天然气地球科学 ›› 2020, Vol. 31 ›› Issue (10): 1466–1478.doi: 10.11764/j.issn.1672-1926.2020.01.003

• 天然气勘探 • 上一篇    下一篇

塔里木盆地塔中—顺北地区柯坪塔格组高分辨率旋回层序地层划分

田双良1,2(),张立强1(),严一鸣1,李志欣3   

  1. 1.中国石油大学(华东)地球科学与技术学院,山东 青岛 266580
    2.中石化石油工程地球物理有限公司,江苏 南京 211100
    3.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2019-12-24 修回日期:2020-01-18 出版日期:2020-10-10 发布日期:2020-09-30
  • 通讯作者: 张立强 E-mail:s17010077@s.upc.edu.cn;liqiangzhangwxm@163.com
  • 作者简介:田双良(1995-),男,河南漯河人,硕士,主要从事油气藏开发地质研究.E-mail:s17010077@s.upc.edu.cn.
  • 基金资助:
    中国科学院战略先导科技专项“深层碎屑岩储层发育机理与分布规律”(XDA14010202);国家油气重大专项“深层超深层油气成藏过程与勘探新领域”(2017ZX05008-004)

Stratigraphic division of high-resolution cycle sequence of Kepingtage Formation in Tazhong-Shunbei area, Tarim Basin

Shuang-liang TIAN1,2(),Li-qiang ZHANG1(),Yi-ming YAN1,Zhi-xin LI3   

  1. 1.School of Geoscience,China University of Petroleum (East China),Qingdao 266580,China
    2.Geophysics Corporation,Ltd. ,Sinopec,Nanjing 211100,China
    3.Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2019-12-24 Revised:2020-01-18 Online:2020-10-10 Published:2020-09-30
  • Contact: Li-qiang ZHANG E-mail:s17010077@s.upc.edu.cn;liqiangzhangwxm@163.com
  • Supported by:
    The Strategic Pilot Technology Project of CAS (Grant No. XDA14010202);The National Oil and Gas Major Project (Grant No.2017ZX05008-004).

摘要:

塔里木盆地塔中—顺北地区下志留统柯坪塔格组作为一套典型的海相碎屑岩沉积地层,砂泥叠置关系复杂,仅通过测井曲线形态的传统方法不利于高分辨率层序的精确划分。首先根据地震剖面与测井滤波处理曲线来识别不整合面及相关的整合面,得出长期基准面变化情况;其次用最大熵谱图与合成预测误差滤波划分中期基准面旋回边界;最后从动态最大熵谱中提取出米氏旋回参数,进一步获取带通滤波信号组和天文周期单元,划分短期基准面旋回,最终完成高分辨率层序地层的划分。柯坪塔格组识别出3种三级层序边界类型:连续海侵背景下的T1型、完整海侵—海退背景下的T2型、海退为主的T3型。目的层共划分出4个长期、16个中期以及50个短期基准面旋回。

关键词: 塔里木盆地, 塔中—顺北地区, 柯坪塔格组, 高分辨率层序地层, 滤波分析

Abstract:

As typical marine clastic sedimentary strata, the Lower Silurian Kepingtage Formation in the Tazhong-Shunbei area of Tarim Basin has a complicated sand-mud superimposed relationship. It is not conducive to the accurate division of high-resolution sequence if it is only based on logging lithology and logging curve shape. This paper identifies the unconformity surface and the related integration surface based on the seismic profile event axis and the logging filter curve, which derives the changes of long-term benchmark. The maximum entropy spectrogram and synthetic prediction error filter curve is used to divide the mid-term base-level cycle. Extract Milankovitch cycle parameters from the dynamic maximum entropy spectrum, obtain the band-pass filtered signal group and the astronomical period unit, and divide the short-term base-level cycle. Kepingtage Formation identified three types of tertiary sequence boundary types: T1 in the case of continuous transgression, T2 under the condition of complete transgression and regression, and T3 dominated by the regression, including 4 long-term, 16 medium-term, and 50 short-term data cycles. The results have indicative significance for the formation analysis of sedimentary microfacies under multi-phase hydrodynamic conditions of the target layer.

Key words: Tarim Basin, Tazhong-Shunbei area, Kepingtage Formation, High-resolution sequence stra-tigraphy, Filter analysisFoundation items:

中图分类号: 

  • TE121.3+4

图1

塔里木盆地研究区位置示意"

表1

塔里木盆地志留系地质年代表"

底界地质年龄/Ma
志留系上统缺失
中统依木干他乌组上段砂岩段
下段泥岩段427.4
下统塔塔埃尔塔格组上段砂岩段430.5
下段红色泥岩段433.4
柯坪塔格组上段沥青砂岩段438.5
中段泥岩段440.8
下段砂岩段443.7

图2

塔中—顺南地区下志留统三级层序识别剖面"

图3

顺托地区S4井下志留统频谱分析与合成预测滤波划分四级层序"

图4

顺托地区S1井下志留统带通滤波信号组识别基准面旋回边界"

表2

基准面旋回级次划分及层序边界识"

基准面旋回级次层序级别天文控制因素

总年限范围

/Ma

成因岩性识别测井曲线识别滤波曲线识别
长期三级层序2~3

海平面变化

构造沉降

不整合接触关系、海侵冲刷面、凝缩层自然电位、自然伽马、电阻率测井曲线的突变、基线的偏移INPEFA曲线正向拐点
中期四级层序偏心率周期0.2~1海平面变化沉积供应岩相类型或相组合在垂向剖面的转换常规测井曲线的包络线形态、圆滑程度等INPEFA曲线次级正向拐点组合、最大熵谱图各级周期同时变化
短期五级层序斜率、岁差0.08~0.4

气候变化

沉积物供应

砂/泥岩厚度旋回性变化常规测井曲线的局部组合形态,如箱型、钟型、指型等指定天文周期为单位的带通滤波曲线形态

图5

塔里木盆地S4井下志留统柯坪塔格组高分辨率层序地层划分结果"

表3

自然伽马频谱天文周期统计"

天文周期

地质旋回

偏心率/ka斜率/ka岁差/ka
长偏心率短偏心率长斜率短斜率长岁差中岁差短岁差
Sq4Sq44405804418.8
Sq434051004018.8
Sq42405100332518.8
Sq41405804230
Sq3Sq344054526
Sq3340580453123
Sq32405804028.519.6
Sq31405724630
Sq2Sq244051004428.519
Sq23405105724228.519
Sq22405804230.422
Sq21405967230.422
Sq1Sq1440550312017
Sq1340580292017
Sq124051052718.4
Sq11405100422721

表4

自然伽马地质周期参数"

四级层序厚度/m年代间隔/kaMila天文周期/ka波长/m沉积速率/(m/ka)旋回个数旋回个数(取整)
Sq4425.15240839807.90.0993.1843
444.290.0985.8626
18.81.860.09913.52114
Sq4334.4030084610011.510.1152.9893
404.530.1137.5948
18.82.180.11615.78016
161.790.11219.21819
Sq4235.7030066010011.190.1123.1903
333.70.1129.64910
252.760.11012.93513
Sq4129.10400588805.170.0655.6296
422.70.06410.77811
301.970.06614.77215
Sq3458.20900525452.940.06519.79620
261.720.06633.83734
Sq3350.30880615804.680.05910.74811
452.650.05918.98119
311.810.05827.79028
231.350.05937.25937
Sq3252.90880644804.630.05811.42511
402.250.05823.51124
28.51.610.05632.85733
19.61.130.05846.81447
Sq3151.601032397723.60.05014.33314
462.30.05022.43522
301.510.05034.17234
Sq2433.054006861007.90.0794.1844
443.530.0809.3639
28.52.260.07914.62415
191.530.08121.60122
Sq2347.655258741059.160.0875.2025
725.840.0818.1598
423.440.08213.85214
28.52.360.08320.19120
191.580.08330.15830
Sq2268.80800594806.830.08510.07310
423.570.08519.27219
30.42.520.08327.30227
221.860.08536.98937
Sq2156.85771.94651967.070.0748.0418
725.370.07510.58711
30.42.250.07425.26725
221.630.07434.87735
Sq1462.20771.71614504.030.08115.43415
312.520.08124.68225
171.360.08045.73546
Sq1352.90662.28712806.390.0808.2798
292.320.08022.80223
201.610.08132.85733
171.370.08138.61339
Sq1256.90533.9268710511.190.1075.0855
272.840.10520.03520
18.41.970.10728.88329
151.590.10635.78636
Sq1142.355006371008.950.0904.7325
423.770.09011.23311
272.370.08817.86918
211.880.09022.52623

图6

顺托—塔中地区下志留统柯坪塔格组中、上段中期基准面连井对比(N-S向)"

图7

顺托—塔中地区下志留统柯坪塔格组中期基准面连井对比(W-E向)"

1 翁雪波. 旋回地层学的地层划分方法[J].当代化工研究,2017(8):57-58.
WENG X B. Stratigraphic division method of cyclic stratigraphy[J]. Contemporary Chemical Research, 2017(8):57-58.
2 伊海生.测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报,2011,13(4):456-466.
YI H S. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks[J]. Journal of Palaeogeography, 2011, 13 (4):456-466.
3 龚一鸣,徐冉,汤中道. 广西上泥盆统轨道旋回地层与牙形石带的数字定年[J]. 中国科学:地球科学,2004,34(7):635-643.
GONG Y M, XU R, TANG Z D. Digital dating of the Upper Devonian orbiting cyclic strata and dentate belts in Guangxi [J]. Chinese Science:Earth Science, 2004, 34 (7): 635-643.
4 ANDRÉ B, LOUTRE M F, YIN Q. Total irradiation during any time interval of the year using elliptic integrals[J]. Quaternary Science Reviews, 2010, 29(17):1968-1982.
5 陈留勤. 从准层序到米级旋回——层序地层学与旋回地层学相互交融的纽带[J]. 地层学杂志,2008,32(4):447-454.
CHEN L Q. From parsequences to meter-scale cycle:The connection between sequence stratigraphy and cyclostratigraphy [J]. Journal of Stratigraphy,2008, 32 (4): 447-454.
6 郭娟娟, 吴欣松, 潘建国, 等. SK-1井下白垩统泉头组米级旋回研究[J]. 岩性油气藏,2012,24(6):38-42.
GUO J J, WU X S, PAN J G, et al. Study on meter-scale cycles of the Lower Cretaceous Quantou Formation in SK-1 Well [J]. Lithologic Reservoirs, 2012, 24 (6): 38-42.
7 MICHA R, STEPHEN P, HESSELBO, et al. Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations[J]. Earth and Planetary Science Letters, 2016,455:149-165.
8 邢凤存,白振瑞,李祯,等. 塔里木盆地早、中志留世沉积序列及其对构造—海平面变化的响应:以柯坪露头区为例[J]. 地球科学,2011,36(3):541-554.
XING F C, BAI Z R, LI Y, et al. Early-middle Silurian sedimentary sequences and their responses to tectonism and eustatic fluctuations: A case study from the outcrops in Keping area, Tarim Basin [J]. Earth Science, 2011, 36 (3): 541-554.
9 白振瑞,邢凤存,李会宪,等. 柯坪露头区柯坪塔格组河流作用为主的三角洲沉积特征及其油气勘探意义[J]. 石油与天然气地质,2012,33(2):217-224.
BAI Z R, XING F C, LI H X, et al. Sedimentary features of fluvial-dominated delta in the Kepingtage Formation in Keping outcrop area and their significance for petroleum exploration [J]. Oil and Gas Geology, 2012, 33 (2): 217-224.
10 刘朋远,孙佳珺. 塔北南坡志留系柯坪塔格组沉积体系分析[J]. 中国矿业,2015,24(1):272-276.
LIU P Y, SUN J Y. Analysis of depositional system of Silurian Kalpintag Formation in Tabei southern slope[J].China Min-ing Magazine,2015, 24(1): 272-276.
11 尚凯,郭娜,张睿. 塔里木盆地S1井区志留系柯坪塔格组下沥青砂岩段沉积相新认识[J].沉积与特提斯地质,2016,36(4):14-20.
SHANG K, GUO N, ZHANG R. Sedimentary facies of the lower bitumen-bearing sandstone member of the Silurian Kepingtage Formation in the S1 well area, Tarim Basin[J]. Sedimentary and Tethys Geology,2016,36(4): 14-20.
12 施振生. 塔里木盆地志留系层序地层及动力学成因模式研究[D]. 北京:中国石油大学(北京),2005.
SHI Z S. Sequence Stratigraphy and its Dynamic Mechanism of Silurian in Tarim Basin[D]. Beijing: University of Petroleum (Beijing), 2005.
13 赵文光,周波,蔡忠贤,等. 塔中地区志留系柯坪塔格组沉积特征与油气分布[J]. 石油学报,2008,29(2):231-234.
ZHAO W G,ZHOU B,CAI Z X,et al.Sedimentary characteristics and pool distribution in the Silurian Kepingtage Formation of Tazhong area[J].Acta Petrolei Sinica,2008,29(2):231-234.
14 刘景彦,林畅松,李思田,等. 塔中—塔北志留系沉积层序的不对称结构及其构造意义[J]. 岩石学报,2010,27(1):297-309.
LIU J Y, LIN C S, LI S T, et al. Differential depositional architecture of Silurian sequences and its tectonic significance in Tazhong and Tabei areas of Tarim Basin[J]. Acta Petrologica Sinica, 2010, 27(1): 297-309.
15 贾东力,田景春,林小兵. 塔里木盆地顺托果勒地区志留系柯坪塔格组米兰科维奇旋回沉积记录[J]. 石油与天然气地质,2018,39(4):749-758.
JIA D L, TIAN J C, LIN X B. Milankovich cycles in the Silurian Kepingtag Formation in Shuntuoguole area, Tarim Basin [J]. Oil and Gas Geology, 2018, 39 (4): 749-758.
16 张光亚,赵文智,王红军,等. 塔里木盆地多旋回构造演化与复合含油气系统[J]. 石油与天然气地质,2007,28(5):653-663.
ZHANG G Y, ZHAO W Z, WANG H J, et al. Multicy-cle tectonic evolution and composite petroleum systems in the Tarim Basin[J]. Oil and Gas Geology, 2007, 28(5): 653-663.
17 樊隽轩,彭善池,侯旭东,等. 国际地层委员会官网与《国际年代地层表》(2015/01版)[J]. 地层学杂志,2015,39(2):125-134.
FAN J X, PENG S C, HOU X D, et al. Official website of the international commission on stratigraphy and the release of the international chronostratigraphic chart (v2015/01)[J]. Journal of Stratigraphy,2015,39 (2): 125- 134.
18 丁文龙,林畅松,漆立新,等. 塔里木盆地巴楚隆起构造格架及形成演化[J]. 地学前缘,2008,15(2):242-252.
DING W L, LIN C S, QI L X, et al. Structural framework and evolution of the Bachu uplift in Tarim Basin[J]. Earth Science Frontiers, 2008, 15 (2): 242-252.
19 苏炳睿. 塔里木盆地中央隆起带志留系柯坪塔格组层序地层格架内砂体时空分布规律研究[D]. 成都:成都理工大学,2015.
SU B R. The Study of Sequence Stratigraphic Framework of the Space-time Distribution of Sand of Kepingtag Formation Silurian of Tarim Basin[D]. Chengdu:Chengdu University of Technology, 2015.
20 张翔,田景春,彭军. 塔里木盆地志留—泥盆纪岩相古地理及时空演化特征研究[J]. 沉积学报,2008,26(5):762-771.
ZHANG X, TIAN J C, PENG J. The lithofacies paleogeographic and space-time evolution of Silurian-Devonian in the Tarim Basin[J]. Acta Sedimentologica Sinica, 2008, 26 (5): 762-771.
21 王梦琪,谢俊,王金凯,等. 基于INPEFA技术的高分辨率层序地层研究——以埕北油田东营组二段为例[J]. 中国科技论文,2016,11(9):982-987.
WANG M Q, XIE J, WANG J K, et al. Research of high-resolution sequence stratigraphy using INPEFA:A case study in the second member of Dongying Formation of Chengbei Oilfield[J]. China Science and Technology Paper, 2016,11 (9): 982-987.
22 邱余波,伊海生,张军,等. 新疆鄯善油田S3砂层组高频旋回的识别与划分[J]. 科技导报,2011,29(24):51-56.
QIU Y B, YI H S, ZHANG J, et al. Detection and classification of high-frequency cycles in the S3 sand member of Shanshan Oilfield, Xinjiang[J]. Science & Technology Review, 2011, 29 (24): 51-56.
23 BERGER A, LOUTRE M F, LASKAR J. Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies[J]. Science, 1992, 255(5044): 560-566.
24 盛正茂,覃亚丽,谢长明,等. 改进型梯形谐振滤波器的带通滤波器设计[J]. 电声技术,2011,35(7):31-32.
SHENG Z M, QIN Y L, XIE C M, et al. SAW bandpass filter design of improved ladder-tyoe resonance filter[J]. Electroacoustic Technology, 2011, 35 (7): 31-32.
25 YUEN D A,VINCENT A P,KIDO M,et al.Geophysical Applications of Multidimensional Filtering with wavelets[J]. Pure & Applied Geophysics, 2002,159(10):2285-2309.
26 赵宗举,陈轩,潘懋,等. 塔里木盆地塔中—巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究[J]. 地质学报,2010,84(4): 518-536.
ZHAO Z J, CHEN X, PAN Y, et al. Milankovich cyclics in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu area, Tarim Basin[J]. Acta Geologica Sinica, 2010, 84 (4): 518-536.
27 郑荣才,彭军,吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J]. 沉积学报,2001,19(2):249-255.
ZHENG R C, PENG J, WU C R. Grade division of base-level cycles of terrigenous basins and its implication[J]. Acta Sedimentologica Sinica, 2001, 19(2): 249-255.
28 武法东,周平. 东海陆架盆地第三系沉积—构造动力背景分析[J]. 现代地质,1999,13(2):157-161.
WU F D, ZHOU P. Tertiary basin setting analysis and sedimentary dynamics of the East China Sea Shelf Basin[J]. Modern Geology, 1999, 13(2):157-161.
29 袁学旭,郭英海,赵志刚,等. 以米氏旋回为标尺进行测井层序划分对比——以东海西湖凹陷古近系—新近系地层为例[J]. 中国矿业大学学报,2013,42(5):766-773.
YUAN X X,GUO Y H,ZHAO Z G,et al. Comparison of well-log sequence stratigraphic classification and correlation using Milankovitch cycles: Paleogene-Neogene strata of Xihu sag in East China Sea[J]. Journal of China University of Mining & Technology, 2013, 42 (5): 766-773.
[1] 曹颖辉, 李洪辉, 王珊, 齐景顺, 何金有, 王洪江. 塔里木盆地塔东隆起带上震旦统沉积模式探究[J]. 天然气地球科学, 2020, 31(8): 1099-1110.
[2] 李慧莉, 尤东华, 韩俊, 钱一雄, 沙旭光, 席斌斌. 塔里木盆地顺南—古城地区方解石脉流体来源及其对油气成藏的启示[J]. 天然气地球科学, 2020, 31(8): 1111-1125.
[3] 曹自成, 尤东华, 漆立新, 云露, 胡文瑄, 李宗杰, 钱一雄, 刘永立. 塔里木盆地塔深1井超深层白云岩储层成因新认识:来自原位碳氧同位素分析的证据[J]. 天然气地球科学, 2020, 31(7): 915-922.
[4] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[5] 王泽宇, 乔占峰, 寿芳漪, 蒙绍兴, 吕学菊. 塔里木盆地永安坝剖面蓬莱坝组白云岩成因与形成过程——来自有序度和晶胞参数的证据[J]. 天然气地球科学, 2020, 31(5): 602-611.
[6] 徐兆辉, 王露, 曹颖辉, 李洪辉, 闫磊, 王珊, 赵一民, 杨敏. 塔里木盆地古城地区鹰三段硅质含量分布预测与主控因素分析[J]. 天然气地球科学, 2020, 31(5): 612-622.
[7] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[8] 马德波, 崔文娟, 陶小晚, 董洪奎, 徐兆辉, 李婷婷, 陈秀艳. 塔北隆起轮南低凸起断裂构造特征与形成演化[J]. 天然气地球科学, 2020, 31(5): 647-657.
[9] 杜锦, 马德波, 刘伟, 曹颖辉, 赵一民, 齐景顺, 杨敏. 塔里木盆地肖塘南地区断裂构造特征与成因分析[J]. 天然气地球科学, 2020, 31(5): 658-666.
[10] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[11] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[12] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[13] 康毅力, 李潮金, 游利军, 李家学, 张震, 王涛. 塔里木盆地深层致密砂岩气层应力敏感性[J]. 天然气地球科学, 2020, 31(4): 532-541.
[14] 曾庆鲁,张荣虎,张亮,刘春,陈才,夏九峰. 塔里木盆地西南坳陷下白垩统沉积相与储集层差异演化特征[J]. 天然气地球科学, 2020, 31(10): 1375-1388.
[15] 王珊,曹颖辉,张亚金,杜德道,齐井顺,白莹,闫磊,杨敏,张君龙. 塔里木盆地古城地区上寒武统碳酸盐岩储层发育特征及主控因素[J]. 天然气地球科学, 2020, 31(10): 1389-1403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 朱俊章;施和生;舒誉;杜家元;罗俊莲;. 珠江口盆地珠-坳陷典型烃源岩热压模拟实验――生排烃模式及TOC恢复系数探讨[J]. 天然气地球科学, 2006, 17(4): 573 -578 .
[2] 何家雄;陈刚;. 莺歌海盆地CO_2分布、富集特征及初步预[J]. 天然气地球科学, 1997, 8(3): 9 -17 .
[3] 阳建平,肖香姣,张峰,王海应. 几种天然气偏差因子计算方法的适用性评价[J]. 天然气地球科学, 2007, 18(1): 154 -157 .
[4] 王连生;刘立;郭占谦;马志红;迟东辉;. 大庆油田伴生气中硫化氢成因的探讨[J]. 天然气地球科学, 2006, 17(1): 51 -54 .
[5] 滑双君;王书香;李会慎;翟桂云;肖枚;. 大港探区煤系烃源岩沉积有机相划分[J]. 天然气地球科学, 2003, 14(4): 260 -263 .
[6] 杨智;何生;王锦喜;刘琼;. 断层泥比率(SGR)及其在断层侧向封闭性评价中的应用[J]. 天然气地球科学, 2005, 16(3): 347 -351 .
[7] 伍藏原;李汝勇;张明益;张明亮;翟姝玲;罗敏;. 微地震监测气驱前缘技术在牙哈凝析气田的应用[J]. 天然气地球科学, 2005, 16(3): 390 -393 .
[8] 孙省利;陈践发;刘文汇;郑建京;. 热水流体作用与油气的形成[J]. 天然气地球科学, 2003, 14(3): 215 -219 .
[9] 滑双君;李会慎;翟桂云;王莉;肖枚;. 沧县隆起大港探区煤层气勘探前景分析[J]. 天然气地球科学, 2003, 14(4): 323 -326 .
[10] 王万春,刘文汇, 刘全有. 浅层混源天然气判识的碳同位素地球化学分析[J]. 天然气地球科学, 2003, 14(6): 469 -473 .