(1): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!