天然气地球科学 ›› 2020, Vol. 31 ›› Issue (4): 532–541.doi: 10.11764/j.issn.1672-1926.2020.01.002

• 天然气开发 • 上一篇    下一篇

塔里木盆地深层致密砂岩气层应力敏感性

康毅力1(),李潮金1,游利军1,李家学2,张震2,王涛2   

  1. 1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
    2.中国石油塔里木油田公司,新疆 库尔勒 841000
  • 收稿日期:2019-11-19 修回日期:2020-01-07 出版日期:2020-04-10 发布日期:2020-04-26
  • 作者简介:康毅力(1964-),男,天津蓟县人,教授,博士生导师,主要从事储层保护理论及技术、非常规天然气、油气田开发地质研究与教学工作.E-mail:cwctkyl@163.com.
  • 基金资助:
    国家自然科学基金“基于逾渗和固液两相流理论的裂缝性储层工作液漏失损害预测与控制”(51604236);四川省科技计划项目“保护储层并改善优势天然裂缝导流能力的钻井预撑裂缝堵漏基础研究”(2018JY0436);油气藏地质及开发工程国家重点实验室2019年开放基金“深层裂缝漏失性储层封堵层细观力链表征及结构失稳机理研究”(PLN201913)

Stress sensitivity of deep tight gas-reservoir sandstone in Tarim Basin

Yi-li KANG1(),Chao-jin LI1,Li-jun YOU1,Jia-xue LI2,Zhen ZHANG2,Tao WANG2   

  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    2.PetroChina Tarim Oilfield Company, Korla 841000, China
  • Received:2019-11-19 Revised:2020-01-07 Online:2020-04-10 Published:2020-04-26
  • Supported by:
    The National Natural Science Foundation of China(51604236);The Science and Technology Program of Sichuan Province(2018JY0436);The State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University)(PLN201913)

摘要:

深层—超深层致密砂岩气藏是塔里木盆地油气勘探开发的重点对象,其在钻完井和生产过程中经常表现出与井筒液柱压力或井底流压变化十分敏感的复杂工程行为。为了揭示深层致密砂岩应力敏感特征及主控因素,以塔里木盆地3个典型天然气藏(DB、YM、KS)为研究对象,分别开展了模拟围压递增条件下的裂缝和基块岩样应力敏感实验,并基于扫描电镜、铸体薄片、X?射线衍射、高压压汞等分析手段,分析了孔隙结构、矿物组分、裂缝发育特征对深层致密砂岩应力敏感性的影响。结果表明,塔里木盆地深层致密砂岩基块应力敏感系数为0.280 6~0.771 4,应力敏感程度总体为中等偏强—强,其中KS(0.771 4)>DB(0.654 0)>YM(0.579 6);裂缝应力敏感系数为0.532 3~0.806 9,应力敏感程度总体为中等偏强—强,其中YM(0.726 2)>KS(0.693 5)>DB(0.626 5)。深层致密砂岩应力敏感程度受地层埋藏深度、孔隙结构、矿物组成和裂缝发育程度综合因素控制。基块岩样应力敏感程度与储层埋深、不稳定矿物组分含量、黏土矿物含量成正相关,与储层石英含量、孔隙度、渗透率、孔喉半径成负相关。裂缝岩样应力敏感程度主要受裂缝宽度控制,应力敏感程度随裂缝宽度增大而减小。

关键词: 致密砂岩, 气藏, 应力敏感性, 塔里木盆地, 深层, 孔隙结构, 矿物组分, 裂缝

Abstract:

Deep and ultra-deep tight sandstone gas reservoir is the key exploration and development object of unconventional oil and gas resources in Tarim Basin. In the process of drilling, completion and production, it often shows complex engineering behavior which is sensitive to the change of wellbore fluid column pressure or bottom hole flow pressure. In order to reveal the stress sensitive characteristics and main controlling factors of deep tight sandstone, taking the three gas reseruiroivs in Tarim Basin as examples, the stress sensitivity experiment of fracture and block samples are carried out under simulated increasing confining pressure. By scanning electron microscopy (SEM), the casting thin sections, X-ray diffraction (XRD), high pressure mercury injection, the effects of pore structure, mineral composition and fracture development on stress sensitivity of deep tight sandstone were analyzed. The research results show that the stress sensitivity coefficient of the block rock samples of deep tight sandstone reservoir in Tarim Basin ranges from 0.280 6 to 0.771 4, and the stress sensitivity degree is from moderately strong to strong, which is KS(0.771 4)>DB(0.654 0)>YM(0.579 6). The stress sensitivity coefficient of the fractured samples of deep tight sandstone reservoir in Tarim Basin ranges from 0.532 3 to 0.806 9, and the stress sensitivity degree is from moderately strong to strong, which is YM(0.726 2)>KS(0.693 5)>DB(0.626 5). The stress sensitivity of deep tight sandstone is controlled by a combination of factors including depth, pore structure, mineral composition and fracture development. The stress sensitivity of the block rock sample is positively correlated with the depth of the reservoir, the content of unstable mineral components and clay minerals, and negatively correlated with the quartz content, porosity, permeability and pore throat radius of the reservoir. The stress sensitivity of fracture samples is mainly controlled by the fracture width, which decreases with the increase of fracture width.

Key words: Tight sandstone, Gas reservoir, Stress sensitive, Tarim Basin, Deep, Pore structure, Mineral composition, Fracture

中图分类号: 

  • TE348

表1

致密砂岩实验岩样取样层位与物性对比"

典型气藏层位埋深/m裂缝密度/(条/m)孔隙度/%渗透率/(10-3 μm2
DBJ1a5 029.60~5 093.610.10~0.431.63~10.300.003~29.400
YMS1k5 650.97~5 814.001.87~3.432.00~10.000.001~1.000
KSK1bs6 770.18~7 852.880.60~0.671.00~5.000.005~0.035

表2

应力敏感系数评价指标"

SsSs <0.050.05≤Ss≤0.300.30<Ss≤0.500.50<Ss≤0.700.70<Ss≤1.00Ss>1.00
应力敏感程度中等偏弱中等偏强极强

表3

塔里木盆地致密砂岩岩样应力敏感性评价实验结果"

气藏

岩样

编号

孔隙度/%

渗透率/

(10-3 μm2

不同有效应力下的渗透率/(10-3 μm2应力敏感系数Ss

应力敏感

程度

备注
3 MPa10 MPa30 MPa50 MPa
DBDB17.890.0930.0930.052 80.007 800.004 20.673 7中等偏强基块
DB26.380.0880.0880.053 00.032 100.016 70.644 3中等偏强
DB3/16.35416.35410.3993.729 251.271 90.626 5中等偏强裂缝
DB4/1.0591.0590.8210.329 600.102 10.680 6中等偏强
DB58.2151.22051.22016.4301.457 000.869 20.612 8中等偏强
YMYM12.350.005 210.005 210.000 730.000 160.000 070.674 7中等偏强基块
YM24.300.144 000.144 000.095 30.053 80.039 000.280 6
YM32.670.009 080.009 080.001 230.000 30.000 170.656 7中等偏强
YM44.020.093 300.093 300.019 000.006 850.003 750.579 6中等偏强
YM53.290.140 000.140 000.217 000.002 870.001 250.695 5中等偏强
YM63.150.007 340.007 340.001 680.000 520.000 290.577 3中等偏强
YM72.620.004 950.004 950.001 220.000 470.000 270.541 7中等偏强
YM87.515.3655.3650.224 80.007 540.001 410.806 9裂缝
YM97.3110.43010.4302.860 00.240 000.080 000.647 4中等偏强
KSKS13.180.0250.0250.005 82//0.865 6基块
KS24.790.0050.0050.002 150.000 58/0.509 2中等偏强
KS32.930.0430.0430.010 860.003 02/0.681 8中等偏强
KS44.080.0040.0040.003 000.000 60/0.771 4
KS53.770.0250.0250.001 99//0.890 9
KS6/53.6853.6831.827.894.010.698 5中等偏强裂缝[22]
KS7/28.8828.886.521.250.400.643 7中等偏强
KS8/117.99117.9925.445.081.060.532 3中等偏强
KS9/79.0079.0026.207.363.580.693 5中等偏强
KS10/41.9441.9413.111.970.640.722 2
KS11/22.1922.193.880.430.110.629 7中等偏强

图1

致密砂岩典型基块岩样渗透率应力敏感性(a) 基块岩样渗透率随有效应力变化曲线 (b) 基块岩样无因次渗透率随有效应力变化曲线"

图2

致密砂岩典型裂缝岩样渗透率应力敏感性(a) 裂缝岩样渗透率随有效应力变化曲线 (b) 裂缝岩样无因次渗透率随有效应力变化曲线"

表4

致密砂岩岩石组分含量"

气藏石英/%钾长石/%斜长石/%岩屑/%黏土矿物/%基质/%胶结物/%应力敏感系数
DB55~8268.002.28~21.638.230~8.603.7420.014.06~13.6510.60//0.654 0
YM67~8879.250~2.001.120~1.000.127.00~25.0017.86<51.0~14.04.9<1.0~13.01.800.579 6
KS35~4842.5012.00~23.0018.105.00~17.0011.8014.00~47.0027.305.78~19.6411.951.0~9.03.51.0~27.013.00.771 4

图3

应力敏感系数与初始孔渗的关系"

图4

DB、YM、KS地区SEM图像及铸体薄片[31](a)—(c)分别为DB、YM、KS的SEM图像;(d)—(f)为DB致密砂岩铸体薄片图像;(g)—(i)为YM致密砂岩铸体薄片图像;(j)—(l)为KS致密砂岩铸体薄片图像"

表5

孔隙结构基本参数"

气藏孔隙度/%渗透率/(10-3 μm2中值孔喉半径/μm最大孔喉半径/μm平均孔喉半径/μm
DB2.20~9.000.040~29.4000.100~0.5300.25~11.850.100~1.790
YM2.00~10.000.001~1.0000.030~3.3700.11~10.760.040~2.070
KS1.70~6.100.027~0.1170.008~0.0620.08~0.660.014~0.085

图5

应力敏感系数与气藏埋深的关系"

图6

应力敏感系数与初始裂缝宽度的关系"

表6

KS地区工作液漏失情况及漏失控制效果统计"

井号漏失层段/m漏失总量/m3漏失原因备注
KS17 509.0~7 635.03.4储层裂缝发育试验井
KS27 540.0~7 720.013.9储层裂缝发育试验井
KS36 703.0~6 742.01 239.0储层裂缝非常发育非试验井
1 于京都,郑民,李建忠,等.我国深层天然气资源潜力、勘探前景与有利方向[J].天然气地球科学,2018,29(10):1398-1408.
YU J D,ZHENG M,LI J Z,et al.Resource potential,explorative prospect and favorable direction for natural gas in deep formation of China[J].Natural Gas Geoscience,2018,29(10):1398-1408.
2 郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383-1397.
ZHENG M,LI J Z,WU X Z,et al.China's conventional and unconventional natural gas resource potential, key exploration fields and direction[J].Natural Gas Geoscience,2018,29(10):1383-1397.
3 李剑,佘源琦,高阳,等.中国陆上深层—超深层天然气勘探领域及潜力[J].中国石油勘探,2019,24(4):403-417.
LI J,SHE Y Q,GAO Y,et al.Onshore deep and ultra-deep natural gas exploration felds and potentials in China[J].China Petroleum Exploration,2019,24(4):403-417.
4 徐春春,邹伟宏,杨跃明,等.中国陆上深层油气资源勘探开发现状及展望[J].天然气地球科学,2017,28(8):1139-1153.
XU C C,ZOU W H,YANG Y M,et al.Status and prospects of exploration and exploitation of the deep oil and gas resources onshore China[J].Natural Gas Geoscience,2017,28(8):1139-1153.
5 ZHENG J T,ZHENG L G,LIU H H,et al.Relationships between permeability,porosity and effective stress for low-permeability sedimentary rock[J].International Journal of Rock Mechanics and Mining Sciences,2015,78:304-318.
6 YE T.Experimental Study on Stress Sensitivity of Naturally Fractured Reservoirs[C].SPE Annual Technical Conference and Exhibition.Amsterdam,The Netherlands:Society of Petroleum Engineers, 2014.
7 廖新维,王小强,高旺来.塔里木深层气藏渗透率应力敏感性研究[J].天然气工业,2004,24(6):93-94, 13.
LIAO X W,WANG X Q,GAO W L.Study on stress sensitivity of permeability for deep gas reservoirs in Talimu[J].Natural Gas Industry,2004,24(6):93-94, 13.
8 肖文联,李闽,赵金洲,等. 低渗致密砂岩渗透率应力敏感性试验研究[J].岩土力学,2010,31(3):775-779,798.
XIAO W L,LI M,ZHAO J Z, et al.Laboratory study of stress sensitivity to permeability in tight sandstone[J].Rock and Soil Mechanics,2010,31(3):775-779,798.
9 JIA C J,XU W Y,WANG R B,et al.Stress dependent permeability and porosity of low-permeability rock[J].Journal of Central South University,2017,24(10):2396-2405.
10 刘仁静,刘慧卿,张红玲,等.低渗透储层应力敏感性及其对石油开发的影响[J].岩石力学与工程学报,2011,30(1):2697-2702.
LIU R J,LIU H Q,ZHANG H L,et al.Study of stress sensitivity and its influence on oil development in low permeability reservoir[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(1):2697-2702.
11 BAGHERI M,SETTARI A.Modeling of geomechanics in naturally fractured reservoirs[J]. SPE Reservoir Evaluation and Engineering,2008,11(1):108-118.
12 王翠丽,李红波,陈东,等.克深气田巴什基奇克组致密砂岩储层孔隙结构特征及影响因素分析[J].地质科技情报,2018,37(5):70-77.
WANG C L,LI H B,CHEN D,et al.Porosity structure characteristics and influencing factors analysis of Basijiqike tight sandstone reservoir in Keshen Gasfield[J].Geological Science and Technology Information,2018,37(5):70-77.
13 王雪冰,顾岱鸿,周晓峰,等.不同黏土矿物胶结的低渗透储层渗透率应力敏感性对比——以鄂尔多斯盆地延长组储层样品为例[J].石油地质与工程,2017,31(2):97-100,104,133-134.
WANG X B,GU D H,ZHOU X F,et al.Contrast of stress sensitivity of low permeability reservoir with different clay minerals:Taking Yanchang Formation,Ordos Basin as example[J].Petroleum Geology and Engineering,2017,31(2):97-100,104,133-134.
14 张睿,宁正福,杨峰,等.微观孔隙结构对页岩应力敏感影响的实验研究[J].天然气地球科学,2014,25(8):1284-1289.
ZHANG R,NING Z F,YANG F,et al.Experimental study on microscopic pore structure controls on Ssale permeability under compaction Process[J].Natural Gas Geoscience,2014,25(8):1284-1289.
15 张浩,康毅力,陈一健,等.岩石组分和裂缝对致密砂岩应力敏感性影响[J].天然气工业,2004,24(7):55-57.
ZHANG H,KANG Y L,CHEN Y J,et al. Influence of the rock components and fractures on tight sandstone stress sensitivity[J].Natural Gas Industry,2004,24(7):55-57.
16 何金钢,康毅力,游利军,等.矿物成分和微结构对泥质岩储层应力敏感性的影响[J].天然气地球科学,2012,23(1):129-134.
HE J G,KANG Y L,YOU L J,et al.Effects of mineral composition and microstructure on stress-sensitivity of mudrocks[J].Natural Gas Geoscience,2012,23(1):129-134.
17 肖文联,李滔,李闽,等.致密储集层应力敏感性评价[J].石油勘探与开发,2016,43(1):107-114.
XIAO W L,LI T,LI M,et al.Evaluation of the stress sensitivity in tight reservoirs[J].Petroleum Exploration and Development,2016,43(1):107-114.
18 康毅力,郑德壮,刘修善,等.固相侵入对裂缝性碳酸盐岩应力敏感性的影响[J].新疆石油地质,2012,33(3):366-369.
KANG Y L,ZHENG D Z,LIU X S,et al.Impact of solids invasion on stress sensitivity in fractured carbonate reservoirs[J].Xinjiang Petroleum Geology,2012,33(3):366-369.
19 闫丰明,康毅力,李松,等.裂缝—孔洞型碳酸盐岩储层应力敏感性实验研究[J].天然气地球科学,2010,21(3):489-493,507.
YAN F M,KANG Y L,LI S,et al.Simulated experiment on stress sensitivity in fractured-vuggy reservoir[J].Natural Gas Geoscience,2010,21(3):489-493,507.
20 杨建,康毅力,刘静,等.钻井完井液损害对致密砂岩应力敏感性的强化作用[J].天然气工业,2006,26(8):60-62.
YANG J,KANG Y L,LIU J,et al.Drill in fluid damage will strenghten the stress sensitivity of tight sands[J].Natural Gas Industry,2006,26(8):60-62.
21 兰林,康毅力,陈一健,等.储层应力敏感性评价实验方法与评价指标探讨[J].钻井液与完井液,2005,22(3):1-4,79.
LAN L,KANG Y L,CHEN Y J,et al.Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J].Drilling Fluid and Completion Fluid,2005,22(3):1-4,79.
22 张杜杰,康毅力,游利军,等.超深致密砂岩储层裂缝壁面出砂机理及其对应力敏感性的影响[J].油气地质与采收率,2017,24(6):72-78.
ZHANG D J,KANG Y L,YOU L J,et al.Mechanisms of sand production from fracture wall and its effect on stress sensitivity in ultra-deep tight sandstone reservoirs[J].Petroleum Geology and Recovery Efficiency,2017,24(6):72-78.
23 张浩,康毅力,陈一健,等.致密砂岩油气储层岩石变形理论与应力敏感性[J].天然气地球科学,2004,15(5):482-486.
ZHANG H,KANG Y L,CHEN Y J,et al.Deformation theory and stress sensitivity of tight sandstones reservoirs[J].Natural Gas Geoscience,2014,15(5):482-486.
24 CHEN X,YU J,TANG C A,et al.Experimental and numerical investigation of permeability evolution with damage of sandstone under triaxial compression[J].Rock Mechanics and Rock Engineering,2017,50(6):1529-1549.
25 刘秋宏.英买力地区古近系末期流体势场空间分布特征及其对成藏的影响[D].大庆:大庆石油学院,2010.
LIU Q H.Spatial Distribution Characteristic of Fluid Potential and the Effect for the Reservoir in the End of Gujin System of Yingmaili Area[D].Daqing:Northeast Petroleum University,2010.
26 罗腾文,屈红军,王斌,等.鄂尔多斯盆地东部上古生界储层应力敏感性及主控因素[J].非常规油气,2018,5(2):71-78.
LUO T W,QU H J,WANG B,et al.Experimental on the stress sensitivity and the influence factor of Upper Paleozoic reservoir in east Ordos Basin[J].Unconventional Oil and Gas,2018,5(2):71-78.
27 杜新龙,康毅力,游利军,等.低渗透储层应力敏感性控制因素研究[J].天然气地球科学,2010,21(2):295-299.
DU X L,KANG Y L,YOU L J,et al.Controlling factors of stress sensitivity in low-permeability reservoirs[J]. Natural Gas Geoscience,2010,21(2):295-299.
28 XU C Y,LIN C,KANG Y L,et al.An experimental study on porosity and permeability stress-sensitive behavior of sandstone under hydrostatic compression:Characteristics,mechanisms and controlling ractors[J].Rock Mechanics and Rock Engineering,2018,54(8):2321-2338.
29 吴洛菲,师永民,马伟,等.致密砂岩储集层孔喉群落发育特征[J].新疆石油地质,2013,34(4):428-431.
WU L F,SHI Y M,MA W,et al.Characteristics of pores and throats distribution in tight sandstone reservoir[J].Xinjiang Petroleum Geology,2013,34(4):428-431.
30 张志强,师永民,李鹤.致密储集层应力敏感性分类评价[J].新疆石油地质,2016,37(1):62-68.
ZHANG Z Q,SHI Y M,LI H.Classified evaluation of stress sensitivity in tight reservoir rocks[J].Xinjiang Petroleum Geology,2016,37(1):62-68.
31 张荣虎,张惠良,周晨光,等.塔里木盆地英买力地区志留系储层构造挤压及火山热液改造效应[J].沉积学报,2014,32(5):901-911.
ZHANG R H,ZHANG H L,ZHOU C G,et al.Tectonic compression and volcanic hydrothermal reconstruction effects of Silurian sandstone reservoirs in Yingmaili area[J]. Acta Sedimentologica Sinica,2014,32(5):901-911.
32 金之钧,张一伟,陈书平.塔里木盆地构造—沉积波动过程[J].中国科学:D辑,地球科学,2005,35(6):530-539.
JIN Z J,ZHANG Y W,CHEN S P.Tectonic-sedimentary fluctuation process in Tarim Basin[J].Science in China: Series D, Earth Sciences,2005,35(6):530-539.
33 赵乐强,冯建伟.岩石力学层与构造裂缝发育关系研究[J].山东科技大学学报:自然科学版,2018,37(1):35-46.
ZHAO L Q,FENG J W.Interrelationship study between rock mechanical stratigraphy and structural fracture development[J].Journal of Shandong University of Science and Technology: Natural Science,2018,37(1):35-46.
34 鞠玮,侯贵廷,黄少英,等.库车坳陷依南—吐孜地区下侏罗统阿合组砂岩构造裂缝分布预测[J].大地构造与成矿学,2013,37(4):592-602.
JU W,HOU G T,HUANG S Y,et al.Structural fracture distribution and prediction of the Lower Jurassic Ahe Formation sandstone in the Yinan-Tuzi area, Kuqa Depression[J].Geotectonica et Metallogenia,2013,37(4):592-602.
35 李理,桑晓彤,陈霞飞.低渗透储层裂缝研究现状及进展[J].地球物理学进展,2017,32(6):2474-2482.
LI L,SANG X T,CHEN X F.Research and progress on fracture of low-permeability reservoir[J].Progress in Geophysics,2017,32(6):2474-2482.
36 王俊鹏,张惠良,张荣虎,等.裂缝发育对超深层致密砂岩储层的改造作用——以塔里木盆地库车坳陷克深气田为例[J].石油与天然气地质,2018,39(1):77-88.
WANG J P,ZHANG H L,ZHANG R H,et al.Enhancement of ultra-deep tight sandstone reservoir quality by fractures:A case study of Keshen Gas Field in Kuqa Depression,Tarim Basin[J].Oil and Gas Geology,2018,39(1):77-88.
37 包友书.陆相泥页岩在水平地应力作用下裂缝的多样性——以济阳坳陷古近系泥页岩为例[J].石油学报,2019,40(7):777-785.
BAO Y S.Fracture diversity of continental shale under horizontal geostress: A case study of the Paleogene shale in Jiyang Depression[J].Acta Petrolei Sinica,2019,40(7):777-785.
38 曾联波,史成恩,王永康,等.鄂尔多斯盆地特低渗透砂岩储层裂缝压力敏感性及其开发意义[J].中国工程科学,2017,9(11):35-38.
ZENG L B,SHI C E,WANG Y K,et al.The pressure sensitivity of fractures and its development significance for extra low-permeability sandstone reservoirs in Ordos Basin[J].Engineering Sciences,2017,9(11):35-38.
39 陈金辉,康毅力,游利军,等.低渗透储层应力敏感性研究进展及展望[J].天然气地球科学,2011,22(1):182-189.
CHEN J H,KANG Y L,YOU L J,et al.Review and prospect about study on stress-sensitivity of low-permeability reservoir[J].Natural Gas Geoscience,2011,22(1):182-189.
40 王岳. 应力敏感裂缝性地层漏失规律[J].新疆石油地质,2015,36(4):450-453.
WANG Y.Lost circulation law in fracturedstrata with stress sensitivity[J].Xinjiang Petroleum Geology,2015,36(4):450-453.
[1] 池林贤, 张志遥, 朱光有, 黄海平, 韩剑发, 李婧菲. 塔里木盆地塔中志留系油藏两期成藏的分子地球化学证据[J]. 天然气地球科学, 2020, 31(4): 471-482.
[2] 杨勤林,李洋,曹少蕾,柯兰梅,韩璇颖,李宁. 松辽盆地苏家屯区块致密砂岩岩石物理分析和含气性预测[J]. 天然气地球科学, 2020, 31(4): 578-586.
[3] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[4] 张利明, 王小强, 侯大力, 肖克, 姜晨光, 邹晓梅. 塔里木盆地近临界油气藏相态特征[J]. 天然气地球科学, 2020, 31(3): 370-374.
[5] 李长海, 赵伦, 刘波, 陈强, 陆成和, 孔悦. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学, 2020, 31(3): 402-416.
[6] 游利军, 李鑫磊, 康毅力, 陈明君, 刘江. 富有机质页岩储层热激致裂增渗的有利条件[J]. 天然气地球科学, 2020, 31(3): 325-334.
[7] 付斌, 李进步, 张晨, 史红然. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-150.
[8] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[9] 许耀波, 朱玉双. 高阶煤的孔隙结构特征及其对煤层气解吸的影响[J]. 天然气地球科学, 2020, 31(1): 84-92.
[10] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[11] 刘金华, 郭瑞, 马洪涛, 夏步余, 先伟, 蒋阿明, 葛政俊. 塔里木盆地塔河地区东部阿克库勒组阿四段条带状砂体成因再认识[J]. 天然气地球科学, 2019, 30(9): 1253-1262.
[12] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[13] 张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 四川盆地深层页岩储层孔喉特征[J]. 天然气地球科学, 2019, 30(9): 1349-1361.
[14] 李二庭, 靳军, 曹剑, 马万云, 米巨磊, 任江玲. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369.
[15] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!