天然气地球科学 ›› 2020, Vol. 31 ›› Issue (3): 402–416.doi: 10.11764/j.issn.1672-1926.2019.12.011

• 非常规天然气 • 上一篇    下一篇

微裂缝研究进展、意义及发展趋势

李长海1,2(),赵伦3,刘波1,2(),陈强4,陆成和4,孔悦1,2   

  1. 1. 北京大学地球与空间科学学院,北京 100871
    2. 北京大学石油与天然气研究中心,北京 100871
    3. 中国石油勘探开发研究院,北京 100083
    4. 西部钻探国际工程公司,新疆 乌鲁木齐 830000
  • 收稿日期:2019-11-16 修回日期:2019-12-23 出版日期:2020-03-10 发布日期:2020-03-26
  • 通讯作者: 刘波 E-mail:1901110598@pku.edu.cn;bobliu@pku.edu.cn
  • 作者简介:李长海(1992-),男,河北唐山人,博士研究生,主要从事油气田开发地质及裂缝表征研究.E-mail: 1901110598@pku.edu.cn.
  • 基金资助:
    国家科技重大专项(2017ZX05030-002);国家自然科学基金项目(41572117)

Research status, significance and development trend of microfractures

Chang-hai LI1,2(),Lun ZHAO3,Bo LIU1,2(),Qiang CHEN4,Cheng-he LU4,Yue KONG1,2   

  1. 1. School of Earth and Space Sciences, Peking University, Beijing 100871, China
    2. Institute of Oil & Gas, Peking University, Beijing 100871, China
    3. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
    4. International Engineering Company of CNPC XDEC, Urumqi 830000, China
  • Received:2019-11-16 Revised:2019-12-23 Online:2020-03-10 Published:2020-03-26
  • Contact: Bo LIU E-mail:1901110598@pku.edu.cn;bobliu@pku.edu.cn
  • Supported by:
    The China National Science and Technology Major Project(2017ZX05030-002);The National Natural?Science?Foundation?of?China(41572117)

摘要:

近年来随着非常规油气的开发,微裂缝对于油气勘探开发的意义日益突显。国内外学者围绕不同储层中微裂缝的定义、分类、成因、主控因素及预测方法等方面进行了广泛而深刻的探讨。总结认为:定义微裂缝长度的上限值为50 mm,开度的上限值在不同储层中有所差异。基于成因的分类方案优于其他分类方案且目前应用最广。不同岩石中的微裂缝均是构造作用、成岩作用和异常高压作用等单因素或多因素叠合作用下形成的。不同类型的微裂缝主控因素差异较大,且不同储层中同一类型的微裂缝主控因素也有所差异。微裂缝的预测目前仍处于早期探索阶段,现有方法存在准确性和可靠性差、对资料要求高和成本高等方面的问题。基于分形和压汞曲线等的定量化分析技术是微裂缝定量化表征的主要手段。微裂缝的研究对于宏观裂缝的预测、沉积成岩演化的恢复以及油气开发具有重要意义。不同储层中微裂缝的对比、微裂缝与沉积和成岩的关系、微裂缝预测与定量化研究、不同成因微裂缝与孔隙空间的组合关系以及不同成因微裂缝对储层渗透率的贡献是下一步微裂缝研究的重点。

关键词: 微裂缝, 分类, 成因, 主控因素, 识别与预测, 研究意义, 发展趋势

Abstract:

In recent years, with the development of unconventional oil and gas, the significance of microfractures for oil and gas exploration and development has become increasingly prominent. Scholars at home and abroad have made extensive and profound discussions on the definition, classification, origin, controlling factors and prediction methods of microfractures in different reservoirs. The upper limit value for defining the length of microcracks is 50 mm, and the upper limit value for aperture varies in different reservoirs. Genesis-based classification scheme is superior to other classification schemes and is currently most widely applied. The formation of microfractures in different rocks is the superposition of single or multiple factors including tectonism, diagenesis and abnormal high pressure. The main controlling factors of different types of microfractures are quite different, and the main controlling factors of the same type of microfractures in different reservoirs are also different. The prediction of microcracks is still at an early stage, and the existing methods have problems of poor accuracy and reliability, high data requirements and high cost. Quantitative analysis techniques based on fractal and mercury intrusion curves are the main means for quantitative characterization of microcracks. The study of microfractures is of great significance to the prediction of macrofractures, the study of sedimentary diagenetic evolution and the oil and gas development. The key points of next study is the comparison of microfractures in different reservoirs, the relationship between microfractures and sedimentation and diagenesis, the prediction and quantitative characterization of microfractures, combination relationship between microfractures of different origins and pore space, and the contribution of microfractures of different origins to reservoir permeability.

Key words: Micro-crack, Classification, Origin, Controlling factors, Prediction, Research significance, Development trend

中图分类号: 

  • TE122.2+3

表1

不同岩性中定义微裂缝的上限"

砂岩 碳酸盐岩 页岩 致密砂岩 煤层气
微裂缝的长度(L)/mm <50.00
微裂缝的开度(b)/mm <0.10 <0.50 <0.01 <0.05 <0.10

图1

不同岩性中微裂缝分类图版 (a)构造微裂缝,邛西气田,4 107.5 m;(b)成岩微裂缝,邛西气田,3 253.2 m;(c)超压微裂缝,邛西气田,3 450.3 m;(d)穿粒缝,濮深7井,3 692.15 m;(e)贴粒缝,濮深7井,3 684.2 m;(f)粒裂纹,濮深7井,3 684.2 m;(g)微构造缝,扎纳若尔油田,3 603.41 m;(h)微溶蚀缝,扎纳若尔油田,3 624.52 m;(i)微缝合线,扎纳若尔油田,3 625.56 m;(j)粒裂纹,扎纳若尔油田,3 622.53 m;(k)构造微裂缝,涪陵气田,3 608.2 m;(l)页理缝,涪陵气田,3 618.4 m;(m)有机质演化异常压力缝,涪陵气田,3 621.1 m;(n)贴粒缝,涪陵气田,3 617.6 m;(o)成岩收缩缝,涪陵气田,3 619.3 m;(p)溶蚀缝,涪陵气田, 3 628.2 m;(q)构造微裂缝,鄂尔多斯盆地;(r)割理缝,鄂尔多斯盆地;(s)碳酸盐岩中扫描电镜下微裂缝,塔里木盆地;(t)页岩中扫描电镜下微裂缝,四川盆地,其中:(a)、(b)、(c)为致密砂岩中的微裂缝[5];(d)、(e)、(f)为砂岩储层中的微裂缝[20];(g)、(h)、(i)、(j)为碳酸盐岩中的微裂缝[4];(k)、(l)、(m)、(n)、(o)、(p)为页岩中的微裂缝[30];(q)、(r)为煤岩中的微裂缝[34];(s)、(t)为扫描电镜下的微裂缝[35] "

表2

不同岩性中不同成因微裂缝发育主控因素"

岩性 微裂缝类型 主控因素
砂岩及致密砂岩 构造微裂缝 内因:微观的粒级、颗粒组成、填隙物含量、孔隙度、沉积相和层厚
外因:构造应力场
成岩微裂缝 风化、干缩、压实、压溶、溶解和脱水收缩
超压微裂缝 欠压实、烃类生成、黏土矿物脱水和水热增压
碳酸盐岩 微构造缝 孔隙度、石英含量和粒度
微溶蚀缝 白云石及酸不溶物含量、孔隙度和渗透率
微缝合线 白云石和酸不溶物含量、孔隙度和密度
粒裂纹 胶结程度、孔隙度和渗透率
页岩 构造微裂缝 内因:岩石成分和结构。岩石成分包括脆性矿物含量(指硅质矿物含量和长石及脆性矿物含量)和黏土矿物含量
外因:构造位置和构造应力大小
页理缝 沉积层理和页理分布及岩石固结时失水收缩作用
贴粒缝 矿物脱水、收缩、矿物相变,烃类生成以及水热增压等
溶蚀缝 溶蚀作用和有机质生酸作用
成岩收缩缝 干缩作用、脱水作用、矿物相变作用或热力收缩作用和黏土矿物转化等作用
有机质演化异常压力缝 有机质生烃增压及黏土矿物转化脱水
煤层 构造缝 内因:岩石成分和结构
外因:构造应力场
割理缝

构造应力场、基质收缩作用、煤化过程中有机质成岩收缩

及有机质生烃增压作用

图2

未考虑孔隙度对渗透率影响的物性异常频率法误差"

图3

不同类型函数分布对不同尺度裂缝的拟合结果[73] "

图4

柴达木盆地南翼油田储集层岩石压汞毛管压力曲线[28] "

图5

考虑孔隙和微裂缝的煤岩压汞曲线解释模型[35,92] (a)压汞孔喉结构模式;(b)压汞入汞曲线;(c)压汞退汞曲线"

1 ZENG L , JIANG J , YANG Y . Fractures in the low porosity and ultra-low permeability glutenite reservoirs: A case study of the Late Eocene Hetaoyuan Formation in the Anpeng Oilfield, Nanxiang Basin, China[J].Marine and Petroleum Geology,2010,27(7):1642-1650.
2 SIPPEL R F . Sandstone petrology, evidence from luminescence petrography[J].Journal of Sedimentary Research,1968,38(2):530-554.
3 PAGEL M , BARBIN V , BLANC P , et al . Cathodoluminescence in Geosciences: An introduction [M].Berlin: Springer,2000:1-21.
4 ZHOU X , DING W , HE J , et al . Microfractures in the Middle Carboniferous carbonate rocks and their control on reservoir quality in the Zanaral Oilfield[J].Marine and Petroleum Geology,2018, 92:462-476.
5 ZENG L . Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J].AAPG Bulletin,2010,94(12):1811-1825.
6 GALE J F , REED R M , HOLDER J . Natural fractures in the Barnett shale and their importance for hydraulic fracture treatments[J].AAPG Bulletin,2007,91(4):603-622.
7 HOOKER J N , LAUBACH S E , MARRETT R . Microfracture spacing distributions and the evolution of fracture patterns in sandstones[J].Journal of Structural Geology,2018,108:66-79.
8 GALE J F , LAUBACH S E , OLSON J E , et al . Natural fractures in shale: A review and new observations[J].AAPG Bulletin,2014,98(11):2165-2216.
9 王瑞飞,陈明强,孙卫 .特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例[J].矿物学报, 2008,28(2):215-220.
WANG R F , CHEN M Q , SUN W . Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs: Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example[J]. Acta Mineralogica Sinica, 2008, 28(2): 215-220.
10 LAUBACH S E , MARRETT R A , OLSON J E , et al . Characteristics and origins of coal cleat: A review[J].International Journal of Coal Geology,1998,35(1-4):175-207.
11 ANDERS M H , LAUBACH S E , SCHOLZ C H . Microfractures: A review[J]. Journal of Structural Geology, 2014, 69: 377-394.
12 HOOKER J N , LAUBACH S E , MARRETT R . A universal power-Law scaling exponent for fracture apertures in sandstones[J]. AAPG Bulletin, 2014, 126(9-10): 1340-1362.
13 GUERRIERO V , VITALE S , CIARCIA S , et al . Improved statistical multi-scale analysis of fractured reservoir analogues[J]. Tectonophysics, 2011, 504(1): 14-24.
14 赵帮胜,李荣西,覃小丽,等 .鄂尔多斯盆地中部上古生界山西组页岩储层特征[J].沉积学报,2019, 37(5): 1-14.
ZHAO B S , LI R X , QIN X L , et al . Characteristics of shale reservoirs in the Upper Paleozoic Shanxi Formation in the central Ordos Basin[J].Acta Sedimentologica Sinica,2019,37(5):1-14.
15 LAUBACH S E , MARRETT R A , OLSON J E , et al . Characteristics and origins of coal cleat: A review[J].International Journal of Coal Geology, 1998, 35(1-4): 175-207.
16 汪吉林,朱炎铭,宫云鹏,等 .重庆南川地区龙马溪组页岩微裂缝发育影响因素及程度预测[J].天然气地球科学,2015,26(8):1579-1586.
WANG J L , ZHU Y M , GONG Y P , et al . Influential factors and forecast of microcrack development degree of Longmaxi Formation shales in Nanchuan region, Chongqing[J].Natural Gas Geoscience,2015,26(8):1579-1586.
17 唐诚 . 储层裂缝表征及预测研究进展[J].科技导报,2013,31(21):74-79.
TANG C . Progress in fracture characterization and prediction[J]. Science & Technology Review, 2013,31(21):74-79.
18 NELSON R . Geologic Analysis of Naturally Fractured Reservoirs[M].Houston: Gulf Publishing Company,1985:1-320.
19 穆龙新 .储层裂缝预测研究[M].北京:石油工业出版社, 2009: 1-300.
MU L X . Study on Reservoir Fracture Prediction[M]. Beijing: Petroleum Industry Press,2009: 1-300.
20 刘卫彬,张世奇,李世臻,等 .东濮凹陷沙三段储层微裂缝发育特征及意义[J].地质通报,2018, 37(2/3): 496-502.
LIU W B , ZHANG S Q , LI S Z , et al . Development characteristics and geological significance of microfractures in the Es3 reservoirs of Dongpu Depression[J]. Geological Bulletin of China,2018, 37(2/3): 496-502.
21 ZENG L , LI X Y . Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin,2009,93(4): 461-477.
22 LYU W Y, ZENG L B , ZHANG B J , et al . Influence of natural fractures on gas accumulation in the Upper Triassic tight gas sandstones in the northwestern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2017, 83: 60-72.
23 李婷婷,朱如凯,白斌,等 .青西凹陷下白垩统含白云质泥岩与泥质白云岩储集层微观孔喉特征及控制因素[J].矿物岩石地球化学通报,2015,34(1):79-85.
LI T T , ZHU R K , BAI B , et al . Microscopic pore-throat characteristics and controlling factors of the Lower Cretaceous dolomite-bearing mudstone and argillaceous dolomite reservoirs, Qingxi Depression[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015,34(1):79-85.
24 KRANZ R L . Microcracks in rocks: A review[J].Tectonophysics,1983,100(1-3):449-480.
25 MILLIKEN K L . The widespread occurrence of healed microfractures in siliciclastic rocks: Evidence from scanned cathodoluminescence imaging[C]//Nelson P P, Laubach S E. Rock Mechanics: Models and Measurements, Challenges from Industry, 1st North American Rock Mechanics Symposium. Rotterdam: A.
Balkema A. , Rotterdam , 1994: 825-832.
26 LAUBACH S E . A method to detect natural fracture strike in sandstones[J]. AAPG Bulletin,1997, 81(4):604-623.
27 赵伦,李建新,李孔绸,等 .复杂碳酸盐岩储集层裂缝发育特征及形成机制——以哈萨克斯坦让纳若尔油田为例[J].石油勘探与开发,2010,37(3):304-309.
ZHAO L , LI J X , LI K C , et al . Development and genetic mechanism of complex carbonate reservoir fractures: A case from the Zanarol Oilfield, Kazakhstan[J]. Petroleum Exploration and Development,2010,37(3):304-309.
28 臧士宾,崔俊,郑永仙,等 .柴达木盆地南翼山油田新近系油砂山组低渗微裂缝储集层特征及成因分析[J].古地理学报,2012,14(1):133-141.
ZANG S B , CUI J , ZHENG Y X , et al . Analysis of characteristics of low-permeable reservoir with micro-fracture and their origins of the Neogene Youshashan Formation in Nanyishan Oilfield, Qaidam Basin[J].Journal of Paleogeography,2012,14(1):133-141.
29 MARQUEZ X M , MOUNTJOY E W . Microfractures due to overpressures caused by thermal cracking in well-sealed Upper Devonian reservoirs, deep Alberta Basin[J].AAPG Bulletin,1996, 80(4):570-588.
30 汪虎,何治亮,张永贵,等 .四川盆地海相页岩储层微裂缝类型及其对储层物性影响[J].石油与天然气地质, 2019, 40(1): 41-49.
WANG H , HE Z L , ZHANG Y G , et al . Microfracture types of marine shale reservoir of Sichuan Basin and its influence on reservoir property[J]. Oil & Gas Geology,2019,40(1):41-49.
31 杨才,冯岩,白灵麒,等 .鄂尔多斯盆地北部太原组海陆过渡相页岩孔缝特征及油气地质意义[J]. 地质与资源,2018,27(4): 389-395.
YANG C , FENG Y , BAI L Q , et al . Pore-fracture features of the marine-continental transition shales from Taiyuan Formation in northern Ordos Basin and petroleum geological implication[J]. Geology and Resources,2018,27(4):389-395.
32 董大忠,施振生,孙莎莎,等 .黑色页岩微裂缝发育控制因素——以长宁双河剖面五峰组—龙马溪组为例[J].石油勘探与开发,2018,45(5):19-30.
DONG D Z , SHI Z S , SUN S S , et al . Factors controlling microfractures in black shale: A case study of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Shuanghe Profile, Changning area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(5): 19-30.
33 刘畅 .煤储层微裂缝对煤层气采收率影响的数值分析[J].桂林理工大学学报,2017,37(4): 580-586.
LIU C . Numerical analysis of microfractures effect on coal-bed methane reservoir ultimate recovery[J]. Journal of Guilin University of Technology,2017,37(4):580-586.
34 姚海鹏 .鄂尔多斯盆地北部晚古生代煤系非常规天然气耦合成藏机理研究[D]. 北京:中国矿业大学(北京),2017:1-190.
YAO H P . Study on the Accumulation Mechanism of the Unconventional Natural Gas in Late Paleozoic Coal Bearing Strata of the Northern Part of the Ordos basin[D].Beijing: China University of Mining & Technology(Beijing), 2017: 1-190.
35 WU J , FAN T , GOMEZ-RIVAS E , et al . Impact of pore structure and fractal characteristics on the sealing capacity of Ordovician carbonate cap rock in the Tarim Basin, China[J]. Marine and Petroleum Geology,2019,102:557-579.
36 蓝宝锋,蒋立伟,钱铮,等 .考虑孔隙和微裂缝的煤层气储层压汞曲线分析模型[J].矿物岩石, 2017, 37(1): 111-119.
LAN B F , JIANG L W , QIAN Z , et al . Analysis model of mercury injection curves for coal bed methane reservoir in terms of pore and micro fractures[J]. Journal of Mineralogy and Petrology, 2017, 37(1): 111-119.
37 SU X , FENG Y , CHEN J , et al . The characteristics and origins of cleat in coal from western North China[J]. International Journal of Coal Geology,2001,47(1):51-62.
38 李婷婷,朱如凯,白斌,等 .混积岩储层特征——以酒泉盆地青西凹陷下白垩统混积岩为例[J].沉积学报,2015,33(2):376-384.
LI T T , ZHU R K , BAI B , et al . Characteristics of mixed sedimentary reservoir: Taking the Lower Cretaceous mixed sedimentary rock of Qingxi depression in Jiuquan Basin as an example[J].Acta Sedimentologica Sinica,2015,33(2):376-384.
39 FRIEDMAN M . Petrofabric analysis of experimentally deformed calcite-cemented sandstones[J]. The Journal of Geology,1963,71(1):12-37.
40 BORG I Y , MAXWELL J C . Interpretation of fabrics of experimentally deformed sands[J]. American Journal of Science,1956,254(2):71-81.
41 FRIEDMAN M . Structural analysis of fractures in cores from Saticoy field, Ventura County, California[J]. AAPG Bulletin,1969,53(2):367-389.
42 GALLAGHER JR J J , FRIEDMAN M , HANDIN J , et al . Experimental studies relating to microfracture in sandstone[J]. Tectonophysics,1974,21(3):203-247.
43 DAVID C , WONG T F , ZHU W , et al . Laboratory measurement of compaction-induced permeability change in porous rocks: Implications for the generation and maintenance of pore pressure excess in the crust[J].Pure & Applied Geophysics,1994,143(1-3):425-456.
44 WONG T F , SZETO H , ZHANG J . Effect of loading path and porosity on the failure mode of porous rocks[J]. Applied Mechanics Reviews,1992,45(45):281-293.
45 赵应成,周晓峰,王崇孝,等 .酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J].天然气地球科学,2005,16(1):12-15.
ZHAO Y C , ZHOU X F , WANG C X , et al . Characteristics of a special rock-fractured reservoir and factors of controlling fractured development at Qingxi Oil Field in Jiuxi Basin[J]. Natural Gas Geoscience,2005,16(1):12-15.
46 王瑞飞,孙卫 .鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究[J].地质论评, 2009, 55(3): 444-448.
WANG R F , SUN W . A study on micro cracks in super low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin[J].Geological Review,2009,55(3): 444-448.
47 南珺祥,王素荣,姚卫华,等 .鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究[J]. 岩性油气藏,2007,19(4):40-44.
NAN J X, WANG S R , YAO W H , et al . Micro-fractures in extra-low permeability reservoir of Yanchang Formation in Ordos Basin[J]. Lithological Reservoirs,2007,19(4):40-44.
48 YAO Y , LIU D . Microscopic characteristics of microfractures in coals: An investigation into permeability of coal[J]. Procedia Earth and Planetary Science,2009,1(1):903-910.
49 HERIAWAN M N , KOIKE K . Coal quality related to microfractures identified by CT image analysis[J]. International Journal of Coal Geology, 2015, 140: 97-110.
50 NARR W , CURRIE J B . Origin of fracture porosity--Example from Altamont Field, Utah[J]. AAPG Bulletin, 1982, 66(9): 1231-1247.
51 丁文龙,张博闻,李泰明 .古龙凹陷泥岩非构造裂缝的形成[J].石油与天然气地质,2003,24(1): 50-54.
DING W L , ZHANG B W , LI T M . Formation of non-tectonic fractures in mudstones in Gulong Depression[J]. Oil &Gas Geology,2003,24(1):50-54.
52 郭沫贞,朱国华,寿建峰,等 .碎屑岩压裂缝的特征、成因与油气勘探意义[J].沉积学报,2006,24(4): 483-487.
GUO M Z , ZHU G H , SHOU J F , et al . Features, origin and petroleum explorative significance of crushed fracture in clastic rock[J].Acta Sedimentologica Sinica,2006,24(4):483-487.
53 董凤娟,卢学飞,刘敏艳,等 .基于灰关联的微观地质因素与微裂缝发育程度相关性分析[J].地质与勘探,2016,52(5):950-955.
DONG F J , LU X F , LIU M Y , et al . Correlation analysis of microscopic geological factors and micro cracks based on grey association[J].Geology and Exploration,2016,52(5):950-955.
54 刘卫彬,张世奇,徐兴友,等 .东濮凹陷沙三段致密砂岩储层裂缝形成机制及对储层物性的影响 [J].大地构造与成矿学,2019,43(1):58-68.
LIU W B , ZHANG S Q , XU X Y , et al . Fracturing and its influence on the compact sandstone reservoir in the third member of the Shahejie Formation in the northern Dongpu depression[J]. Geotectonica et Metallogenia,2019,43(1):58-68.
55 龙鹏宇,张金川,唐玄,等 .泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J].天然气地球科学,2011,22(3):525-532.
LONG P Y , ZHANG J C , TANG X , et al . Feature of muddy shale fissure and its effect for shale gas exploration and development[J].Natural Gas Geoscience,2011,22(3):525-532.
56 苏培东,秦启荣,袁云峰,等 .红车断裂带火山岩储集层裂缝特征[J].新疆石油地质,2011,32(5): 457-460.
SU P D , QIN Q R , YUAN Y F , et al . Characteristics of volcanic reservoir fractures in upper wall of Hongche fault belt[J].Xinjiang Petroleum Geology,2011,32(5):457-460.
57 郭旭升,胡东风,魏祥峰,等 .四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质,2016,37(6):799-808.
GUO X S , HU D F , WEI X F , et al . Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J].Oil & Gas Geology, 2016,37(6):799-808.
58 王同,熊亮,徐猛,等 .川南地区下寒武统筇竹寺组页岩储层特征[J].石油实验地质,2016,38(2): 197-203.
WANG T , XIONG L , XU M , et al . Shale reservoir characteristics of the Lower Cambrian Qiongzhusi Formation in the southern Sichuan Basin[J].Petroleum Geology & Experiment,2016,38(2):197-203.
59 张金功,袁政文 .泥质岩裂缝油气藏的成藏条件及资源潜力[J].石油与天然气地质,2002,23(4): 336-338.
ZHANG J G , YUAN Z W . Formation and potential of fractured mudstone reservoirs[J]. Oil & Gas Geology,2002,23(4):336-338.
60 黄潇,张金川,李晓光,等 .陆相页岩孔隙类型、特征及油气共聚过程探讨——以辽河坳陷西部凹陷为例[J].天然气地球科学,2015,26(7):1422-1432.
HUANG X , ZHANG J C , LI X G , et al . Pore types and characteristics of continental shale and discussion on the process of oil and gas accumulation: A case study of the western sag of Liaohe Depression[J].Natural Gas Geoscience,2015,26(7):1422-1432.
61 SCHOLLE P A , ULMER-SCHOLLE D S . A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis, AAPG Memoir 77[M]. Tulsa: Oklahoma: AAPG, 2003: 1-480.
62 SAROUT J , GUEGUEN Y . Anisotropy of elastic wave velocities in deformed shales: Part 1-Experimental results[J]. Geophysics,2008,73(5): D75-D89.
63 OUGIER-SIMONIN A , RENARD F , BOEHM C , et al . Microfracturing and microporosity in shales[J]. Earth-Science Reviews, 2016, 162: 198-226.
64 EZATI M , AZIZZADEH M , RIAHI M A , et al . Characterization of micro-fractures in carbonate Sarvak reservoir, Using petrophysical and geological data, SW Iran[J].Journal of Petroleum Science and Engineering,2018,170:675-695.
65 高博乐,潘仁芳,金吉能,等 .富有机质页岩微裂缝地震响应特征——以长宁示范区宁201井为例[J].石油与天然气地质,2019,40(6):1-9.
GAO B L , PAN R F , JIN J N , et al . Characteristic analysis of seismic response of micro-fractures in organic rich shale: A case study of Well Ning201 in the Changning demonstration zone[J]. Oil & Gas Geology,2019,40(6):1-9.
66 孙文峰,李玮,李卓,等 .页岩储层微裂缝发育程度预测方法[J].科学技术与工程,2019,19(19): 118-123.
SUN W F , LI W , LI Z , et al . Prediction method of micro-fracture development degree of shale reservoir[J]. Science Technology and Engineering,2019,19(19):118-123.
67 王景,凌升阶,南中虎 .特低渗透砂岩微裂缝分布研究方法探索[J].石油勘探与开发,2003,30(2): 51-53.
WANG J , LING S J , NAN Z H . Micro-fractures distribution in extremely lower permeable sandstone reservoirs of Yanchang Formation and its geologic significance, Ordos Basin, Northwest China[J]. Petroleum Exploration and Development,2003,30(2):51-53.
68 张翔,张伟,靳秀菊,等 .普光地区碳酸盐岩储层孔隙类型测井识别及孔渗关系[J].地球科学:中国地质大学学报, 2016, 41(12): 2119-2126.
ZHANG X , ZHANG W , JIN X J , et al . Identification of pore types and study of poroperm relationships based on logging data in Puguang carbonate reservoir[J]. Earth Science, 2016, 41(12): 2119-2126.
69 孟万斌,吕正祥,唐宇,等 .基于砂岩组构分类评价的储层渗透率预测[J].中国石油大学学报:自然科学版,2013,37(2):1-6.
MENG W B , LV Z X , TANG Y , et al . Reservoir permeability prediction based on sandstone texture classification[J]. Journal of China University of Petroleum,2013,37(2):1-6.
70 GILLESPIE P A , WALSH J J , WATTERSON J , et al . Scaling relationships of joint and vein arrays from the Burren, Co. Clare, Ireland[J].Journal of Structural Geology,2001,23(2):183-201.
71 PHILIPP S L . Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England[J]. Geological Magazine,2008,145(6): 831-844.
72 LARSEN B , GRUNNALEITE I , GUDMUNDSSON A . How fracture systems affect permeability development in shallow-water carbonate rocks: An example from the Gargano Peninsula, Italy[J]. Journal of Structural Geology,2010,32(9):1212-1230.
73 HOOKER J N , GOMEZ L A , LAUBACN S E , et al . Effects of diagenesis (cement precipitation) during fracture opening on fracture aperture-size scaling in carbonate rocks[J]. Geological Society Special Publication,2012,370(1):187-206.
74 ORTEGA O J , MARRETT R A , LAUBACH S E . A scale-independent approach to fracture intensity and average spacing measurement[J].AAPG Bulletin,2006,90(2):193-208.
75 GUDMUNDSSON A . Geometry, formation and development of tectonic fractures on the Reykjanes Peninsula, southwest Iceland[J]. Tectonophysics,1987,139(3-4):295-308.
76 WONG T F , FREDRICH J T , GWANMESIA G D . Crack aperture statistics and pore space fractal geometry of Westerly granite and Rutland quartzite: Implications for an elastic contact model of rock compressibility[J].Journal of Geophysical Research: Solid Earth,1989,94(B8):10267-10278.
77 MARRETT R , ALLMENDINGER R W . Amount of extension on “small” faults: An example from the Viking graben[J].Geology,1992,20(1):47-50.
78 SANDERSON D J , ROBERTS S , GUMIEL P . A fractal relationship between vein thickness and gold grade in drill core from La Codosera, Spain[J]. Economic Geology,1994,89(1):168-173.
79 CLARKS M B , BRANTLEY S L , FISHER D M . Power-law vein-thickness distributions and positive feedback in vein growth[J].Geology,1995,23(11):975-978.
80 MCCAFFREY K , JOHNSTON J D . Fractal analysis of a mineralised vein deposit: Curraghinalt gold deposit, County Tyrone[J]. Mineralium Deposita,1996,31(1-2):52-58.
81 MARRETT R . Permeability, porosity, and shear-wave anisotropy from scaling of open fracture populations[J]. Journal of Structural Geology,1997,18(2-3):169-178.
82 BOHNENSTIEHL D R , KLEINROCK M C . Faulting and fault scaling on the median valley floor of the trans‐Atlantic geotraverse (TAG) segment, -26° N on the Mid‐Atlantic Ridge[J]. Journal of Geophysical Research: Solid Earth,1999,104(B12):29351-29364.
83 GUERRIERO V , IANNACE A , MAZZOLI S , et al . Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks[J]. Journal of Structural Geology,2010,32(9):1271-1278.
84 HOOKER J N , LAUBACH S E , GOMEZ L , et al . Fracture size, frequency, and strain in the Cambrian Eriboll Formation sandstones, NW Scotland[J].Scottish Journal of Geology,2011,47(1): 45-56.
85 LE GARZIC E , DE L HAMAIDE T , DIRAISON M , et al . Scaling and geometric properties of extensional fracture systems in the proterozoic basement of Yemen. Tectonic interpretation and fluid flow implications[J]. Journal of Structural Geology,2011,33(4):519-536.
86 MARRETT R , ORTEGA O J , KELSEY C M . Extent of power-law scaling for natural fractures in rock[J].Geology,1999,27(9):799-802.
87 NUR A . The origin of tensile fracture lineaments[J].Journal of Structural Geology,1982,4(1): 31-40.
88 DESCHAMPS A , TIVEY M , EMBLEY R W , et al . Quantitative study of the deformation at Southern Explorer Ridge using high-resolution bathymetric data[J].Earth and Planetary Science Letters,2007,259(1-2):1-17.
89 KAGAN Y Y . Seismic moment‐frequency relation for shallow earthquakes: Regional comparison [J].Journal of Geophysical Research: Solid Earth,1997,102(B2):2835-2852.
90 SORNETTE D , SORNETTE A . General theory of the modified Gutenberg-Richter law for large seismic moments[J]. Bulletin of the Seismological Society of America,1999,89(4):1121-1130.
91 GALE J F W , LAUBACH S E , MARRETT R A , et al . Predicting and characterizing fractures in dolostone reservoirs: Using the link between diagenesis and fracturing[J]. Geological Society Special Publication,2004,235(1):177-192.
92 GU Y , DING W , YIN S , et al . Analytical modeling of mercury injection in high-rank coalbed methane reservoirs based on pores and microfractures: A case study of the Upper Carboniferous Taiyuan Formation in the Heshun block of the Qinshui Basin, central China[J]. Journal of Geophysics and Engineering,2017,14(2):197-211.
93 HOOKER J N , LAUBACH S E , MARRETT R . Fracture-aperture size: Frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina[J]. Journal of Structural Geology,2013,54:54-71.
94 UKAR E , LOPEZ R G , LAUBACH S E , et al . Microfractures in bed-parallel veins (beef) as predictors of vertical macrofractures in shale: Vaca Muerta Formation, Agrio Fold-and-Thrust Belt, Argentina[J]. Journal of South American Earth Sciences,2017,79:152-169.
95 NAOI M , NAKATANI M , OTSUKI K , et al . Steady activity of microfractures on geological faults loaded by mining stress[J]. Tectonophysics,2015,649:100-114.
96 PEREZ J M , POSTON S W , EDWARDS C M . The effect of micro-fractures on oil recovery from low-permeability reservoirs[C]//Society of Petroleum Engineers, Low Permeability Reservoirs Symposium, Denver, Colorado, USA: Society of Petroleum Engineers, 1993: 165-175.
97 JULIA F W . Specifying lengths of horizontal wells in fractured reservoirs[J].SPE Reservoir Evaluation & Engineering, 2002, 5(3): 266-272.
98 于兴河 .油气储层地质学基础[M].北京:石油工业出版社,2009: 1-393.
YU X H . Basis of Hydrocarbon Reservoir Geology[M]. Beijing: Petroleum Industry Press,2009: 1-393.
99 李伟,要惠芳,刘鸿福,等 .基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014, 39(6):1127-1132.
LI W , YAO H F , LIU H F , et al . Advanced characterization of three-dimensional pores in coals with different coal-body structure by Micro-CT[J]. Journal of China Coal Society,2014,39(6): 1127-1132.
100 常会珍,秦勇,王飞 .贵州珠藏向斜煤样孔隙结构的差异性及其对渗流能力的影响[J].高校地质学报,2012,18(3):544-548.
CHANG H Z , QIN Y , WANG F . Differences in of pore structure of coals and their impact on the permeability of coals from the Zhuzang Syncline, Guizhou Province[J]. Geological Journal of China Universities,2012,18(3):544-548.
101 郭睿,伏美燕,赵丽敏,等 .艾哈代布油田Khasib组沉积相及其对储层发育的控制[J].矿物岩石, 2014,34(1):95-103.
GUO R , FU M Y , ZHAO L M , et al . Sediment facies of Khasib Formation Ahdeb Oil Field and its controlling effects on carbonate reservoir development[J].Journal of Mineralogy and Petrology, 2014,34(1):95-103.
102 PETERSEN H I . The petroleum generation potential and effective oil window of humic coals related to coal composition and age[J].International Journal of Coal Geology,2006,67(4):221-248.
103 高孝田,胡景双,石磊,等 .杨家坝油田裂缝发育规律及对开发效果的影响[J].石油地质与工程, 2010,24(3):50-52.
GAO X T , HU J S , SHI L , et al . Fracture distribution and its influences on the development of Yangjiaba Oilfield[J]. Petroleum Geology and Engineering,2010,24(3):50-52.
104 郑浩,王月杰 .渤海潜山裂缝性油藏高效开发策略研究[J].油气藏评价与开发,2017,7(4):16-21.
ZHENG H , WANG Y J . High efficient development strategy of fractured buried hill reservoir in Bohai Oilfield[J]. Reservoir Evaluation and Development,2017,7(4):16-21.
105 HOOKER J N , GALE J F W , GOMEZ L A , et al . Aperture-size scaling variations in a low-strain opening-mode fracture set, Cozzette Sandstone, Colorado[J]. Journal of Structural Geology, 2009, 31(7): 707-718.
106 曲冠政,曲占庆,Hazlett Randy Dolye, et al .页岩拉张型微裂缝几何特征描述及渗透率计算[J]. 石油勘探与开发,2016,43(1):115-120.
QU G Z , QU Z Q , HAZLETT R D , et al . Geometrical description and permeability calculation about shale tensile micro-fractures[J].Petroleum Exploration and Development,2016,43(1): 115-120.
107 ROEDDER E . Fluid inclusions[J]. Encyclopedia of Physical Science & Technology,2003,12(6): 71-77.
108 LAUBACH S E . Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003,87(4):561-579.
109 WILLIAMS R T , FARVER J R , ONASCH C M , et al . An experimental investigation of the role of microfracture surfaces in controlling quartz precipitation rate: Applications to fault zone diagenesis[J]. Journal of Structural Geology, 2015, 74: 24-30.
110 万永平,李园园,梁晓 .基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例[J]. 地质与勘探,2010,46(4):711-715.
WAN Y P , LI Y Y , LIANG X . Fractures of reservoirs inferred from fluid inclusions: A case study of the Upper Paleozoic of northern Shanxi Slope[J]. Geology and Exploration,2010,46(4):711-715.
111 张莉,杨亚娟,岳乐平,等 .哈南阿尔善油藏微裂缝特征及其对开发的影响[J].石油与天然气地质, 2001,22(2): 158-160.
ZHANG L , YANG Y J , YUE L P , et al . Characteristics of micro-fractures and their influence on waterflooding in Aershan reservoir, Hanan Oilfield[J]. Oil & Gas Geology,2001,22(2): 158-160.
[1] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[2] 王毅, 李俊飞, 彭家琼, 魏璞, 唐宏, 张顺存, 郭晖. 准噶尔盆地SN31井区白垩系清一段一砂组沉积相及储层主控因素分析[J]. 天然气地球科学, 2020, 31(2): 194-208.
[3] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[4] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[5] 刘金华, 郭瑞, 马洪涛, 夏步余, 先伟, 蒋阿明, 葛政俊. 塔里木盆地塔河地区东部阿克库勒组阿四段条带状砂体成因再认识[J]. 天然气地球科学, 2019, 30(9): 1253-1262.
[6] 罗超, 郭建林, 李易隆, 冀光, 窦丽玮, 尹楠鑫, 陈岑. 砂质辫状河隔夹层成因及分布控制因素分析[J]. 天然气地球科学, 2019, 30(9): 1272-1285.
[7] 庞正炼, 陶士振, 张景建, 张琴, 袁苗, 吴因业, 张天舒, 杨晓萍, 范建玮, 孙菲菲. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
[8] 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学, 2019, 30(9): 1319-1331.
[9] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[10] 赵长毅, 李永新, 王居峰, 刘海涛, 邓焱, 赵博雅. 渤海湾盆地天然气成因类型与勘探潜力分析[J]. 天然气地球科学, 2019, 30(6): 783-789.
[11] 李勇, 陈世加, 路俊刚, 肖正录, 何清波, 苏恺明, 李俊良. 近源间互式煤系致密砂岩气成藏主控因素——以川中地区须家河组天然气为例[J]. 天然气地球科学, 2019, 30(6): 798-808.
[12] 吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 2019, 30(6): 819-827.
[13] 吴伟涛, 王一, 赵靖舟, 杨特波, 李军, 黄正良. 鄂尔多斯盆地中部奥陶系马家沟组中组合天然气成藏规律[J]. 天然气地球科学, 2019, 30(6): 828-839.
[14] 魏强, 李贤庆, 孙可欣, 李瑾, 肖中尧, 梁万乐, 张亚超, . 塔里木盆地库车坳陷克深大气田深层天然气成藏地球化学特征[J]. 天然气地球科学, 2019, 30(6): 897-907.
[15] 李长海, 赵伦, 李伟强, 李建新, 丁宇韬, 李昂, 祁永平. 碳酸盐岩缝合线研究进展及对油气开发的意义[J]. 天然气地球科学, 2019, 30(4): 493-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 马永生. 普光气田天然气地球化学特征及气源探讨[J]. 天然气地球科学, 2008, 19(1): 1 -7 .
[2] 郭建军,朱忠云, 李广才, 陈践发, 陈仲宇. 柴窝堡凹陷柴参1侧1井烃源岩的地球化学特征[J]. 天然气地球科学, 2004, 15(6): 652 -654 .
[3] 尹太举,张昌民. 层序地层格架内的油气勘探[J]. 天然气地球科学, 2005, 16(1): 25 -30 .
[4] 蒋有录;. 气藏与油藏形成和保存条件差异问题讨论[J]. 天然气地球科学, 1998, 9(2): 1 -6 .
[5] 妥进才, 王先彬, 周世新, 陈晓东, . 深层油气勘探现状与研究进展[J]. 天然气地球科学, 1999, 10(6): 1 -8 .
[6] 吕宝凤;夏斌;. 川东南“隔档式构造”的重新认识[J]. 天然气地球科学, 2005, 16(3): 278 -282 .
[7] 夏明军, 曾大乾, 邓瑞健, 姜贻伟, 毕建霞, 靳秀菊, 谭国华, 苗菁. 普光气田长兴组台地边缘礁、滩沉积相及储层特征[J]. 天然气地球科学, 2009, 20(4): 549 -556,562 .
[8] 王万春, 张晓宝, 罗厚勇, 李立武. 川东北地区富含H2S天然气烃类与CO2碳同位素特征及其成因[J]. 天然气地球科学, 2011, 22(1): 136 -143 .
[9] 黄林军, 杨巍, 王彦军, 王斌. 模型正演技术在火山岩储层识别中的应用——以准噶尔盆地乌夏地区二叠系火山岩储层为例[J]. 天然气地球科学, 2011, 22(3): 539 -542 .
[10] 施振生, 王秀芹, 吴长江. 四川盆地上三叠统须家河组重矿物特征及物源区意义[J]. 天然气地球科学, 2011, 22(4): 618 -627 .