天然气地球科学 ›› 2020, Vol. 31 ›› Issue (2): 307–316.doi: 10.11764/j.issn.1672-1926.2019.11.012

• 天然气勘探 • 上一篇    下一篇

基于自然伽马和电阻率曲线的高温高压气层孔隙度计算方法

谭伟(),何胜林,张海荣,丁磊,梁玉楠   

  1. 中海石油(中国 )有限公司湛江分公司,广东 湛江 524057
  • 收稿日期:2019-07-16 修回日期:2019-11-29 出版日期:2020-02-10 发布日期:2019-12-03
  • 作者简介:谭伟(1987-),男,湖北利川人,工程师,硕士,主要从事地球物理测井储层评价研究.E-mail: tan06023@126.com.
  • 基金资助:
    国家“十三五”科技重大专项子课题“南海西部海域低渗油藏勘探开发关键技术”(2016ZX05024-006)

Porosity calculation method of high temperature and high pressure gas reservoir based on natural gamma ray and resistivity curve

Wei TAN(),Sheng-lin HE,Hai-rong ZHANG,Lei DING,Yu-nan LIANG   

  1. Zhanjiang Branch of CNOOC Ltd. , Zhanjiang 524057, China
  • Received:2019-07-16 Revised:2019-11-29 Online:2020-02-10 Published:2019-12-03
  • Supported by:
    China National Science & Technology Major Project during the 13th five year plan(016ZX05024-006)

摘要:

海上高温高压气田开发井受测井作业难度大和环境评估要求高的限制,测井项目通常只有自然伽马和电阻率曲线,储层定量评价中以孔隙度为核心的相关参数难以获取,严重制约了开发配产及后期储量核算等工作。以研究区含泥质砂岩储层导电模型——印度尼西亚方程为理论基础,分析了储层孔隙度与电阻率、含水饱和度和泥质含量的关系,揭示了常规基于数理统计思想的孔隙度计算方法存在的不足。在此基础上结合油气成藏毛管压力理论,通过严格的过程推导分岩性建立了储层孔隙度与电阻率、泥质含量和气柱高度的函数关系式。数值模拟研究表明:研究区电阻率的高低最能反映气层孔隙度的大小,泥质含量次之,烃柱高度影响较小;且在其他2个因素不变的前提下,电阻率、泥质含量均与孔隙度呈正相关,而烃柱高度与其呈反相关。最后利用数值求解手段确定了更加符合气藏特征的孔隙度数值解,形成一种基于自然伽马和电阻率曲线的孔隙度计算方法。与常规3种数理统计方法对比,孔隙度计算效果明显改善;与最优化算法相比,相对误差在±8%以内,证实了方法的可靠性。

关键词: 孔隙度, 自然伽马, 电阻率, 数值模拟, 开发井

Abstract:

The development wells of offshore oilfields are limited by the difficulty of logging operation and the high requirement of environmental assessment. Logging projects usually only have natural gamma ray and resistivity curves. It is difficult to obtain the related parameters with porosity as the core in reservoir quantitative evaluation, which seriously restricts the production allocation and later reserves accounting of oilfield development. Based on the conductivity model of argillaceous sandstone reservoirs in the study area, Indonesia equation, the relationship between reservoir porosity and resistivity, water saturation and argillaceous content is analyzed, and the shortcomings of conventional porosity calculation method based on mathematical statistics are revealed. On this basis, combined with the capillary pressure theory of hydrocarbon reservoir formation, two kinds of lithology’s functional relationship of reservoir porosity with resistivity, shale content and oil column height is established through rigorous process deduction. Secondly, numerical simulation shows that: (1) Resistivity can best reflect the size of reservoir porosity, followed by shale content, and oil column height has little influence; (2) Resistivity and shale content are positively correlated with porosity while oil column height is negatively correlated with other two factors unchanged. Finally, combined with reservoir conditions in the study area, the numerical solution is correct. The numerical solution of porosity which is more in line with reservoir characteristics is determined. A method for calculating porosity based on natural gamma ray and resistivity curves is developed. Compared with the conventional three methods of mathematical statistics, the effect of porosity calculation is obviously improved. Compared with the neutron-density intersection method, the relative error is less than 8%, which proves the reliability of the method.

Key words: Porosity, Natural gamma ray, Resistivity, Digital simulation, Development wells

中图分类号: 

  • TE122.2

图1

F气田储层自然伽马、电阻率分别与岩心孔隙度关系"

图2

F气田储层孔隙度与自然伽马和电阻率(取自然对数)的二元拟合关系"

表1

研究区2种主要岩性的关于式(5)的参数统计"

岩性系数D系数E系数n
细砂岩0.286 41.190 11.59
粉砂岩0.311 61.136 31.56

图3

F气田54块样品的地层条件下储层毛管压力曲线特征"

图4

F气田储层毛管压力曲线的Sw与J函数的关系"

表2

研究区2种主要岩性的关于式(12)的参数统计"

岩性系数D系数E系数F
细砂岩0.286 41.190 1-0.607 4
粉砂岩0.311 61.136 3-0.595 9

图5

不同电阻率条件下函数F(φe)与自变量孔隙度的关系"

图7

不同气柱高度条件下函数F(φe)与自变量孔隙度的关系"

图6

不同泥质含量条件下函数F(φe)与自变量孔隙度的关系"

图8

南海F气田X井孔隙度计算效果"

表1

F气田X井孔隙度计算误差统计"

深度/m

录井

岩性

岩心分析

孔隙度/%

测井计算孔隙度/%相对误差/%
12345σ1σ2σ3σ4
13 075.4~3 077.2粉砂岩14.910.913.411.211.914.3-23.8-6.3-21.7-16.8
23 079.1~3 080.4粉砂岩18.616.114.514.015.417.6-8.5-17.6-20.5-12.5
43 081.7~3 088.0粉砂岩17.217.117.717.917.617.3-1.22.33.51.7
53 088.0~3 098.4细砂岩19.1

18.4

15.8

15.6

19.4

18.3

16.7

15.6

17.8

18.8

18.3

18.519.418.818.6-1.1-0.54.31.1
73 100.5~3 102.4细砂岩17.314.213.914.116.4-3.7-13.4-15.2-14.0
83 105.1~3 129.5细砂岩17.817.216.116.917.2-9.30.0-6.4-1.7
93 129.5~3 134.6细砂岩17.818.318.318.17.2-1.71.11.1
103 146.4~3 148.4细砂岩16.116.516.817.45.2-7.5-5.2-3.4
123 149.5~3 154.7细砂岩16.715.115.116.216.13.7-6.2-6.20.6
143 158.3~3 160.0细砂岩14.013.315.016.1-3.1-13.0-17.4-6.8
163 162.2~3 173.1细砂岩16.114.014.516.116.48.5-14.6-11.6-1.8
173 173.1~3 177.3细砂岩9.111.815.616.911.2-46.2-30.2-7.7
183 177.3~3 188.4细砂岩17.58.09.616.116.98.3-52.7-43.2-4.7
1 叶义平, 盛云霞, 冯丽萍, 等. 横向测井资料的孔隙度测井解释方法研究[J].石油天然气学报, 2005, 27(3):348-350.
YE Y P, SHENG Y X, FENG L P, et al. Method for porosity logging interpretation with lateral logging data[J]. Journal of Oil and Gas Technology, 2005, 27(3):348-350.
2 MOHAGHEGH S D, GODDARD C, POPA A, et al. Reservoir Characterization Through Synthetic Logs[C]. SPE 65675, 2002.
3 项云飞, 康志宏, 郝伟俊, 等. 基于线性回归与神经网络的储层参数预测复合方法[J].科学技术与工程, 2017, 17(31): 46-52.
XIANG Y F, KANG Z H, HAO W J, et al. A composite method of reservoir parameter prediction based on linear regression and neural network[J]. Science Technology and Engineering, 2017, 17(31):46-52.
4 连承波, 李汉林, 渠芳, 等. 基于测井资料的BP神经网络模型在孔隙度定量预测中的应用[J].天然气地球科学, 2006,17(3):382-384.
LIAN C B, LI H L, QU F, et al. Prediction of porosity based on bp artificial neural network with well logging data[J]. Natural Gas Geoscience, 2006,17(3):382-384.
5 任杰,翟芳芳,李风玲,等. 基于自然电位计算泥质砂岩储层孔隙度的方法[J].测井技术, 2017, 41(3):292-295.
REN J ,ZHAI F F, LI F L, et al. Calculation method of shale sandstone reservoir porosity based on SP log[J]. Well Logging Technology, 2017, 41(3):292-295.
6 覃建华, 谭锋奇, 罗刚. 基于标准测井的克拉玛依气田一区克下组储层精细解释研究[J].石油天然气学报, 2014, 36(4):66-69.
QIN J H, TAN F Q, LUO G, et al. Reservoir fine interpretation of Karamay Oilfield in district No.1 based on type logs [J]. Journal of Oil and Gas Technology, 2014, 36(4):66-69.
7 刘莹. 基于电阻率与自然电位曲线的孔隙度与渗透率解释方法研究[J]. 长江大学学报: 自科科学版, 2013, 10(32):80-82.
LIU Y. Study on interpretation method of porosity and permeability based on resistivity and natural potential curve[J]. Journal of Yangtze University: Natural Science Edition, 2013, 10(32):80-82.
8 李亮, 宋子齐, 唐长久, 等. 标准测井在砾岩储层评价中的应用——以克拉玛依气田七区砾岩储层为例特种油气藏,2006, 13(5):44-47.
LI L, SONG Z Q, TANG C J, et al. Application of type log in conglomerate reservoir evaluation: A case study of the 7th area of Karamay Oilfield[J]. Special Oil and Gas Reservoirs, 2006, 13(5):44-47.
9 王晓光, 旷红伟, 伍泽云, 等. 无孔隙度测井条件下储层孔隙度求取方法探讨[J]. 岩性油气藏, 2008, 20(3):99-103.
WANG X G, KUANG H W, WU Z Y, et al. Methods of calculating porosity without logging porosity data[J]. Lithologic Reservoirs, 2008, 20(3): 99-103.
10 黄小平, 喻克全, 冯旭军.用横向测井资料确定储层参数的方法研究[J].石油天然气学报,2008, 30(6): 100-102.
HUANG X P, YU K Q, FENG X J. Method for determining reservoir parameters by using transverse log data[J]. Journal of Oil and Gas Technology, 2008, 30(6): 100-102.
11 柳广弟, 张厚福. 石油地质学[M]. 北京: 石油工业出版社,2009: 41-48.
LIU G D, ZHANG H F. Petroleum Geology[M]. Beijing: Petroleum Industry Press, 2009:41-48.
12 朱筱敏. 沉积岩石学[M]. 第4版. 北京: 石油工业出版社, 2008: 46-52.
ZHU X M. Sedimentary Petrology[M]. 4th Edition. Beijing: Petroleum Industry Press, 2008: 46-52.
13 楚泽涵, 高杰, 黄隆基, 等. 地球物理测井方法与原理(上册)[M].北京:石油工业出版社, 2007: 26-34.
CHU Z H, GAO J, HUANG L J, et al. Geophysical Logging Methods and Principles (Volume 1) [M]. Beijing: Petroleum Industry Press, 2007: 26-34.
14 ARCHIE G E. The electrical resistivity log as an aid in dertermining some resercoir characteristics[J]. Petroleum Transactions of the Aime, 1942, 146: 54-61.
15 雍世和, 张超谟. 测井数据处理与综合解释[M].北京:中国石油大学出版社, 2002: 167-178.
YONG S H, ZHANG C M. Logging Data Processing and Comprehensive Interpretation[M]. Beijing: China University of Petroleum Press, 2002: 167-178.
16 何更生, 唐海. 气层物理[M]. 北京: 石油工业出版社, 2011:255-269.
HE G S, TANG H. Petrophysics[M]. Beijing: China University of Petroleum Press, 2011: 255-269.
17 管耀. 利用毛管压力资料求原始含油饱和度方法探讨——以绥中36-1气田23井为例[J]. 勘探地球物理进展, 2009,32(5): 365-369.
GUAN Y. Computing oil saturation using capillary pressure data: Case study of Well 23 in Suizhong 36-1 Oilfield[J]. Progress in Exploration Geophysics, 2009, 32(5): 365-369.
18 杨毅, 胡向阳, 张海荣, 等. 莺歌海盆地高温高压储层含水饱和度评价[J]. 测井技术, 2017, 41(1): 71-76.
YANG Y, HU X Y, ZHANG H R, et al. Evaluation methods for water saturation of high temperature and pressure reservoir in Yinggehai Basin[J]. Well Logging Technology, 2017, 41(1): 71-76.
[1] 于萍, 张瑜, 闫建萍, 邵德勇, 张六六, 罗欢, 乔博, 张同伟. 四川盆地龙马溪组页岩吸水特征及3种页岩孔隙度分析方法对比[J]. 天然气地球科学, 2020, 31(7): 1016-1027.
[2] 王玉满, 李新景, 王皓, 吴伟, 蒋珊, 陈波, 沈均均, 周国晓. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学, 2020, 31(2): 151-162.
[3] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[4] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[5] 刘壮,郭建春,马辉运,周长林,苟波,任冀川. 提升高温气井酸压有效缝长方法[J]. 天然气地球科学, 2019, 30(12): 1694-1700.
[6] 彭骁,谭茂金,王跃祥,谢冰,周肖. 基于可变临界孔隙度Nur模型的页岩气层横波速度预测[J]. 天然气地球科学, 2019, 30(12): 1815-1822.
[7] 程鸣, 傅雪海, 张苗, 程维平, 渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[8] 游利军, 王哲, 康毅力, 张杜杰. 致密砂岩孔渗对盐析的响应实验研究[J]. 天然气地球科学, 2018, 29(6): 866-872.
[9] 滕龙,殷启春,方朝刚,郑红军,沈雪华,朱红兵,陈基炜. 利用高密度电阻率法预测第四系浅层生物气——以江苏省南通地区为例[J]. 天然气地球科学, 2018, 29(5): 719-728.
[10] 王清辉,冯进. 烃源岩TOC测井评价方法及应用——以珠江口盆地文昌组为例[J]. 天然气地球科学, 2018, 29(2): 251-258.
[11] 陈玉凤, 周雪冰, 梁德青, 吴能友. 沉积物中天然气水合物生成与分解过程的电阻率变化[J]. 天然气地球科学, 2018, 29(11): 1672-1678.
[12] 李阳,李树同,牟炜卫,闫灿灿. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7): 1043-1053.
[13] 张涛,李相方,王永辉,石军太,杨立峰,孙政,杨剑,张增华. 页岩储层特殊性质对压裂液返排率和产能的影响[J]. 天然气地球科学, 2017, 28(6): 828-838.
[14] 刘洁,张建中,孙运宝,赵铁虎. 南海神狐海域天然气水合物储层参数测井评价[J]. 天然气地球科学, 2017, 28(1): 164-172.
[15] 王玉满, 李新景, 董大忠, 张晨晨, 王淑芳, 黄金亮, 管全中. 海相页岩裂缝孔隙发育机制及地质意义[J]. 天然气地球科学, 2016, 27(9): 1602-1610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .