天然气地球科学 ›› 2020, Vol. 31 ›› Issue (8): 1168–1177.doi: 10.11764/j.issn.1672-1926.2020.01.007

• 天然气开发 • 上一篇    下一篇

非常规气藏压裂水平井缝网—井网自动优化方法

马嘉令1(),盛广龙1(),刘红林2,李琳璐2,赵辉1,周玉辉1   

  1. 1.长江大学石油工程学院, 湖北 武汉 430100
    2.中国石油新疆油田分公司采油二厂, 新疆 克拉玛依 834000
  • 收稿日期:2019-12-23 修回日期:2020-01-31 出版日期:2020-08-10 发布日期:2020-07-29
  • 通讯作者: 盛广龙 E-mail:201971195@yangtzeu.edu.cn;shenggl2019@yangtzeu.edu.cn
  • 作者简介:马嘉令(1997-),男,河北石家庄人,硕士研究生,主要从事非常规油气渗流理论与应用、油藏工程及优化控制工程等研究.E-mail:201971195@yangtzeu.edu.cn.
  • 基金资助:
    国家自然科学基金项目“油气藏智能开发生产优化新方法”(51922007);国家自然科学基金项目“基于数据驱动的低渗透油藏优势流道识别及调堵动态优化”(51874044)

Automatic optimization method of fracture pattern and well pattern for fractured horizontal wells in unconventional gas reservoirs

Jia-ling MA1(),Guang-long SHENG1(),Hong-lin LIU2,Lin-lu LI2,Hui ZHAO1,Yu-hui ZHOU1   

  1. 1.College of Petroleum Engineering, Yangtze University, Wuhan 430100, China
    2.No. 2 Oil Production Plant, Xinjiang Oilfield Company, PetroChina, Karamay 834000, China
  • Received:2019-12-23 Revised:2020-01-31 Online:2020-08-10 Published:2020-07-29
  • Contact: Guang-long SHENG E-mail:201971195@yangtzeu.edu.cn;shenggl2019@yangtzeu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(51922007);The National Natural Science Foundation of China(51874044)

摘要:

非常规气藏已经成为中国油气增储上产的主要阵地,压裂水平井缝网—井网自动优化技术是实现非常规气藏高效开发的关键技术。基于油气藏数值模拟方法,采用同步扰动随机逼近算法建立了压裂水平井单井自动优化模型,对水平井位置、水平井长度、水平井倾角、裂缝与水平井夹角、裂缝条数和裂缝导流能力等关键参数进行自动连续性同步优化,并在典型非均质气藏中对压裂水平井单井参数进行了优化应用。采用该优化方法可以自动优化初始开发方案,得到经济净现值最佳的开发方案。在此基础上,对压裂水平井和裂缝的位置进行约束,建立了压裂水平井缝网—井网自动优化模型。并将该方法应用于典型非均质气藏,优化后的最佳开发方案经济净现值比初始开发方案增加了2 699.688万元。研究表明该压裂水平井缝网—井网自动优化方法能够自动同步优化井网形式、布井数目、水平井倾角和长度、射孔位置及裂缝属性等参数,并得到与地质情况相匹配的最优压裂水平井井网分布。

关键词: 非常规气藏, 压裂水平井, 同步优化, 井网, 缝网, 自动优化

Abstract:

Unconventional gas reservoirs have become the main position of increasing oil and gas storage and production in China. Automatic optimization method of fracture pattern and well pattern for fractured horizontal wells is the key technology to achieve efficient development of unconventional gas reservoirs. In this paper, based on the numerical simulation method of oil and gas reservoirs, a single-well automatic optimization model for fractured horizontal wells is established by using simultaneous perturbation stochastic approximation. The key parameters of horizontal well position, horizontal well length, horizontal well inclination, the angle between fracture and horizontal well, the number of fractures and the fracture conductivity are automatically and continuously optimized. The single-well parameters of a fractured horizontal well are optimized in a typical heterogeneous gas reservoir. The research shows that the method can automatically optimize the initial development scheme, and get the development scheme with the best economic net present value. Based on this, the positions of the fractured horizontal wells and fractures are constrained, an automatic optimization model of fracture pattern and well pattern for fractured horizontal wells is established. The fracture parameters and well pattern parameters are simultaneously optimized in a typical heterogeneous gas reservoir, the economic net present value of the optimal development scheme increased by RMB 26.996 88 million compared with the initial development scheme. The research shows that the automatic optimization method of fracture pattern and well pattern for fractured horizontal wells proposed in this paper can automatically and synchronously optimize parameters such as well pattern, number of wells, horizontal well inclination and length, perforation position, and fracture properties to obtain the optimal fractured horizontal well pattern distribution that matches the geological conditions.

Key words: Unconventional gas reservoirs, Fractured horizontal well, Synchronous optimization, Well pattern, Fracture pattern, Automatic optimization

中图分类号: 

  • TE243+.1

图1

压裂水平井单井参数"

图2

关键点示意"

图3

裂缝与网格坐标匹配"

图4

裂缝表征效果"

图5

压裂水平井单井模型示意"

图6

基础井网的形变示意"

图7

井网扩展示意"

图8

约束优化简化模型"

图9

压裂水平井井网模型示意"

图10

压裂水平井优化流程"

图11

非均质气藏渗透率场"

表1

单井优化变量及经济净现值变化"

迭代次数X0/mY0/mLh/mα/(°)Nf/条β/(°)Ff/(μm2·cm)NPV/万元
05002004003084540-781.87
148423940616.1858.641.8-638.53
144933811 041-33.418108.185354.89
305094981 239-41.622101.190.9530.21

图12

单井生产1年后的地层压力对比"

图13

单井参数优化的经济净现值曲线"

表 2

井网优化变量及经济净现值变化"

迭代次数Lh/mα/(°)Nf/条β/(°)Ff/(μm2·cm)a′/mb′/mΔx/mΔy/mθ/(°)γ/(°)NPV/万元
0250039040300.0300.00000-2 059.79
3359.8-8.4496.649.5412.0300.0106.0-37.015.98.76-1 764.432
14524.5-20.65594.958.64578.2296.5341.427.712-5.56-318.504
32474.18-54.14886.0586.534500.0490.55277.1-212.70.064 7-11.36639.898

图14

井网生产1年后的地层压力对比"

图15

井网参数优化的经济净现值曲线"

1 郭威,潘继平.“十三五”全国油气资源勘查开采规划执行情况中期评估与展望[J].天然气工业,2019,39(4):111-117.
GUO W, PAN J P. Mid-term evaluation and prospect of the implementation of the 13th Five-Year Plan for the national oil and gas resources exploration and mining plan[J]. Natural Gas Industry, 2019,39(4):111-117.
2 侯启军,何海清,李建忠,等.中国石油天然气股份有限公司近期油气勘探进展及前景展望[J].中国石油勘探,2018,23(1):1-13.
HOU Q J, HE H Q, LI J Z, et al. Recent progress and prospect of oil and gas exploration by Petrochina Company Limited[J]. China Petroleum Exploration, 2018,23(1):1-13.
3 甘云雁,张士诚,刘书杰,等.整体压裂井网与裂缝优化设计新方法[J].石油学报,2011,32(2):290-294.
GAN Y Y, ZHANG S C, LIU S J, et al. A new method for well pattern optimization and integral fracturing design in low permeability reservoirs[J]. Acta Petrolei Sinica,2011,32(2):290-294.
4 卜淘.新场气田分段压裂水平井裂缝布局优化[J].现代地质,2019,33(3):672-679.
BU T. Optimization of fracture layout of muti-fractured horizontal well in Xinchang Gas Field[J]. Geoscience, 2019,33(3):672-679.
5 曹振义,刘鹏程,赵广民,等.低渗透油藏水平井注CO2井网优化与影响因素[J].现代地质,2016,30(2):382-387.
CAO Z Y, LIU P C, ZHAO G M, et al. Well pattern optimization and influencing factors for CO2 injection of horizontal wells in low permeability reservoir[J]. Geoscience, 2016,30(2):382-387.
6 张晨朔,姜汉桥.低渗透油藏压裂水平井井网优化方法研究[J].断块油气田,2014,21(1):69-73.
ZHANG C S, JIANG H Q. Optimization method of hydraulically fractured horizontal well pattern in low permeability reservoirs[J]. Fault-Block Oil & Gas Field, 2014,21(1):69-73.
7 WILSON K C, DURLOFSKY L J. Optimization of shale gas field development using direct search techniques and reduced-physics models[J]. Journal of Petroleum Science and Engineering, 2013, 108: 304-315.
8 JAHANDIDEH A, JAFARPOUR B. Optimization of hydraulic fracturing design under spatially variable shale fracability[J].Journal of Petroleum Science and Engineering,2016, 138: 174-188.
9 闵春佳,卢双舫,唐明明,等. 致密油储层水平井压裂参数优化模拟[J]. 断块油气田, 2015, 22(6): 794-797.
MIN C J, LU S F, TANG M M, et al. Hydro-fracturing parameter optimization and simulation of horizontal well in tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 794-797.
10 黄辉,吴晓东,孙天礼.基于遗传算法的低渗透气藏水平井压裂参数优化[J].天然气工业,2008,28(5):91-93,149-150.
HUANG H, WU X D, SUN T L. Genetic algorithm-based optimizing hydraulic fracturing parameters for horizontal wells in low-permeabilty reservoirs[J]. Natural Gas Industry, 2008,28(5):91-93,149-150.
11 冯其红,徐世乾,任国通,等.致密油多级压裂水平井井网参数分级优化[J].石油学报,2019,40(7):830-838.
FENG Q H, XU S Q, REN G T, et al. A hierarchical optimization framework of multi-stage fractured horizontal well pattern in tight oil[J]. Acta Petrolei Sinica, 2019, 40(7):830-838.
12 XU S, FENG Q, WANG S, et al. Optimization of multistage fractured horizontal well in tight oil based on embedded discrete fracture model[J]. Computers & Chemical Engineering, 2018, 117: 291-308.
13 李晓雪. ZQ低渗透油藏CO2驱井网优化设计研究[D].青岛:中国石油大学(华东),2014.
LI X X. Optimal Design of Well Pattern by CO2 Flooding in Low Permeability Reservoir of ZQ[D]. Qingdao: China University of Petroleum(East China),2014.
14 倪威. 水平井井网优化方法研究[D].青岛:中国石油大学(华东),2015.
NI W. The Study of Horizontal Well Pattern Optimization[D]. Qingdao: China University of Petroleum (East China),2015.
15 王军磊,贾爱林,位云生,等. 基于多井模型的压裂参数-开发井距系统优化[J]. 石油勘探与开发, 2019, 46(5):981-992.
WANG J L, JIA A L, WEI Y S, et al. Optimization workflow for stimulation-well spacing design in a multiwell pad[J]. Petroleum Exploration and Development,2019,46(5):981-992.
16 位云生,王军磊,齐亚东,等.页岩气井网井距优化[J].天然气工业,2018,38(4):129-137.
WEI Y S, WAND J L, QI Y D, et al. Optimization of shale gas well pattern and spacing[J]. Natural Gas Industry,2018,38(4):129-137.
17 BHATTACHARYA S, NIKOLAOU M. Comprehensive optimization methodology for stimulation design of low-permeability unconventional gas reservoirs[J]. Spe Journal,2016,21(3):947-964.
18 王吉晨. 黑A区块压裂水平井井网优化研究[D].大庆:东北石油大学,2016.
WANG J C. The Study on Fractured Horizontal Well Pattern Optimization of the HEI A Block[D]. Daqing:Northeast Petroleum University, 2016.
19 BRONI-BEDIAKO E, ISSAKA FUSEINI N, AYITEY AKOTO R N, et al. Application of intelligent well completion in optimising oil production from oil rim reservoirs[J].Advances in Geo-Energy Research,2019,3(4):343-354. doi:10.26804/ ager.2019.04.01.
doi: 10.26804/ ager.2019.04.01
20 ONWUNALU J E, DURLOFSY L J. A new well pattern optimization procedure for large-scale field development[J]. Society of Petroleum Engineers, 2011, 16(3):594-607
21 陈玉雪. 智能井网优化理论与应用[D].青岛:中国石油大学(华东),2013.
CHEN Y X. The Study and Application of Smart Well Pattern Optimization[D]. Qingdao: China University of Petroleum (East China), 2013.
22 赵辉,李阳,康志江.油藏开发生产鲁棒优化方法[J].石油学报,2013,34(5):947-953.
ZHAO H, LI Y, KANG Z J. Robust optimization in oil reservoir production[J].Acta Petrolei Sinica,2013,34(5): 947-953.
23 赵辉,曹琳,李阳,等.基于改进随机扰动近似算法的油藏生产优化[J].石油学报,2011,32(6):1031-1036.
ZHAO H, CAO L, LI Y, et al. Production optimization of oil reservoirs based on an improved simultaneous perturbation stochastic approximation algorithm[J].Acta Petrolei Sinica, 2011, 32(6):1031-1036.
[1] 李奇, 高树生, 刘华勋, 叶礼友, 吴泓辉, 朱文卿, 张杰, 杨懿, 杨茂红. 致密砂岩气藏井网加密与采收率评价[J]. 天然气地球科学, 2020, 31(6): 865-876.
[2] 付斌, 李进步, 张晨, 史红然. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-150.
[3] 沈骋, 赵金洲, 任岚, 范宇. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945.
[4] 张晗. 四川盆地龙马溪组页岩储层缝网导流能力优化[J]. 天然气地球科学, 2019, 30(7): 955-962.
[5] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[6] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[7] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[8] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[9] 张芨强,雷霄,张乔良,薛国庆,汤明光. 低渗透气藏产水压裂水平井产能评价[J]. 天然气地球科学, 2019, 30(12): 1701-1708.
[10] 罗红文,李海涛,蒋贝贝,李颖,卢宇. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法[J]. 天然气地球科学, 2019, 30(11): 1639-1645.
[11] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[12] 任茜莹, 代金友, 穆中奇. 气藏采收率影响因素研究与启示——以靖边气田A井区为例[J]. 天然气地球科学, 2018, 29(9): 1376-1382.
[13] 曾凡辉, 王小魏, 郭建春, 郑继刚, 李亚州, 向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[14] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[15] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!