天然气地球科学 ›› 2020, Vol. 31 ›› Issue (3): 325–334.doi: 10.11764/j.issn.1672-1926.2019.11.009

• 天然气开发 • 上一篇    下一篇

富有机质页岩储层热激致裂增渗的有利条件

游利军(),李鑫磊,康毅力,陈明君,刘江   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500
  • 收稿日期:2019-08-03 修回日期:2019-11-08 出版日期:2020-03-10 发布日期:2020-03-26
  • 作者简介:通信作者:游利军(1976-),男,河南新安人,教授,博士生导师,博士,主要从事储层保护、非常规油气、岩石物理方面的教学和科研工作.E-mail: youlj0379@126.com.
  • 基金资助:
    国家自然科学基金“富有机质页岩氧化致裂增渗加速气体传输机理研究”(51674209);非常规油气层保护四川省青年科技创新团队项目(2016TD0016);四川省高校科技成果转化重大培育项目“富有机质页岩气藏提高采收率方法”(17CZ0040);中国博士后科学基金资助项目(2017M623062)

Advantages of thermal stimulation to induce shale cracking after hydraulic fracturing over organic-rich shale reservoirs

Li-jun YOU(),Xin-lei LI,Yi-li KANG,Ming-jun CHEN,Jiang LIU   

  1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation//Southwest Petroleum University, Chengdu 610500, China
  • Received:2019-08-03 Revised:2019-11-08 Online:2020-03-10 Published:2020-03-26
  • Supported by:
    The National Natural Science Foundation of China(51674209);The Innovative Research Project for Sichuan Youth Scientific and Technological Innovation(2016TD0016);The Major Cultivation Project of Sichuan Scientific and Technological Achievements Transformation, China(17CZ0040);The China Postdoctoral Science Foundation(2017M623062)

摘要:

页岩气藏的经济开发成为了当前非常规天然气开发关注的焦点。页岩气藏开发方式以“水平井+水力压裂”为核心技术,水力压裂过程中存在“大量压裂液滞留储层,难以返排,形成水相圈闭损害,阻碍气体产出”的工程难题。此外,水力压裂能形成大规模复杂缝网,沟通了微米级裂缝,而基块纳米级孔隙中气体仍然难以进入裂缝。从室内实验和矿场试验两方面概述了储层高温热处理的研究进展,提出了与水力压裂技术协调的富有机质页岩储层热激致裂的方法,从页岩储层地质特征与工程实际分析了页岩储层适合热激增渗的有利条件。研究认为,热激条件下有机质生烃增压、丰富多样的矿物组分差异热膨胀、微米—纳米级孔隙压力仓作用是页岩热致裂的有利地质条件;基于页岩气井体积改造形成的裂缝网络,滞留压裂液不仅能提高页岩导热能力,且在热激条件下水热增压、热液溶蚀作用可为页岩致裂增渗提供重要的工程条件。充分利用页岩储层独特的地质优势和有利的工程条件,包括热液作用、矿物组分非均匀膨胀致裂和热促吸附气解吸的热激法对压裂后的页岩储层进行改造,能够有效缓解甚至解除水相圈闭等储层损害,促使水力裂缝或天然裂缝两侧基质岩石热致裂,改善裂缝网络,增强页岩储层基质—天然缝—人工缝多尺度传质能力,同时实现压裂液的回收再利用,这将是一种环境友好型的有效开发页岩气藏的新方法。

关键词: 页岩, 气藏, 水力压裂, 热激, 储层损害

Abstract:

The economic development of shale gas reservoirs has become the focus of current unconventional gas development. The development method of shale gas reservoirs is based on "horizontal well and hydraulic fracturing" as the core technology. In the process of hydraulic fracturing, a great amount of fracturing fluids retain in the reservoirs, which are difficult to flowback, forming water phase trap damage and hindering gas production. In addition, large-scale complex fracture networks formed by hydraulic fracturing can communicate micron-scale cracks, but it is still difficult for gas in the nano-scale pores of the matrix to enter the crack. This paper proposes a method for thermal stimulation to cause shale cracking coordinated with hydraulic fracturing technology over organic-rich shale gas reservoirs. The research progress of formation heat treatment is summarized from the aspects of laboratory experiments and field tests. In terms of the geological characteristics and engineering technologies, the advantages of this method over organic-rich shale gas reservoirs are also analyzed. It is considered that the role of hydrocarbon-generating overpressure, different thermal expansion coefficients of minerals as well as pressure compartments formed by micro-nanoscale pores provides the favorable factors. Based on the fracture network formed by application of the stimulated reservoir volume, the retaining fracturing fluids can enhance the heat transfer area of shale. Aquathermal pressuring and hydrothermal fluids at certain temperature can also contribute to thermal fracturing. By making full use of the unique geological superiorities and favorable engineering conditions of organic-shale gas reservoirs, this method will effectively transform the shale gas reservoirs after hydraulic fracturing, which can obviously alleviate or even eliminate water trapping damage, promote thermal cracking of matrix rocks on both sides of hydraulic fractures or natural fractures and finally improve the multiscale gas transport ability from matrix-natural fracture-artificial fracture network of shale. Meanwhile, with increasing temperature, the recovery and utilization of flowback fluids can be realized and it will be an environment-friendly new method for the effective development of shale gas reservoirs.

Key words: Shale, Gas reservoir, Hydraulic fracturing, Thermal stimulation, Formation damage

中图分类号: 

  • TE357

表2

常见几种井下加热技术特点"

传热方式 技术种类 作用温度 作用范围 技术特点 经济性
热对流[33,34] 蒸汽吞吐 200~400 ℃ 水平段长度约为300 m

向井口注入的高温

高压蒸汽

成本低
蒸汽辅助重力驱(SAGD)
热传导或热辐射 电加热加热[24,25] 约400 ℃ 20 m 需要供输大量的电力,加热温度与速率可控 成本高
微波加热[35] 400~900 ℃

近井带1~2 m

燃烧加热法[27](UCG) 储层温度~1 400 ℃ 作用于储层大部分位置 不断供入空气,点燃储层甲烷加热温度与速率不易控 成本低

图1

砂岩高温热处理密度和纵波波速随温度变化特征(据文献[29]修改)"

图2

抗张强度随温度的变化(据文献[30]修改)"

图3

富有机质页岩高温热处理前后物性参数变化特征[34] "

图4

页岩热处理500 ℃前后的表观特征[35] "

图5

加热升温激发吸附气解吸"

图6

热激致裂诱导页岩孔缝演化示意"

图7

层理发育的页岩热致裂模式"

图8

热激致裂协调水力压裂增扩页岩储层改造尺度"

1 董大忠,王玉满,李新景,等 . 中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.
DONG D Z , WANG Y M , LI X J , et al . Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.
2 YOU L J , KANG Y L , CHEN Z X , et al . Wellbore instability in shale gas wells drilled by oil-based fluids[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 72: 294-299.
3 游利军,王飞,康毅力,等 . 页岩气藏水相损害评价与尺度性[J].天然气地球科学,2016,27(11):2023-2029.
YOU L J , WANG F , KANG Y L , et al . Evaluation and scale effect of aqueous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029.
4 张士诚,郭天魁,周彤,等 . 天然页岩压裂裂缝扩展机理试验[J].石油学报,2014,35(3):496-503.
ZHANG S C , GUO T K , ZHOU T , et al . Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J]. Acta Petrolei Sinica, 2014, 35(3): 496-503.
5 游利军,谢本彬,杨建,等 . 页岩气井压裂液返排对储层裂缝的损害机理[J].天然气工业,2018,38(12):61-69.
YOU L J , XIE B B , YANG J , et al . Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(12): 61-69.
6 康毅力,陈强,游利军,等 . 页岩气藏水相圈闭损害实验研究及控制对策——以四川盆地东部龙马溪组露头页岩为例[J].油气地质与采收率,2014,21(6):87-91.
KANG Y L , CHEN Q , YOU L J , et al . Laboratory investigation of water phase trapping damage in shale gas reservoir:A case of Longmaxi shale in the eastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6): 87-91.
7 康毅力,张晓怡,游利军,等 . 页岩气藏自然返排缓解水相圈闭损害实验研究[J]. 天然气地球科学,2017,28(6):819-827.
KANG Y L , ZHANG X Y , YOU L J , et al . The experimental research on spontaneous flowback relieving aqueous phase trapping damage in shale gas reservoirs [J]. Natural Gas Geoscience, 2017, 28(6): 819-827.
8 JAMALUDDIN A K M , VANDAMME L M , MANN B K . Formation heat treatment(FHT): A state-of-the-art technology for near-wellbore formation damage treatment[J].Quarterly Journal of Experimental Physiology, 1995,70(3):365-375.
9 JAMALUDDIN A K M , BENNION D B , THOMAS F B , et al . Application of heat treatment to enhance permeability in tight gas reservoirs[J]. Journal of Canadian Petroleum Technology, 1998,39(11):19-24.
10 ALBAUGH F W . Oil Well Production Process: United States,US4396248A[P].1954-8-10[2020-2-24].https://www. uspto.gov/.
11 JAMALUDDIN A K M , HAMELIN M , HARKE K , et al . Field testing of the formation heat treatment process[J]. Journal of Canadian Petroleum Technology, 1999,38(3):38-45.
12 刘均荣,吴晓东 . 岩石热增渗机理初探[J]. 石油钻采工艺,2003,25(5):43-47.
LIU J R , WU X D . Preliminary study on the mechanism of thermal cracking to enhance permeability of rock[J].Oil Drilling & Production Technology,2003,25(5):43-47.
13 贺玉龙,杨立中 . 温度和有效应力对砂岩渗透率的影响机理研究[J]. 岩石力学与工程学报,2005,24(14):2420-2427.
HE Y L , YANG L Z . Study on mechanism of influence of temperature and effective stress on sandstone permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(14): 2420-2427.
14 谭启,骆循,李仕雄,等 . 岩石热破裂研究进展评述[J].露天采矿技术,2006(6):16-19.
TAN Q , LUO X , LI S X , et al . Comments on rock thermal fracturing study progress[J]. Opencast Mining Technology,2006(6):16-19.
15 张渊,曲方,赵阳升 . 岩石热破裂的声发射现象[J]. 岩土工程学报,2006,28(1):73-75.
ZHANG Y , QU F , ZHAO Y S . Acoustic emission phenomena of thermal cracking of sandstone[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(1): 73-75.
16 赵阳升,万志军,张渊,等 . 岩石热破裂与渗透性相关规律的试验研究[J].岩石力学与工程学报,2010,29(10):1970-1976.
ZHAO Y S , WAN Z J , ZHANG Y , et al . Experimental study of related laws of rock thermal cracking and permeability[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(10):1970-1976.
17 游利军,康毅力 . 热处理对致密岩石物理性质的影响[J]. 地球物理学进展,2009,24(5):1850-1854.
YOU L J , KANG Y L . Effects of thermal treatment on physical property of tight rocks[J]. Progressin Geophysics, 2009, 24(5): 1850-1854.
18 陈明君,康毅力,游利军 . 利用高温热处理提高致密储层渗透性[J]. 天然气地球科学,2013,24(6):1226-1231.
CHEN M J , KANG Y L , YOU L J . Advantages in formation heat treatment to enhance permeability in tight reservoir[J]. Natural Gas Geoscience, 2013, 24(6): 1226-1231.
19 BURNHAM A K , MCCONAGHY J R . Comparison of the Acceptability of Various Oil Shale Processes[C]∥ Colorado School of Mines: 26th Oil Shales symposium, 2006.
20 钱家麟,王剑秋 . 世界油页岩发展近况——并记2006年两次国际油页岩会议[J]. 中外能源,2007(1):7-11.
QIAN J L , WANG J Q . Current status of world oil shale development-two world oil shale conferences sponsored in 2006[J]. Sino-Global Energy, 2007(1): 7-11.
21 李隽,汤达祯,薛华庆,等 . 中国油页岩原位开采可行性初探[J]. 西南石油大学学报:自然科学版,2014,36(1):58-64.
LI J , TANG D Z , XUE H Q , et al . Discission of oil shale in-situ conversion process in China[J]. Journal of Southwest Petroleum University: Science & Technology Edition,2014,36(1): 58-64.
22 赵阳升,杨栋,关克伟,等 . 高温烃类气体对流加热油页岩开采油气的方法:中国,CN 101122226A[P]. 2008-2-13.[2020-2-24]. https://www.ixueshu.com/.
ZHAO Y S , YANG D , GUAN K W , et al . A Method of Convection Heating of High-temperature Hydrocarbon Gas on Oil Shale to Produce Oil and Gas: China, CN 101122226A[P]. 2008-2-13[2020-2-24]. https://www.ixueshu.com/.
23 KANG Y L , CHEN M J , Chen Z X , et al . Investigation of formation heat treatment to enhance the multiscale gas transport ability of shale[J]. Journal of Natural Gas Science and Engineering, 2016,35:265-275.
24 刘德勋,王红岩,郑德温,等 . 世界油页岩原位开采技术进展[J]. 天然气工业,2009,29(5):128-132.
LIU D X , WANG H Y , ZHENG D W , et al . World progress of oil shale in-situ exploitation methods[J]. Natural Gas Industry,2009,29(5):128-132.
25 FOWLER T D , VINEGAR H J .Oil Shale ICP-Colorado Field Pilots[C]∥California:SPE Western Regional Meeting, 2009.
26 SHAHTALEBI A , KHAN C , DMYTERKO A , et al . Investigation of thermal stimulation of coal seam gas fields for accelerated gas recovery[J]. Fuel, 2016,180:301-313.
27 LACIAK M , KOSTÚR K , DURDÁN M , et al . The analysis of the underground coal gasification in experimental equipment[J]. Energy,2016,114:332-343.
28 BHUTTO A W , BAZMI A A , ZAHEDI G . Underground coal gasification: From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013,39(1):189-214.
29 LIU S , XU J Y . An experimental study on the physico-mechanical properties of two post-high-temperature rocks[J]. Engineering Geology, 2015,185:63-70.
30 LÜ C , SUN Q , ZHANG W Q , et al . The effect of high temperature on tensile strength of sandstone[J]. Applied Thermal Engineering, 2017,111:573-579.
31 KANG Y L , CHEN M J , YOU L J , et al . Laboratory measurement and interpretation of the changes of physical properties after heat treatment in tight porous media[J]. Journal of Chemistry, 2015,26(6):1-10.
32 索彧,王小琼,葛洪魁 .加热引起含有机质页岩的性质变化及其波速各向异性[C].北京:中国地球科学联合学术年会,2014.
SUO Y , WANG X Q , GE H K . Heating Induces Changes in the Properties of the Organic Shale and Its Wave Velocity Anisotropy[C].Beijing: Joint Annual Conference on Geosciences in China, 2014.
33 郑伟,张利军,朱国金,等 . 渤海L油田稠油水平井蒸汽吞吐开发效果分析[J].石油地质与工程,2019,33(4):80-82.
ZHENG W , ZHANG L , ZHU G J , et al . Thermal recovery effect evaluation of cyclic steam stimulation of heavy oil horizontal wells in Bohai L Oilfield[J]. Petroleum Geology and Engineering, 2019,33(4):80-82.
34 高永荣,郭二鹏,沈德煌,等 . 超稠油油藏蒸汽辅助重力泄油后期注空气开采技术[J]. 石油勘探与开发,2019,46(1):109-115.
GAO Y R , GUO E P , SHEN D H , et al . Air-SAGD technology for super-heavy oil reservoirs[J]. Petroleum Exploration and Development, 2019,46(1):109-115.
35 李皋,孟英峰,董兆雄,等 . 砂岩储集层微波加热产生微裂缝的机理及意义[J]. 石油勘探与开发,2007,34(1):93-97.
LI G , MENG Y F , DONG Z X , et al . Mechanisms and significance of microfractures generated by microwave heating in sandstone reservoirs[J]. Petroleum Exploration and development, 2007, 34(1): 93-97.
36 游利军,陈明君,康毅力,等 . 一种促进致密气井水力裂缝面微裂缝创生的高温热激法:中国,CN 108571305 A[P].2018-9-25.[2020-2-24].https:∥www.cnki.net/.
YOU L J , CHEN M J , KANG Y L , et al . High-temperature Heat Shock Method for Promoting Micro-crack Creation in Hydraulic Fracture Surface of Tight Gas Well: China, CN 108571305 A[P]. 2018-9-25[2020-2-24]. https:∥www.cnki.net/.
37 CURTIS J B . Fractured shale-gas systems[J]. AAPG Bulletin, 2002,86(11):1921-1938.
38 朱如凯,白斌,崔景伟,等 . 非常规油气致密储集层微观结构研究进展[J]. 古地理学报,2013,15(5):615-623.
ZHU R K , BAI B , CUI J W , et al .Research advances of microstructure in unconventional tight oil and gas reservoirs[J]. Journal of Palaeogeography, 2013, 15(5): 615-623.
39 吴松涛,朱如凯,崔京钢,等 . 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发,2015,42(2):167-176.
WU S T , ZHU R K , CUI J G , et al . Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 member, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015,42(2):167-176.
40 高玉巧,蔡潇,张培先,等 . 渝东南盆缘转换带五峰组—龙马溪组页岩气储层孔隙特征与演化[J]. 天然气工业,2018,38(12):15-25.
GAO Y Q , CAI X , ZHANG P X . Pore characteristics and evolution of Wufeng-Longmaxi Formations shale gas reservoirs in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018,38(12):15-25.
41 王新洲,宋一涛,王学军 . 石油成因与排油物理模拟:方法、机理及应用[M]. 北京:石油大学出版社,1996.
WANG X Z , SONG Y T , WANG X J . Physical Simulation of Oil Genesis and Its Displacement: Methods, Mechanisms and Application[M]. Beijing: China University of Petroleum Press,1996.
42 FAN Z Q , JIN Z H , Johnson S E . Modelling petroleum migration through microcrack propagation in transversely isotropic source rocks[J]. Geophysical Journal International, 2012,190(1):179-187.
43 LASH G G , ENGELDER T . An analysis of horizontal microcracking during catagenesis: Example from the Catskill Delta complex[J]. AAPG Bulletin, 2005,89(11):1433-1449.
44 朱维耀,马东旭 . 层理缝对页岩渗透率的影响及表征[J]. 特种油气藏,2018,25(2):134-137.
ZHU W Y , MA D X . Effect of bedding seam on shale permeability and its characterization[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 134-137.
45 TÓTH J , MACCAGNO M , OTTO C , et al . Generation and migration of petroleum from abnormally pressured fluid compartments: Discussion[J]. AAPG Bulletin, 1991,75:331-335.
46 ORTOLEVA J O . Basin compartmentation: Definitions and mechanisms[C]∥ ORTOLEVA. AAPG Special Volumes, The American Association of Petroleum Geologists,1994.
47 GHANBARI E , DEHGHANPOUR H . The fate of fracturing water: A field and simulation study[J]. Fuel, 2016,163:282-294.
48 ZOLFAGHARI A , DEHGHANPOUR H , NOEL M , et al . Laboratory and field analysis of flowback water from gas shales[J]. Journal of Unconventional Oil & Gas Resources, 2016,14:113-127.
49 张建,熊炜,赵宇新 . 隆页1HF井桥塞分段大型压裂技术[J].油气藏评价与开发,2018,8(1):76-80.
ZHANG J , XIONG W , ZHAO Y X . Large segment fracturing technology of pumping bridge plug in well Longye-lHF[J]. Reservoir Evaluation and Development, 2018,8(1):76-80.
50 郭建成,林伯韬,向建华,等 .四川盆地龙马溪组页岩压后返排率及产能影响因素分析[J].石油科学通报,2019(3):273-287.
GUO J C , LIN B T , XIANG J H , et al . Study of factors affecting the flowback ratio and productive capacity of Longmaxi Formation shale in the Sichuan Basin after fracturing[J]. Petroleum Science Bulletin, 2019(3):273-287.
51 BARKER C . Aquathermal pressuring-role of temperature in development of abnormal pressure zones[J]. AAPG Bulletin, 1972,56(10):2068-2071.
52 HETTEMA M H H , WOLF K A A , DE PATER C J . The influence of steam pressure on thermal spalling of sedimentary rock: Theory and experiments[J]. International Journal of Rock Mechanics and Mining Sciences, 1998,35(1):3-15.
53 李香兰,刘绍文,徐明,等 华南下扬子区泥页岩热物性测试与分析 [J] 天然气地球科学,2015,26(8):1525-1533.
LI X L , LIU S W , XU M , et al . Measurement and analysis of thermal properties of mudstones and shales in the Lower Yangtze area, South China[J]. Natural Gas Geoscience, 2015, 26(8): 1525-1533.
54 WALSH J B , DECKER E R . Effect of pressure and saturating fluid on the thermal conductivity of compact rock[J]. Journal of Geophysical Research, 1966,71(12):3053-3061.
55 孙亚平,褚健,张铭,等 天然含放矿物的水热蚀变研究进展 [J]. 矿物学报,2019,39(27):1-9.
SUN Y P , CHU J , ZHANG M , et al . The research progress of hydrothermal alteration of natural minerals containing-radionuclides[J]. ActaMineralogica Sinica, 2019,39(27): 1-9.
[1] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
[2] 张利明, 王小强, 侯大力, 肖克, 姜晨光, 邹晓梅. 塔里木盆地近临界油气藏相态特征[J]. 天然气地球科学, 2020, 31(3): 370-374.
[3] 王倩茹, 陶士振, 关平. 中国陆相盆地页岩油研究及勘探开发进展[J]. 天然气地球科学, 2020, 31(3): 417-427.
[4] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[5] 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜null, 米巨磊. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257.
[6] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[7] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[8] 陈立超, 王生维. 煤岩断裂力学性质对储层压裂改造的影响[J]. 天然气地球科学, 2020, 31(1): 122-131.
[9] 付斌, 李进步, 张晨, 史红然. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-150.
[10] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[11] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[12] 张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 四川盆地深层页岩储层孔喉特征[J]. 天然气地球科学, 2019, 30(9): 1349-1361.
[13] 马风华, 潘进礼, 马瑞赟, 张勇, 马小娟. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学, 2019, 30(9): 1370-1377.
[14] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[15] 郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 准噶尔盆地页岩油“甜点区”评价与关键技术应用——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[3] 张宝,包建平,江凤梅. 三塘湖盆地侏罗系煤岩倾油倾气性探讨[J]. 天然气地球科学, 2006, 17(2): 183 -186 .
[4] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[5] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .
[6] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[7] 刘洪军;贾亚妮;李振宏;郑聪斌;. 岩溶盆地中微隆起带的存在及意义――以鄂尔多斯盆地奥陶纪岩溶古地貌为例[J]. 天然气地球科学, 2006, 17(4): 490 -493 .
[8] 王晓梅,张 群, 张培河, 赵俊峰,陈鸿春. 煤层气储层数值模拟研究的应用[J]. 天然气地球科学, 2004, 15(6): 664 -668 .
[9] 郑有恒,黄海平,文志刚,陈永峤,朱建辉. 根据原油的含氮化合物判断东营凹陷大芦湖油田油气运移方向[J]. 天然气地球科学, 2004, 15(6): 650 -651 .
[10] 聂采军,赵军,夏宏权, 刘之的. 地层破裂压力测井预测的统计模式研究[J]. 天然气地球科学, 2004, 15(6): 633 -636 .