天然气地球科学 ›› 2020, Vol. 31 ›› Issue (4): 447–461.doi: 10.11764/j.issn.1672-1926.2020.01.005

• 天然气地球化学 •    下一篇

四川盆地中泥盆统和中二叠统天然气地球化学特征及成因

谢增业1,2(),杨春龙1,2,董才源1,2,戴鑫3,张璐1,2,国建英1,2,郭泽清1,2,李志生1,2,李谨1,2,齐雪宁1,2   

  1. 1.中国石油勘探开发研究院,北京 100083
    2.中国石油天然气集团有限公司天然气成藏与开发重点实验室,河北 廊坊 065007
    3.中国石油西南油气田公司勘探开发研究院,四川 成都 610041
  • 收稿日期:2019-08-04 修回日期:2020-01-24 出版日期:2020-04-10 发布日期:2020-04-26
  • 作者简介:谢增业(1965-),男,广东大埔人,高级工程师,博士,主要从事油气地球化学和油气成藏综合研究.E-mail:xiezengye69@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”(2016ZX05007-003);中国科学院战略性先导科技专项(A类)(XDA14010403);中国石油股份公司科技项目(2016B-0602)

Geochemical characteristics and genesis of Middle Devonian and Middle Permian natural gas in Sichuan Basin, China

Zeng-ye XIE1,2(),Chun-long YANG1,2,Cai-yuan DONG1,2,Xin DAI3,Lu ZHANG1,2,Jian-ying GUO1,2,Ze-qing GUO1,2,Zhi-sheng LI1,2,Jin LI1,2,Xue-ning QI1,2   

  1. 1.Research Institute of Petroleum Exploration & Development, Beijing 100083, China
    2.Key Laboratory of Gas Reservoir Formation and Development, CNPC, Langfang 065007, China
    3.Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu 610041, China
  • Received:2019-08-04 Revised:2020-01-24 Online:2020-04-10 Published:2020-04-26
  • Supported by:
    The China National Science and Technology Major Project(2016ZX05007-003);The Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010403);The China National Petroleum Corporation Science and Technology Project(2016B-0602)

摘要:

中泥盆统和中二叠统是近年四川盆地天然气勘探获得重大突破的领域,但其天然气来源尚不明确,影响下一步勘探部署决策。开展了中泥盆统和中二叠统天然气地球化学、储层沥青及烃源岩生物标志物等特征的综合研究。结果表明:①中泥盆统和中二叠统天然气均属于二次裂解的干气,甲烷含量>86%,含少量乙烷、丙烷等烃类气体及少量的氮气、二氧化碳、硫化氢等非烃气体,不同区域的天然气成熟度存在差别;②天然气的δ13C1值为-35.7‰~-27.3‰、δ13C2值为-38.7‰~-26.6‰、δ13C3值为-37‰~-26.5‰、δ2HCH4值为-141‰~-125‰、δ2HC2H6值为 -164‰~-112‰,为腐泥型气和以腐泥型为主的混合型气;③不同区域天然气δ13C1值、δ13C2值和δ2HCH4值的差异,与其来源于不同时代烃源岩贡献比例大小有关。川西北地区双鱼石构造中泥盆统和中二叠统、川西南部地区中二叠统、川中古隆起中二叠统天然气主要源于寒武系筇竹寺组和中下二叠统烃源岩,川西南部中上二叠统火山岩天然气主要源于筇竹寺组烃源岩,川西北地区河湾场构造、川东地区和川南地区中二叠统天然气主要源于志留系龙马溪组烃源岩。研究成果对四川盆地中泥盆统和中二叠统下步天然气勘探部署决策具有重要的指导意义。

关键词: 中泥盆统, 中二叠统, 天然气成因, 烃源岩, 地球化学, 火山岩, 四川盆地

Abstract:

Major breakthroughs have been made for natural gas exploration of Middle Devonian and Middle Permian formations in Sichuan Basin in recent years, but its natural gas source is still not clear, affecting the next exploration deployment decision. A comprehensive study is conducted on the geochemical characteristics of Middle Devonian and Middle Permian natural gas, the biomarkers of reservoir bitumen and source rocks. The results show that these natural gases are secondary cracking dry gas, including more than 86% of methane content, a small amount of ethane, propane and non-hydrocarbon gas such as nitrogen, carbon dioxide and hydrogen sulfide. The natural gas maturity varies slightly in different regions. The values of natural gas δ13C1=-35.7‰ to -27.3‰, δ13C2=-38.7‰ to -26.6‰, δ13C3=-37‰ to -26.5‰, and δ2HCH4=-141‰ to -138‰, δ2HC2H6=-164‰ to -112‰, indicate the genetic type of natural gas is the sapropelic type and the mixture type dominated by sapropelic type. The difference of natural gas values of δ13C1, δ13C2 and δ2HCH4 in different regions is related to the contribution ratio of source rocks from different ages. The gases of Middle Devonian and Middle Permian of Shuangyushi Structure in Northwest Sichuan, Middle Permian of Southwest Sichuan and Middle Permian of Paleo-uplift in Central Sichuan are mainly derived from Cambrian Qiongzhusi Formation and Middle-Lower Permian source rocks. Middle-Upper Permian natural gases of volcanic reservoir in Southwest Sichuan is mainly from Qiongzhusi source rock. Middle Permian natural gases of Hewanchang structure in Northwest Sichuan, Eastern and Southern Sichuan are mainly derived from Silurian Longmaxi source rock. The research results have important guiding significance for developing exploration and deployment solutions for natural gas of Middle Devonian and Middle Permian formation in Sichuan Basin.

Key words: Middle Devonian, Middle Permian, Genesis of natural gas, Source rock, Geochemistry, Volcanic rock, Sichuan Basin

中图分类号: 

  • TE122.1

图 1

四川盆地中泥盆统和中二叠统气田与重点气井分布"

图2

四川盆地中泥盆统和中二叠统气藏主要相关烃源岩厚度分布"

表1

四川盆地中泥盆统、中二叠统天然气组分及碳氢同位素数据(续表)"

地区井号深度/m层位主 要 组 分/%H2S/(g/m3)

干燥

系数

δ13C/‰(VPDB)δ2H/‰(VSMOW)资料来源
CH4C2H6C3H8CO2N2HeH2H2SCH4C2H6C3H8CH4C2H6
川西北河23 348茅口组97.080.650.060.361.70.040.010.050.750.992 3-35.7-33.4-29.1-136本文
龙探15 879栖霞组96.220.150.011.691.020.020.010.888.890.998 4-28.8-27.3-31.8-141
龙004?X16 161茅口组98.100.140.010.480.720.020.010.5413.880.998 5-27.3-28.2-31.4-135
矿14 210茅口组94.580.180.013.480.530.031.190未测0.997 1-31.0-30.9-27.7-132-112
双探25 382栖霞组—茅口组86.890.510.0811.490.560.020.010.366.570.997 1-31.8-26.6-132
双探17 212栖霞组97.060.110.011.820.870.020.1204.850.997 8-30.1-27.4-139
双探16 853茅口组97.240.140.012.350.260.0100.020.310.998 5-29.7-29.9-32-137
双探37 443栖霞组95.60.100.011.870.880.0200.085.670.998 9-30-27.9-138文献[11]
双探77 631栖霞组97.240.100.011.380.940.020.050.275.900.998 9-30.2-28.1-29.5-134
双探87 312栖霞组95.970.100.010.912.330.0200.675.850.998 9-29.8-27.8-30.2-139本文
双探127 064栖霞组96.360.110.011.750.710.020.041.0110.620.998 8-30.1-27.2-30.1-134
双鱼001?17 173栖霞组97.100.110.011.560.830.020.010.38未测0.998 8-29.8-28-135
龙岗707 291茅口组92.490.070.016.150.280.020.100.9012.840.999 3-29.5-27.9-136
双探37 569观雾山组96.960.230.012.120.610.020.0500.010.997 5-32.3-28.4-139文献[11]
双探77 716观雾山组91.960.130.016.360.980.040.270.272.510.998 5-30.7-28.6-136本文
川西南大深15 262茅口组97.150.180.010.941.670.0300未测0.998 0-32.2-29.9-135本文
大深001?X15 200栖霞组—茅口组97.670.170.011.021.090.0300未测0.998 2-32.4-29.6-135
大深001?X45 106茅口组96.550.160.011.151.590.030.030.03未测0.998 2-31-29.8-136
永探15 628玄武岩组99.080.360.040.050.460.01000.000 610.996 0-32.3-34.3-135-120
川中高石184 278栖霞组94.470.160.012.770.280.020.162.1432.470.998 2-31.7-33.7-29.3-128本文
高石194 019栖霞组94.070.510.072.670.450.020.082.1230.110.993 9-33.4-36.3-33.4-137
磨溪31?X14 460栖霞组95.50.070.012.080.400.020.111.6725.360.999 2-31.1-30.5-127
磨溪424 651栖霞组95.510.100.012.640.480.010.261.7226.110.998 9-32.4-31.9-32.8-131
磨溪1034 637栖霞组92.330.150.014.380.350.010.182.6039.520.998 3-32.9-32.9-33.2-131
磨溪394 410茅口组95.130.160.013.240.330.030.11.0015.200.998 2-32.2-33.1-131
南充15 045茅口组96.570.130.012.350.240.020.151.7125.940.998 6-30.9-31.1-30.3-133
南充36 010茅口组95.40.160.014.930.130.020.051.5523.350.998 2-30.3-30.3-31.4-125
南充74 433茅口组94.890.140.013.050.530.020.020.8913.530.998 5-31.6-135
川东卧1274 251栖霞组95.790.210.022.770.260.010.950未测0.997 6-32.9-35-132本文
卧913 843茅口组98.850.630.030.160.280.0200.02未测0.993 4-33.2-32.6-27.0-125
川东新34 049茅口组98.470.50.080.310.560.020.030.010.0950.993 9-32-36.8-35.0-136本文
卧673 275茅口组96.250.290.032.880.250.010.010.253.350.996 5-32-32.5-26.5-125
卧833 273茅口组97.300.330.032.110.210.0100未测0.996 8-32.9-33.8-26.8-127
卧924 050茅口组97.410.440.041.530.550.0300未测0.995 1-33.5-36.6-33.0
卧933 442茅口组95.040.260.023.880.290.0100.35未测0.997 1-32.5-34.6-28.5
双174 110茅口组98.360.290.020.770.540.0200.01未测0.997 0-32-34.3-29.6-132-127
池43 269茅口组97.660.210.011.70.280.020.020.02未测0.997 6-31.5-36.2-128
双114 088茅口组98.350.310.030.790.240.010.010.223.390.996 3-31.7-33.4-27.1-126
五探14 830茅口组97.20.330.011.130.70.0300.64.360.996 4-31.9-36.1-36.4-126
川南昌12 274茅口组96.810.620.111.740.440.020.010.36未测0.992 5-33.2-35.3-34.1-137-151本文
昌82 752茅口组98.480.760.2000.530.030.010未测0.990 3-35.3-37.7-36-141-156
家192 372茅口组96.200.670.162.470.450.020.040未测0.991 4-35-38.7-37-141-156
分52 783茅口组97.290.660.101.250.380.0300.30未测0.992 2-33.7-36.5-33.1-137-164
中72 481茅口组97.330.940.200.730.490.030.010.25未测0.985 1-32.6-36.9-33.5-136
包003-13 295茅口组96.490.910.251.760.480.020.020未测0.987 5-33.1-36.1-32.8-136-139
包313 323茅口组97.080.670.131.740.310.020.050未测0.991 8-33.3-35.4-31.4-134-147
包413 400茅口组97.250.840.111.450.290.020.030未测0.990 3-33.5-35.9-32.2-138-146
包423 257茅口组96.220.630.142.640.310.020.040未测0.992 0-33.8-36-32.4-138-148
包463 149茅口组97.190.650.111.660.320.020.070未测0.990 5-34.3-36-32.2-138-150
白002-13 470茅口组97.130.890.171.270.410.030.010未测0.988 3-31.8-35.8-31.2-136-146
寺122 962茅口组97.670.850.190.720.470.0300.010.120.988 8-32-36.7-32.8-133-156
自22 202栖霞组—茅口组97.040.50.071.590.760.020.010.020.30.994 2-34.7-35-33.2-136
牟82 501茅口组97.420.870.120.930.60.0300.010.130.989 6-34.3-32.7-29.3-141-140
牟92 490茅口组97.080.940.131.290.490.030.010.010.130.988 9-33.8-32.2-29.5-140-142
牟112 745茅口组97.210.900.131.180.520.0300.010.080.989 3-34.9-32-29.6-139-132
付52 210茅口组97.580.760.090.890.650.0400.030.390.991 4-33.6-33.4-30.9-138-155
付312 457茅口组97.610.770.080.90.60.040.010.020.340.991 3-33.8-34.5-30.7-138-154

图3

四川盆地中泥盆统和中二叠统天然气组分及成因判识(a)干酪根降解气与原油裂解气判识图(图版据文献[22]);(b)甲烷与重烃气体含量关系图;(c)CO2与N2含量关系图;(d)硫化氢含量与深度关系图"

图4

四川盆地天然气碳同位素及其与相关因素关系(a) δ13C1-δ13C2关系图;(b)δ13C1-C2+/C1-5关系图;(c)δ13C2-C2+/C1-5关系图;(d)△13C2-1—δ13C2关系图"

图5

四川盆地中泥盆统和中二叠统天然气氢同位素与湿度关系"

图6

四川盆地中泥盆统和中二叠统天然气轻烃判识图版(a) 干酪根降解气与原油裂解气判识图版(图版据文献[40],高磨灯影组、龙王庙组数据引自文献[41]);(b) 聚集型裂解气与分散型裂解气判识图版(图版据文献[42])"

图7

四川盆地烃源岩与沥青甾烷、萜烷特征"

图8

四川盆地中泥盆统和中二叠统沥青与相关烃源岩生物标志物参数对比(据文献[11]补充修改)"

1 杨光,李国辉,李楠,等. 四川盆地多层系油气成藏特征与富集规律[J]. 天然气工业,2016,36(11):1-11.
YANG G, LI G H, LI N,et al. Hydrocarbon accumulation characteristics and enrichment laws of multi-layered reservoirs in the Sichuan Basin[J]. Natural Gas Industry,2016,36(11):1-11.
2 马新华, 杨雨, 文龙, 等. 四川盆地海相碳酸盐岩大中型气田分布规律及勘探方向[J].石油勘探与开发,2019,46(1): 1-13.
MA X H,YANG Y,WEN L,et al. Distribution and exploration direction of medium-and large-sized marine carbonate gas fields in Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2019,46(1): 1-13.
3 沈浩,汪华,文龙,等. 四川盆地西北部上古生界天然气勘探前景[J]. 天然气工业,2016,36(8):11-21.
SHEN H,WANG H,WEN L,et al. Natural gas exploration prospect in the Upper Paleozoic strata, NW Sichuan Basin[J]. Natural Gas Industry,2016,36(8):11-21.
4 马新华,杨雨,张健,等. 四川盆地二叠系火山碎屑岩气藏勘探重大发现及其启示[J]. 天然气工业,2019,39(2):1-8.
MA X H, YANG Y, ZHANG J,et al. A major discovery in Permian volcanic rock gas reservoir exploration in the Sichuan Basin and its implications[J]. Natural Gas Industry, 2019, 39(2):1-8.
5 罗冰,夏茂龙,汪华,等. 四川盆地西部二叠系火山岩气藏成藏条件分析[J]. 天然气工业,2019,39(2):9-16.
LUO B, XIA M L, WANG H, et al. Hydrocarbon accumulation conditions of Permian volcanic gas reservoirs in the western Sichuan Basin[J]. Natural Gas Industry,2019,39(2):9-16.
6 饶丹,秦建中,腾格尔,等. 川西北广元地区海相层系油苗和沥青来源分析[J]. 石油实验地质,2008,30(6):596-599, 605.
RAO D,QIN J Z,TENGER, et al. Source analysis of oil seepage and bitumen originating from marine layer strata in Guangyuan area, the Northwest Sichuan Basin[J]. Petroleum Geology & Experiment,2008,30(6):596-599, 605.
7 刘春,张惠良,沈安江,等. 川西北地区泥盆系油砂岩地球化学特征及成因[J]. 石油学报,2010,31(2):253-258.
LIU C,ZHANG H L,SHEN A J,et al. Geochemistry characteristics and origin of the Devonian oil sandstone in the northwest of Sichuan Basin[J]. Acta Petrolei Sinica,2010,31(2):253-258.
8 王自翔,王永莉,吴保祥,等. 川西北低成熟沥青产气特征及生烃动力学应用[J]. 石油学报,2016,37(3): 339-347.
WANG Z X, WANG Y L, WU B X, et al. Characteristics of gas generation and the application of hydrocarbon generation kinetics from low-maturity asphalt in northwestern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(3): 339-347.
9 周文,邓虎成,丘东洲,等. 川西北天井山构造泥盆系古油藏的发现及意义[J]. 成都理工大学学报:自然科学版,2007,34(4):413-417.
ZHOU W,DENG H C,QIU D Z,et al. The discovery and significance of the Devonian paleo-reservoir in Tianjingshan structure of the Northwest Sichuan, China[J]. Journal of Chengdu University of Technology:Science &Technology Edition,2007,34(4):413-417.
10 邓虎成,周文,丘东洲,等. 川西北天井山构造泥盆系油砂成矿条件与资源评价[J]. 吉林大学学报:地球科学版,2008,38(1):69-75.
DENG H C,ZHOU W,QIU D Z, et al. Oil sand forming conditions and evaluation on resource of oil sand in Tianjingshan structure in northwest part of Sichuan Basin[J]. Journal of Jilin University:Earth Science Edition,2008,38(1):69-75.
11 谢增业, 张本健, 杨春龙,等. 川西北地区泥盆系天然气沥青地球化学特征及来源示踪[J]. 石油学报, 2018, 39(10):1103-1118.
XIE Z Y,ZHANG B J,YANG C L,et al. Geochemical characteristics and source trace of the Devonian natural gas and bitumen in Northwestern Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(10):1103-1118.
12 黄籍中, 张子枢. 四川盆地阳新统天然气的成因[J]. 石油勘探与开发, 1982,9(1):15-28.
HUANG J Z,ZHANG Z S. Origin of naturai gas in the Yangxin limastone(Lower Permain) of Sichuan Basin[J]. Petroleum Exploration and Development,1982,9(1):15-28.
13 朱光有, 张水昌, 梁英波,等. 四川盆地天然气特征及气源[J]. 地学前缘, 2006, 13(2):234-248.
ZHU G Y, ZHANG S C, LIANG Y B, et al. The characteristics of natural gas in Sichuan Basin and its sources[J]. Earth Science Frontiers, 2006, 13(2):234-248.
14 王兰生,苟学敏,刘国瑜,等.四川盆地天然气的有机地球化学特征及其成因[J].沉积学报,1997,15(2):49-53.
WANG L S, GOU X M, LIU G Y, et al. The organic geochemistry and origin of natural gases in Sichuan Basin[J]. Acta Sedimentologica Sinica, 1997,15(2):49-53.
15 黄东, 刘全洲, 杨跃明, 等. 川西北部地区下二叠统茅口组油苗地球化学特征及油源研究[J]. 石油实验地质, 2011, 33(6):617-623.
HUANG D,LIU Q Z,YANG Y M,et al. Geochemical characteristics of oil seepage and studies of oil source in Maokou Formation,Lower Permian,Northwestern Sichuan[J]. Petroleum Geology & Experiment,2011, 33(6):617-623.
16 蔡开平, 王应蓉, 杨跃明,等. 川西北广旺地区二、三叠系烃源岩评价及气源初探[J]. 天然气工业, 2003, 23(2):10-14.
CAI K P,WANG Y R, YANG Y M, et al. Evaluation of hydrocarbon source rocks in Permian and Triassic at Guangyuan-Wangcang region in Northwest Sichuan Basin and a Perimary discussion on gas source[J]. Natural Gas Industry,2003, 23(2):10-14.
17 张健,周刚,张光荣,等. 四川盆地中二叠统天然气地质特征与勘探方向[J]. 天然气工业, 2018, 38(1):10-20.
ZHANG J,ZHOU G,ZHANG G R,et al. Geological characteristics and exploration orientation of Mid-Permian natural gas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(1):10-20.
18 董才源,谢增业,朱华,等. 川中地区中二叠统气源新认识及成藏模式[J]. 西安石油大学学报:自然科学版,2017,32(4):18-23, 31.
DONG C Y,XIE Z Y,ZHU H,et al. New insight for gas source and gas accumulation modes of middle Permian in central Sichuan Basin[J]. Journal of Xi'an Shiyou University:Natural Science Edition,2017,32 (4): 18-23, 31.
19 熊连桥,姚根顺,倪超,等. 龙门山地区中泥盆统观雾山组岩相古地理恢复[J].石油学报,2017,38(12): 1356-1370.
XIONG L Q,YAO G S,NI C, et al. Lithofacies palaeogeography restoration of the Middle Devonian Guanwushan Formation in the Longmenshan area[J]. Acta Petrolei Sinica, 2017, 38(12): 1356-1370.
20 王鼐,魏国齐,杨威,等. 川西北构造样式特征及其油气地质意义[J]. 中国石油勘探,2016,21(6):26-33.
WANG N, WEI G Q, YANG W, et al. Characteristics and geological significance of structural patterns in Northwest Sichuan Basin[J]. China Petroleum Exploration,2016,21(6):26-33.
21 张璐,谢增业,王志宏,等. 四川盆地高石梯—磨溪地区震旦系—寒武系气藏盖层特征及封闭能力评价[J]. 天然气地球科学,2015,26(5):798-804.
ZHANG L,XIE Z Y,WANG Z H,et al. Caprock characteristics and sealing ability evaluation of Sinian-Cambrian gas reservoirs in Gaoshiti Moxi area,Sichuan Basin[J]. Natural Gas Geoscience,2015,26(5):798-804.
22 谢增业,李志生,魏国齐,等. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J].天然气地球科学,2016,27(6):1057-1066.
XIE Z Y,LI Z S,WEI G Q,et al. Experimental research on the potential of sapropelic kerogen cracking gas and discrimination of oil cracking gas[J]. Natural Gas Geoscience,2016,27(6):1057-1066.
23 魏国齐,谢增业,宋家荣,等. 四川盆地川中古隆起震旦系—寒武系天然气特征及成因[J]. 石油勘探与开发,2015,42(5):1-10.
WEI G Q,XIE Z Y,SONG J R,et al. Features and origin of natural gas in the Sinian-Cambrian of central Sichuan paleo-uplift, Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2015,42(5):1-10.
24 CAI C F, XIE Z Y, WORDEN R H, et al. Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation ease Sichuan Basin, China: Towards prediction of fatal H2S concentrations[J]. Marine and Petroleum Geology, 2004, 21(10):1265-1279.
25 LI J,XIE Z Y,DAI J X,et al. Geochemistry and origin of sour gas accumulations in the northeastern Sichuan Basin, SW China[J]. Organic Geochemistry,2005,36(12):1703-1716.
26 谢增业,田世澄,李剑,等. 川东北飞仙关组鲕滩天然气地球化学特征与成因[J].地球化学,2004,33(6):567-573.
XIE Z Y, TIAN S C,LI J, et al. Geochemical characteristics and origin of Feixianguan Formation oolitic shoal natural gases in northeastern Sichuan Basin[J]. Geochimica, 2004,33(6):567-573.
27 王兰生,陈盛吉,杨家静,等. 川东石炭系天然气成藏的地球化学模式[J].天然气工业,2002, 22(增刊):102-106.
WANG L S, CHEN S J, YANG J J, et al. Geochemical mode of gas reservoir formation in Carboniferous in east Sichuan[J]. Natural Gas Industry,2002,22(supplement):102-106.
28 沈平,徐人芬,党录瑞,等. 中国海相油气田勘探实例之十一:四川盆地五百梯石炭系气田的勘探与发现[J]. 海相油气地质,2009,14(2):71-78.
SHEN P,XU R F,DANG L R, et al. Cases of discovery and exploration of marine fields in China (Part 11):Wubaiti Carboniferous gas field in Sichuan Basin[J].Marine Origin Petroleum Geology, 2009,14(2):71-78.
29 邹才能,杜金虎,徐春春,等. 四川盆地震旦系—寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发,2014,41(3):278-293.
ZOU C N,DU J H, XU C C,et al. Formation, distribution, resource potential and discovery of the Sinian-Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development,2014,41(3): 278-293.
30 范小军. 川东北元坝地区长兴组与飞仙关组天然气成藏差异性成因[J].天然气工业,2012,32(6):15-20.
FAN X J. Causes of differences of natural gas pooling between the Changxing Formation and the Feixianguan Formation in Yuanba,Sichuan Basin[J]. Natural Gas Industry, 2012,32(6):15-20.
31 郭旭升,郭彤楼,黄仁春, 等. 中国海相油气田勘探实例之十六:四川盆地元坝大气田的发现与勘探[J]. 海相油气地质,2014,19(4):57-64.
GUO X S, GUO T L,HUANG R C, et al. Cases of discovery and exploration of marine fields in China (Part 16):Yuanba gas field in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2014,19(4):57-64.
32 赵文智,徐春春,王铜山,等. 四川盆地龙岗和罗家寨—普光地区二、三叠系长兴—飞仙关组礁滩体天然气成藏对比研究与意义[J]. 科学通报,2011,56(28-29):2404-2412.
ZHAO W Z, XU C C, WANG T S, et al. Comparative study of gas accumulations in the Permian Changxing reefs and Triassic Feixianguan oolitic reservoirs between Longgang and Luojiazhai-Puguang in the Sichuan Basin[J].Chinese Science Bulletin, 2011, 56(28-29):2404-2412.
33 秦胜飞,杨雨,吕芳,等. 四川盆地龙岗气田长兴组和飞仙关组气藏天然气来源[J].天然气地球科学,2016,27(1):41-49.
QIN S F, YANG Y, LÜ F, et al. The gas origin in Changxing-Feixianguan gas pools of Longgang Gasfield in Sichuan Basin[J]. Natural Gas Geoscience,2016,27(1):41-49.
34 LI Y, CHEN S J, WANG Y X,et al. The origin and source of the Devonian natural gas in the northwestern Sichuan Basin, SW China[J]. Journal of Petroleum Science and Engineering, 2019,181(10):106-259.
35 魏国齐,董才源,谢增业,等. 川西北地区ST3井泥盆系油气地球化学特征及来源[J]. 中国石油大学学报:自然科学版,2019,43(4):31-39.
WEI G Q,DONG C Y,XIE Z Y, et al. Oil and gas geochemical characteristics and source of Devonian of Well ST3 in Northewest Sichuan Basin[J]. Journal of China University of Petroleum, 2019,43(4):31-39.
36 NI Y Y, LIAO F R, GAO J L, et al. Hydrogen isotopes of hydrocarbon gases from different organic facies of the Zhongba gas field, Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 176(8):776-786.
37 SCHOELL M. The hydrogen and carbon isotopic compositions of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 1980, 44(5):649-662.
38 XIE Z Y, LI J, LI Z S, et al. Geochemical characteristics of the Upper Triassic Xujiahe Formation in Sichuan Basin, China and its significance for hydrocarbon accumulation[J]. Acta Geo- logica Sinica:English Edition,2017,91(5):1836-1854.
39 NI Y Y, DAI J X, ZHU G Y, et al. Stable hydrogen and carbon isotopic ratios of coal-derived and oil-derived gases: A case study in the Tarim Basin, NW China[J]. International Journal of Coal Geology,2013,116-117(9):302-313.
40 胡国艺,肖中尧,罗霞,等. 两种裂解气中轻烃组成差异性及其应用[J]. 天然气工业, 2005, 25(9):23-25.
HU G Y,XIAO Z Y,LUO X,et al. Light hydrocarbon composition difference between two kinds of cracked gases and its application [J]. Natural Gas Industry,2005, 25(9):23-25.
41 魏国齐,谢增业,白贵林,等. 四川盆地震旦系一下古生界天然气地球化学特征及成因判识[J]. 天然气工业, 2014, 34(3):44-49.
WEI G Q,XIE Z Y,BAI G L,et al. Organic geochemical characteristics and origin of natural gas in the Sinian Lower Paleozoic reservoirs,Sichuan Basin[J]. Natural Gas Industry,2014, 34(3):44-49.
42 李剑,李志生,王晓波,等. 多元天然气成因判识新指标及图版[J]. 石油勘探与开发, 2017,44(4): 503-512.
LI J, LI Z S, WANG X B, et al. New indexes and charts for genesis identification of multiple natural gases[J]. Petroleum Exploration and Development,2017,44(4): 503-512.
43 SEIFERT W K, MOLDOWAN J M. The effect of biodegradation on steranes and terpanes in crude oils[J] .Geochemica et Cosmochimica Acta,1979,43 (1):111-126.
44 PALACAS J G,MONOPOLIS D,NICOLAOU C A, et al. Geochemical correlation of surface and subsurface oils,Western Greece[J].Organic Geochemistry,1986,10(1-3):417-423.
45 PETERS K E,MOLDOWAN J M, SUNDARARAMAN P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members[J].Organic Geochemistry, 1990,15 (3):249-265.
46 王万春,王晓锋,郑建京,等. 鄂尔多斯盆地西南缘奥陶系泥页岩与碳酸盐岩生物标志物特征对比[J]. 沉积学报,2016,34(2):404-414.
WANG W C, WANG X F, ZHENG J J, et al. Contrasting biomarker characteristics of Ordovician mud shale and carbonate rocks in south-western margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2016,34(2):404-414.
47 曾凡刚,程克明. 华北地区下古生界海相烃源岩饱和烃生物标志物地球化学特征[J]. 地质地球化学,1998,26(3):25-32.
ZENG F G, CHENG K M. Geochemical characteristics of saturated hydrocarbon biomarkers from Lower Palaeozoic marine carbonate rocks in north China[J]. Geology-Geochemistry,1998,26(3):25-32.
48 MOLDOWAN J M,FAGO F J,CARLSON R M K,et al. Rearranged hopanes in sediments and petroleum[J].Geochimica et Cosmochimica Acta, 1991,55 (11):3333-3353.
49 FARRIMOND P,BEVAN J C,BISHOP A N. Hopanoid hydrocarbon maturation by an igneous intrusion[J].Organic Geochemistry,1996,25(3-4):149-164.
50 NYTOFT H P,LUTNæS B F, JOHANSEN J E. 28-nor-spergulanes, a novel series of rearranged hopanes[J].Organic Geochemistry,2006,37(7):772-786.
51 包建平,王铁冠,陈发景. 烃源岩中烷基二苯并噻吩组成及其地球化学意义[J]. 石油大学学报:自然科学版,1996,20(1):19-23.
BAO J P, WANG T G, CHEN F J. Relative abundance of alkyl dibenzothiophene in the source rocks and their geochemical significances[J]. Journal of the University of Petroleum, China, 1996,20(1):19-23.
[1] 朱明,梁则亮,马健,庞志超,王俊,焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[2] 周国晓,魏国齐,胡国艺,武赛军,田亚杰,董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[3] 杨帅杰,王伟锋,张道亮,付小东,张建勇,李文正. 川东北地区筇竹寺组优质烃源岩分布特征及形成环境[J]. 天然气地球科学, 2020, 31(4): 507-517.
[4] 韩杨, 高先志, 周飞, 王波, 朱军, 段立锋. 柴达木盆地北缘腹部侏罗系烃源岩热演化特征及其对油气成藏影响[J]. 天然气地球科学, 2020, 31(3): 358-369.
[5] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[6] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[7] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[8] 苏东旭, 王忠泉, 袁云峰, 韩宝. 准噶尔盆地玛湖凹陷南斜坡二叠系风城组风化壳型火山岩储层特征及控制因素[J]. 天然气地球科学, 2020, 31(2): 209-219.
[9] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[10] 杨威, 魏国齐, 李德江, 刘满仓, 谢武仁, 金惠, 沈珏红, 郝翠果, 王小丹. 四川盆地志留系小河坝组砂岩油气地质特征与勘探方向[J]. 天然气地球科学, 2020, 31(1): 1-12.
[11] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[12] 蔡珺君, 梁锋, 占天慧, 王俐佳, 唐青松, 邓庄, 甘笑非. 动静态资料在四川盆地磨溪—高石梯地区震旦系碳酸盐岩储层类型识别中的应用[J]. 天然气地球科学, 2020, 31(1): 132-142.
[13] 胡维强, 李洋冰, 陈鑫, 马立涛, 刘成, 黄英, 乔方, 王朵, 刘再振. 鄂尔多斯盆地临兴地区上古生界天然气成因及来源[J]. 天然气地球科学, 2020, 31(1): 26-36.
[14] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[15] 赵晗, 马中良, 郑伦举, 谭静强, 李群, 王张虎, 宁传祥. 有限空间温压共控热模拟油气产物地球化学特征[J]. 天然气地球科学, 2020, 31(1): 73-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曾溅辉 彭继林 邱楠生 朱志强. 砂-泥岩界面碳酸盐溶解-沉淀反应及其石油地质意义[J]. 天然气地球科学, 2006, 17(6): 760 -764 .
[2] 王宁,李荣西,王香增,张丽霞,赵帮胜,覃小丽,李佳佳,程敬华. 海陆过渡相页岩气形成热模拟实验研究[J]. 天然气地球科学, 2016, 27(1): 189 -197 .
[3] 吴浩, 刘锐娥, 纪友亮, 张春林, 周勇, 张云钊. 典型致密砂岩气储层孔隙结构分类及其意义——以鄂尔多斯盆地盒8段为例[J]. 天然气地球科学, 2016, 27(5): 835 -843 .
[4] 陈文浩, 王志章, 潘潞, 李汉林, 侯加根. 致密砂岩储层流动单元定量识别方法探讨[J]. 天然气地球科学, 2016, 27(5): 844 -850 .
[5] 王晖,张磊,石军太,张丽霞,高潮,张亮,郭超. 鄂尔多斯盆地东南部山西组泥页岩生烃热模拟实验[J]. 天然气地球科学, 2017, 28(7): 1078 -1084 .
[6] 《天然气地球科学》-期封面及目次. 《天然气地球科学》2018-9期封面及目次[J]. 天然气地球科学, 2018, 29(9): 8091 -8092 .
[7] 彭威龙, 胡国艺, 刘全有, 贾楠, 房忱琛, 龚德瑜, 于聪, 吕玥, 王鹏威, 冯子齐. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9): 1252 -1263 .
[8] 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605 -615 .