天然气地球科学 ›› 2020, Vol. 31 ›› Issue (2): 220–234.doi: 10.11764/j.issn.1672-1926.2019.11.008

• 天然气地质学 • 上一篇    下一篇

湖相细粒沉积岩中的“斑状”深源碎屑——以准噶尔盆地吉木萨尔凹陷芦草沟组为例

李哲萱1(),柳益群1(),焦鑫1,周鼎武2   

  1. 1.大陆动力学国家重点实验室,西北大学地质学系,陕西 西安 710069
    2.山东科技大学地质科学与地质工程学院,山东 青岛 266510
  • 收稿日期:2019-08-28 修回日期:2019-11-06 出版日期:2020-02-10 发布日期:2019-12-03
  • 通讯作者: 柳益群 E-mail:li.zhexuan@foxmail.com;liu-yiqun@263.net
  • 作者简介:李哲萱(1989-),女,山东潍坊人,博士研究生,主要从事沉积学及石油地质学研究.E-mail: li.zhexuan@foxmail.com.
  • 基金资助:
    国家自然科学基金面上项目(41802120);中国博士后基金(2018M633557)

Deep-derived clastics with porphyroclastic structure in lacustrine fine-grained sediments: Case study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin

Zhe-xuan LI1(),Yi-qun LIU1(),Xin JIAO1,Ding-wu ZHOU2   

  1. 1.Department of Geology, Northwest University, Xi'an 710069,China
    2.Shandong University of Science and Technology, Qingdao 266510, China
  • Received:2019-08-28 Revised:2019-11-06 Online:2020-02-10 Published:2019-12-03
  • Contact: Yi-qun LIU E-mail:li.zhexuan@foxmail.com;liu-yiqun@263.net
  • Supported by:
    the National Natural Science Foundation of China(41802120);The China Postdoctoral Science Foundation(2018M633557)

摘要:

在对准噶尔盆地吉木萨尔凹陷二叠系芦草沟组暗色湖相细粒岩进行研究时,发现多套以夹层形式产出、矿物组成多为不稳定—次稳定矿物、碎屑颗粒呈斑块状且结构成熟度普遍较低的碎屑岩。构成岩石的晶质碎屑均呈大小混杂、形态各异的棱角状,分选差,分布无规律,单矿物常见高温熔蚀成因港湾状边缘。地球化学特征显示:构成岩石的矿物颗粒为深部来源,甚至可能有幔源物质加入。认为岩石样品的碎屑颗粒不再源自传统认识中的周缘母岩风化搬运或热液沉淀,而是在陆内裂谷欠补偿湖盆背景下、源自地球内部不同深度、不同性质的岩浆—热液物质流体。这些深源岩浆—热液物质流体上涌进入湖(海)底喷流通道,由喷口喷出后,随喷口距离远近,在不同机械搬运方式和驱动力下参与沉积过程。

关键词: 细粒沉积岩, 深源碎屑, 物质来源, 岩浆—热液物质流体, 吉木萨尔凹陷

Abstract:

During the study of dark fine-grained sedimentary rocks in Permian Lucaogou Formation of Jimsar Sag, Junggar Basin, multiple series of laminar, randomly distributing sedimentary rocks which mainly consist of unstable to sub-stabilized minerals with low grade of texture maturity are observed. Rock-forming minerals appear euhedral and are with partly embayed boundaries. Geochemical results suggest the clastics are of deep-derived (even partly are mantle-derived) origin. This paper thinks target rocks are neither composed of terrigenous clastic sediments nor intraclast and they are different from hydrothermal sedimentary rocks. It is formed by deep derived magmatic-hydrothermal material (and fluid), which usually forms in vapor-liquid-solid, upwelling along the exhalite channels then erupting to the bottom of lake floor, unaffected or slightly affected by hydrodynamics, then deposit finally. This new kind of sedimentary rock enriches the study of sedimentology. Hopefully, further study on it can benefit completing and enriching theories of sedimentation.

Key words: Fine-grained sedimentary rock, Deep-derived clastics, Material source, Hydrothermal exhalative material, Jimsar Sag

中图分类号: 

  • TE121.3

图1

准噶尔盆地吉木萨尔凹陷位置特征(图修改自文献[32])"

图2

碎斑状颗粒岩样岩石学、矿物学特征(a)J32井,3 733.2 m,岩心手标本照片,红色箭头指示碎斑状颗粒数量逐渐减少至消失;(b)对应岩心手标本岩石薄片照片;(c)单偏光镜下照片,对应图(b)中C框位置,红色箭头指示晶内裂隙;(d)电子探针背散射照片,箭头a指示港湾状边缘,箭头b指示平滑边缘;(e)对应图(d)中 E框位置,基质电子探针背散射照片,黄色箭头指示鸡骨状碎屑颗粒,红色箭头指示钠长石具港湾状边缘;(f)—(g)对应图(e)的EDS元素面扫描图片(ab:钠长石;dol:白云石;kfs:钾长石)"

图3

团块状颗粒岩样岩石学、矿物学特征(a)J251井,3 787.11 m,团块状颗粒岩样岩心手标本照片;(b)J251井,3 770 m,含团块状颗粒岩层与下伏正常湖相沉积接触面,红色箭头指示侵蚀冲刷面;(c)图(a)对应岩石薄片照片,红色箭头指示纺锤体状团块,黄色箭头指示撕裂状团块;(d)正交镜下照片,对应图(c)中D框部分;(e)电子探针背散射照片;(f)对应图(e)中F框位置,显示团块中基质矿物特征,红色箭头指示颗粒港湾状边缘;(g)对应图(e)中G框位置,显示岩石样品基质矿物特征,红色箭头指示棱角状矿物,黄色箭头指示港湾状边缘(ab:钠长石;dol:白云石;kfs:钾长石;qtz:石英)"

表1

碎斑状颗粒电子探针成分分析结果 %"

井名深度/mCO2Na2OMgOFeOMnOBaOCaOTotal
J323 733.147.090.430.000.020.020.0052.64100.22
J323 733.1551.090.010.450.170.030.3753.76105.86
J323 733.245.150.000.260.070.040.0055.55101.07

表2

研究区岩石样品矿物组成X?衍射结果 %"

井名深度/m取样位置石英钠长石钾长石方解石白云石蒙脱石黄铁矿伊利石
J323 733.1碎斑状岩石基质33.914.15.85.936.83.50.00.0
J1743 239.8碎斑状岩石基质26.925.25.49.419.610.00.03.5
J2513 785.9团块状岩石颗粒10.22.50.781.45.20.00.00.0
J2513 785.9团块状岩石颗粒6.80.70.092.50.00.00.00.0
J1743 295.5团块状岩石颗粒16.37.13.160.72.08.02.80.0
J1743 240.95团块状岩石颗粒17.712.91.727.326.414.00.00.0
J2513 785.9团块状岩石基质17.84.10.99.667.60.00.00.0
J2513 785.9团块状岩石基质7.02.60.79.080.70.00.00.0
J1743 295.5团块状岩石基质37.625.16.76.13.516.00.05.0
J1743 240.95团块状岩石基质18.617.98.11.247.76.50.00.0

表3

研究区样品全岩稀土元素含量及特征参数"

碎斑状颗粒/(μg/g)团块状颗粒/(μg/g)
样品编号J174-1J32-1J174-2J174-3J174-4J174-5J176-1J251-2J34-1J251-1J251-3J251-4J251-5J34-2J251-6
深度/m3 295.53 733.23 239.83 240.03 240.83 240.93 199.33 790.43 645.23 785.93 765.23 763.043 770.03 650.73 772.1
La17.8418.7528.9028.9818.2025.0419.8925.8518.7615.7229.518.9317.3320.0017.53
Ce44.9051.6961.8863.0143.1256.4946.9653.7039.0541.0893.0422.9344.6540.8044.86
Pr5.456.497.206.635.407.195.856.545.064.3515.483.025.855.165.92
Nd23.0325.5025.8919.8922.3029.6623.2625.5821.1818.1576.5613.1725.0621.2525.70
Sm4.914.474.292.875.136.524.715.645.004.1916.663.194.845.264.96
Eu0.910.780.730.550.931.140.881.011.030.842.650.580.821.000.89
Gd4.273.873.462.644.885.893.985.215.204.1914.343.125.025.304.97
Tb0.620.600.440.360.750.900.540.890.800.642.330.510.870.820.86
Dy3.733.572.462.124.685.363.145.774.964.2315.723.055.384.925.66
Ho0.740.700.460.420.901.010.601.230.960.903.310.631.211.001.15
Er2.142.091.331.202.582.751.743.692.612.749.962.083.312.753.27
Tm0.360.360.220.170.440.420.280.590.400.501.690.420.550.410.51
Yb2.402.681.681.103.132.511.883.912.663.4010.783.693.332.613.18
Lu0.350.440.260.160.460.350.280.580.380.531.420.660.470.400.46
Th8.228.547.734.064.016.1310.3110.719.807.6826.313.0612.4610.1412.80
U4.795.671.411.091.812.862.674.843.717.954.381.453.453.923.56
Y22.5423.4114.9714.9029.9130.3520.1334.9028.0927.99108.0422.9029.3628.6929.55
Sr1 029.141 400.67559.80484.98949.65480.59228.57351.96381.401 877.431 037.72847.40638.88396.88643.87
Nb5.103.497.596.923.636.228.938.967.523.113.761.753.197.693.20
δEu0.590.560.560.610.560.550.610.560.610.610.510.560.500.580.54
δCe1.791.941.541.581.691.611.681.501.491.872.131.811.821.471.81
∑LREE97.04107.69128.90121.9495.09126.05101.56118.3290.0984.33233.9051.8398.5593.4899.85
∑HREE14.6114.3210.328.1717.8219.1912.4321.8617.9917.1359.5614.1720.1418.2020.07
∑REE111.65122.01139.22130.12112.91145.23113.99140.18108.07101.45293.4666.00118.69111.68119.91
∑LREE/∑HREE6.647.5212.4914.925.346.578.175.415.014.923.933.664.895.144.98
(La/Yb)n3.343.157.7311.812.624.484.762.983.172.081.231.092.343.452.48
Y/Ho30.6033.2632.7135.2633.2030.0033.4928.4029.1630.9732.5936.0924.2728.8125.64
Th/U1.721.505.473.722.212.143.862.212.640.976.002.103.612.593.60

图4

岩石样品全岩稀土元素配分模式(a)碎斑状颗粒全岩稀土元素配分模式;(b)团块状颗粒全岩稀土元素配分模式(中国南秦岭造山带侵入型碳酸岩数据引自文献[38];西藏沱沱河热液碳酸盐岩数据引自文献[39])"

表4

方解石原位Sr同位素组成"

样号碎斑状方解石单晶团块状方解石单晶
J174-1J32-1J251-1
深度/m3 295.53733.23785.9
87Sr/86Sr0.705 9890.705 8380.705 680
0.705 6030.705 9640.706 729
0.705 8070.706 0450.706 340
0.705 3780.706 1060.706 103
0.705 7030.705 9360.706 286

表5

碎斑状单晶方解石微量元素含量及特征参数 μg/g"

测试点编号SC1SC2SC3SC4SC5SC6SC7SC8SC9SC10SC11SC12SC13SC14SC15SC16SC17SC18SC19SC20
Y13.8915.0347.7911.0714.0614.317.2516.6123.7933.7111.599.4811.9416.5128.0410.4119.5019.4410.449.48
La9.957.3414.608.756.806.913.4111.346.376.016.755.536.033.9111.676.4920.536.556.026.17
Ce24.5020.4932.7723.9221.4822.1710.4614.9015.5217.0421.6417.9620.1413.7920.0520.6423.4520.1819.6219.94
Pr3.102.864.383.263.083.091.461.461.932.313.132.643.112.032.362.831.932.802.822.76
Nd15.0414.4322.1115.9415.7815.957.426.179.5911.6817.3814.2916.8711.3411.4114.456.5214.7914.0514.27
Sm3.513.816.613.703.904.121.901.392.733.474.543.584.523.373.303.460.983.923.593.44
Eu0.630.661.340.660.710.760.390.310.540.740.800.600.790.670.690.610.160.750.620.60
Gd3.163.617.993.243.673.902.041.653.084.173.783.263.813.483.823.051.134.333.183.10
Tb0.440.511.290.440.500.550.270.300.530.740.510.430.520.550.690.410.250.600.430.42
Dy2.722.958.042.282.732.931.472.233.614.922.682.202.823.334.632.232.203.582.222.09
Ho0.480.541.530.390.510.480.250.520.731.000.410.330.430.560.900.360.580.640.360.34
Er1.341.434.401.001.251.260.621.922.353.260.950.801.021.452.760.912.451.710.870.79
Tm0.200.210.710.130.190.170.080.450.420.570.130.100.120.220.500.130.620.260.120.10
Yb1.741.936.281.171.741.290.646.024.115.530.900.800.901.705.400.888.992.190.900.78
Lu0.300.311.010.170.250.190.091.310.680.890.130.110.120.250.980.111.860.350.130.10
(La/Yb)cn3.852.571.575.072.643.613.591.271.050.735.074.674.501.561.465.001.542.024.525.37
Y/Ho28.8227.8831.3228.5327.6829.5728.7731.7632.4633.7128.4828.5527.5829.2731.2628.8433.6830.6129.2427.56

表6

团块状单晶方解石微量元素含量及特征参数 μg/g"

测试点编号SC1SC2SC3SC4SC5SC6SC7SC8SC9SC10SC11SC12SC13SC14SC15SC16SC17SC18SC19SC20
Y6.496.3727.1427.6914.6518.6621.7410.5617.2222.4157.1123.2316.0422.864.2922.2713.4918.6714.8715.52
La6.702.7413.3713.0511.776.393.955.162.802.1812.065.956.834.931.991.698.4710.248.599.18
Ce10.777.7623.8133.8221.7913.488.949.946.006.2241.9912.9313.9211.866.326.1614.9922.4016.0918.03
Pr0.960.822.234.052.171.391.020.980.750.856.041.371.401.270.690.931.302.241.611.68
Nd4.093.8610.0520.6310.466.675.044.354.274.9934.706.736.606.003.135.816.1310.888.147.78
Sm0.950.892.855.352.551.871.701.061.431.839.811.981.781.810.672.111.682.942.032.03
Eu0.180.170.541.050.490.340.360.210.320.371.960.410.370.370.120.410.300.500.380.40
Gd0.880.883.085.222.561.871.831.061.732.1610.092.361.922.030.682.281.682.732.132.01
Tb0.140.140.530.780.390.330.350.200.330.391.530.400.320.370.100.390.280.450.340.32
Dy0.870.873.384.772.332.342.561.352.252.759.302.822.032.700.612.731.742.682.041.96
Ho0.180.180.670.910.410.500.570.270.460.641.770.610.410.590.120.600.370.530.410.40
Er0.580.582.382.661.361.742.040.951.632.175.312.201.422.180.392.141.271.561.321.33
Tm0.120.120.540.420.250.380.460.210.360.480.900.480.320.450.080.480.260.320.270.31
Yb1.561.326.403.762.684.155.402.414.025.588.655.983.945.590.795.392.893.543.143.65
Lu0.310.241.150.600.470.730.930.410.720.991.421.030.701.000.130.960.520.560.550.63
(La/Yb)cn2.901.401.412.342.961.040.491.450.470.260.940.671.170.601.700.211.981.951.851.70
Y/Ho35.3135.9540.4530.3635.6437.1738.0138.5437.4335.0732.3038.2738.7439.0834.9937.1836.3635.4336.0038.42

图5

方解石单矿物原位La/Yb—Y/Ho值相关性(图修改自文献[42])"

图6

深源碎屑沉积模式示意"

1 米立军,刘震,张功成,等.南海北部深水区白云凹陷古近系烃源岩的早期预测[J].沉积学报,2007,25(1):139-146.
MI L J, LIU Z, ZHANG G C, et al. Early forecast and evaluation study on chief source rock in Baiyun Depression[J]. Acta Sedimentologica Sinica, 2007, 25(1): 139-146.
2 陈全红,李文厚,胡孝林,等.鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析[J].地质学报,2012,86(7): 1150-1162.
CHEN Q H, LI W H, HU X L, et al. Tectonic setting and provenance analysis of Late Paleozoic Sedimentary rocks in the Ordos Basin[J]. Acta Geologica Sinica, 2012,86(7): 1150-1162.
3 吴靖,姜在兴,王欣.湖相细粒沉积岩三—四级层序地层划分方法与特征——以渤海湾盆地东营凹陷古近系沙四上亚段为例[J].天然气地球科学,2018,29(2):199-211.
WU J, JIANG Z X, WANG X. Sequence stratigraphy characteristics of lacustrine fine-grained sedimentary rocks: A case study of the upper fourth member of Paleogene Shahejie Formation, Dongying sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2018, 29(2):199-211.
4 KUENEN P H, MIGLIORINI C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91-127.
5 TALLING P J, MASSON D G, SUMNER E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
6 SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763.
7 MACQUAKER J H S, BENTLEY S J, BOHACS K M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions[J]. Geology, 2010, 38(10): 947-950.
8 MOUNT J F. Mixing of silicilastics and carbonate sediments in shale low shelf environments[J]. Geology, 1984(12): 432-435.
9 杨朝青,沙庆安.云南曲靖中泥盆统曲靖组的沉积环境:一种陆源碎屑与海相碳酸盐的混合沉积[J].沉积学报,1990,8(2):59-66.
YANG C Q, SHA Q A. Sedimentary environment of the Middle Devonian Qujing Formation, Qujing, Yunnan Province: A kind of mixing sedimentation of terrigenous clastics and carbonate[J]. Acta Sedimentologica Sinica, 1990,8(2): 59-66
10 沙庆安. 混合沉积和混积岩的讨论[J]. 古地理学报, 2001, 3(3): 63-66.
SHA Q A. Discussion on mixing deposit and hunji rock[J]. Journal of Palaeogeography(Chinese Edition), 2001, 3(3): 63-66.
11 陈世悦,张顺,刘惠民,等.湖相深水细粒物质的混合沉积作用探讨[J].古地理学报, 2017,19(2): 271-284.
CHEN S Y, ZHANG S, LIU H M, et al. Discussion on mixing of fine-grained sediments in lacustrine deep water[J]. Journal of Palaeogeography(Chinese Edition), 2017, 19(2): 271-284.
12 马克,侯加根,刘钰铭,等.吉木萨尔凹陷二叠系芦草沟组咸化湖混合沉积模式[J].石油学报, 2017, 38(6): 636-648.
MA K, HOU J G, LIU Y M, et al. The sedimentary model of saline lacustrine mixed sedimentation in Permain Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica,2017,38(6): 636-648.
13 郑荣才,王成善,朱利东,等.酒西盆地首例湖相“白烟型”喷流岩─热水沉积白云岩的发现及其意义[J].成都理工大学学报:自然科学版, 2003, 30(1): 1-8.
ZHENG R C, WANG C S, ZHU L D, et al. Discovery of the first example of "white smoke type" of exhalative rock (hydrothermal sedimentary dolostone) in Jiuxi Basin and its significance[J]. Journal of Chengdu University of Technology: Science & Technology Edition, 2003, 30(1): 1-8.
14 郑荣才,文华国,李云,等.甘肃酒西盆地青西凹陷下白垩统下沟组湖相喷流岩物质组分与结构构造[J].古地理学报, 2018, 20(1):1-18.
ZHENG R C, WEN H G, LI Y, et al. Compositions and texture of lacustrine rocks from the Lower Cretaceous Xiagou Formation in Qingxi Sag of Jiuxi Basin, Gansu[J]. Journal of Palaeogeography(Chinese Edition), 2018, 20(1): 1-18.
15 文华国. 酒西盆地青西凹陷下沟组湖相“白烟型”喷流岩研究[D].成都:成都理工大学, 2005:26-29.
WEN H G. Study on the “White Smoke Type” of Lacustrine Exhalative Rock in the Xiagou Formation of Qingxi Sag of Jiuxi Basin[D]. Chengdu: Chengdu University of Technology, 2005:26-29.
16 钟大康,姜振昌,郭强,等.内蒙古二连盆地白音查干凹陷热水沉积白云岩的发现及其地质与矿产意义[J]. 石油与天然气地质, 2015, 36(4): 587-595.
ZHONG D K, JIANG Z C, GUO Q, et al. Discovery of hydrothermal dolostones in Baiyinchagan sag of Erlian Basin, Inner Mongolia, and its geologic and mineral significance[J]. Oil & Gas Geology, 2015, 36(4): 587-595.
17 钟大康,杨喆,孙海涛,等.热水沉积岩岩石学特征:以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例[J].古地理学报, 2018, 20(1): 19-32.
ZHONG D K, YANG Z, SUN H T, et al. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(1): 19-32.
18 李红,柳益群,张丽霞,等.准噶尔盆地东部中二叠统平地泉组具“斑状”结构热水喷流沉积岩的成因及地质意义[J].古地理学报, 2017, 19(2): 212-226.
LI H, LIU Y Q, ZHANG L X, et al. Origin and geological significance of sedimentary exhalative rocks with “porphyritic”structures in the Middle Permian Pingdiquan Formation, eastern Junggar Basin[J]. Journal of Palaeogeography (Chinese Edition), 2017, 19(2): 212-226.
19 柳益群,周鼎武,焦鑫,等.一类新型沉积岩:地幔热液喷积岩:中国新疆三塘湖地区为例[J].沉积学报, 2013, 31(5): 773-781.
LIU Y Q, ZHOU D W, JIAO X, et al. A new type of sedimentary rocks: mantle-originated hydroclastites and hydrothermal exhalites Santanghu area, Xinjiang NW China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781.
20 柳益群,周鼎武,南云,等.新疆北部地区二叠系幔源碳酸岩质喷爆岩研究[J].古地理学报, 2018, 20(1): 49-63.
LIU Y Q, ZHOU D W, NAN Y, et al. Permian mantle-derived carbonatite originated exhalative sedimentary rocks in north Xinjiang[J]. Journal of Palaeogeography (Chinese Edition), 2018, 20(1): 49-63.
21 焦鑫,柳益群,杨晚,等.水下火山喷发沉积特征研究进展[J].地球科学进展, 2017, 32(9): 926-936.
JIAO X, LIU Y Q, YANG W, et al. Progress on sedimentation of subaqueous volcanic eruption[J]. Advances in Earth Science, 2017, 32(9): 926-936.
22 焦鑫,柳益群,靳梦琪,等.新疆三塘湖薄层状岩浆—热液白云质喷流沉积岩[J].沉积学报,2017,35(6):1087-1096.
JIAO X, LIU Y Q, JIN M Q, et al. Thin bed magmatic-hydrothermal dolomitic exhalative sedimentary rocks in Santanghu Basin,Xinjiang[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1087-1096.
23 焦鑫.新疆三塘湖盆地二叠系岩浆—热液喷流沉积岩特征与形成机理[D].西安:西北大学,2017:40-60.
JIAO X. Features and Forming Mechanism of Magmatic-hydrothermal Exhalative Sedimentary Rocks in Permian Lucaogou Formation, Santanghu Basin, Xinjiang[D].Xi’an: Northwest University,2017:40-60.
24 焦鑫,柳益群,樊婷婷,等.幔源纹层状岩浆-热液喷溢沉积岩[J].西北大学学报:自然科学版, 2017, 47(6):887-895.
JIAO X, LIU Y Q, FAN T T, et al. Mantle-derived laminated magmatic-hydrothermal effusive-eruptive sedimentary rocks[J]. Journal of Northwest University: Natural Science Edition, 2017, 47(6):887-895.
25 JIAO X, LIU Y Q, YANG W, et al. A Magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China-The volcanogenic origin of fine-grained clastic sedimentary rocks[J]. Journal of Asian Earth Sciences, 2018, 156(1):11-25.
26 JIAO X, LIU Y Q, YANG W, et al. Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin, NW China: Implications for penecontemporaneous transformation of silica minerals[J]. International Journal of Earth Sciences, 2018, 107: 1989-2009.
27 李哲萱,柳益群,周鼎武,等.三塘湖盆地二叠系芦草沟组喷爆岩岩石学、矿物学特征及相关问题探讨[J].沉积学报, 2019, 37(3): 456-463.
LI Z X, LIU Y Q, ZHOU D W, et al. Petrology and mineralogy features of magmatic-hydrothermal explosion rocks in Permian Lucaogou Formation of Santanghu Basin and its relative discussions[J]. Acta Sedimentologica Sinica, 2019, 37(3): 456-463.
28 匡立春,唐勇,雷德文,等.准噶尔盆地二叠系咸化湖相云质岩致密油形成条件与勘探潜力[J]. 石油勘探与开发, 2012, 39(6): 657-667.
KUANG L C, TANG Y, LEI D W, et al. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China[J]. Petroleum Exploration and Development,2012,39(6):657-667.
29 高岗,向宝力,李涛涛,等.吉木萨尔凹陷芦草沟组致密油系统的成藏特殊性[J].沉积学报, 2017,35 (4): 179-188.
GAO G, XIANG B L, LI T T, et al. Tight oil system particularity of Lucaogou Formation in Jimusaer Sag, Junggar Basin[J]. Acta Sedimentologica Sinica, 2017, 35(4):179-188.
30 HAN B F, HE G Q, WANG S G. Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin[J]. Science in China: Series D, Earth Sciences, 1999, 42(2): 113-119
31 周鼎武,柳益群,邢秀娟,等.新疆吐-哈、三塘湖盆地二叠纪玄武岩形成古构造环境恢复及区域构造背景示踪[J].中国科学: D辑:地球科学, 2006, 36(2):143-153.
ZHOU D W, LIU Y Q, XING X J, et al. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang[J]. Science in China(Series D): Earth Sciences, 2006, 36(2):143-153.
32 方世虎,贾承造,郭召杰,等.准噶尔盆地二叠纪盆地属性的再认识及其构造意义[J].地学前缘, 2006, 13(3): 108-121.
FANG S H, JIA C Z, GUO Z J, et al. New view on the Permian evolution of the Junggar Basin and its implications for tectonic evolution [J]. Earth Science Frontiers, 2006, 13(3): 108-121.
33 陈发景,汪新文,汪新伟.准噶尔盆地的原型和构造演化[J].地学前缘, 2005, 12(3): 77-89.
CHEN F J, WANG X W, WANG X W. Prototype and tectonic evolution of the Junggar Basin, northwestern China[J]. Earth Science Frontiers, 2005, 12(3): 77-89.
34 葸克来,操应长,朱如凯,等.吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J].石油学报, 2015, 36(12) :1496-1500.
XI K L, CAO Y C, ZHU R K, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12):1496-1500.
35 TAYLOR S R, MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell Scientific Publication, 1985, 312.
36 MCLENNAN S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]∥ Lipin B R, McKay G A, eds. Geochemistry and mineralogy of rare earth elements. Reviews in Mineralogy, 1989, 21: 169-200.
37 MURRAY R W. Chemical criteria to identify the depositional environment of chert: General principles and applications[J]. Sedimentary Geology, 1994, 90(3-4): 213-232.
38 XU C, KYNICKY J, CHAKHMOURADIAN A, et al. Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, central China[J]. Lithos, 2010, 118(1):145-155.
39 伊海生,林金辉,赵西西,等.西藏高原沱沱河盆地渐新世—中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探[J].沉积学报, 2008, 26(1):1-10.
YIN H S, LIN J H, ZHAO X X, et al. Geochemistry of rare earth elements and origin of positive europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe Basin of Tibetan Plateau[J]. Acta Sedimentologica Sinica, 2008, 26(1):1-10.
40 MCLENNAN S M, TAYLOR S R. Th and U in sedimentary rocks: Crustal evolution and sedimentary recycling[J]. Nature, 1980, 285(5767): 621-624.
41 倪善芹,侯泉林,王安建,等.碳酸盐岩中锶元素地球化学特征及其指示意义——以北京下古生界碳酸盐岩为例[J].地质学报, 2010, 84(10): 1510-1516.
NI S Q, HOU Q L, WANG A J, et al. Geochemical characteristics of carbonate rocks and its geological implications-Taking the Lower Palaeozoic carbonate rock of Beijing Area as an example[J]. Acta Geologica Sinica, 2010, 84(10): 1510-1516.
42 CHAKHMOURADIAN A R, REGUIR E P, COUËSLAN C, et al. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations[J]. Mineralogy and Petrology, 2016, 110(2-3): 361-377.
43 张国伟,陶树,汤达祯,等.三塘湖盆地二叠系芦草沟组油页岩微量元素和稀土元素地球化学特征[J]. 煤炭学报, 2017, 42(8): 2081-2089.
ZHANG G W, TAO S, TANG D Z, et al. Geochemical characteristics of trace elements and rare earth elements in Permian Lucaogou oil shale, Santanghu Basin[J]. Journal of China Coal Society, 2017, 42(8): 2081-2089.
44 BOYNTON W V. Geochemistry of the rare earth elements: Meteorites studies[J]. Rare Earth Element Geochemistry,1984:63-114.
45 于炳松,乐昌硕.沉积岩物质成分所蕴含的地球深部信息[J].地学前缘, 1998,5(3): 106-110.
YU B S, LE C S. Some information about the inner earth contained in composition of sedimentary rocks[J]. Earth Science Frontiers, 1998,5(3): 106-110.
46 DICKSON T. Carbonate Mineralogy and Chemistry (Chapter6)[M]∥ Tucker M E, Wright V P (Editor, Carbonate Sedimentology. Oxford: Blackwell Scientific Publications, 1990: 284-313.
47 于炳松,陈建强,李兴武,等.塔里木盆地下寒武统底部黑色页岩地球化学及其岩石圈演化意义[J]. 中国科学: 地球科学, 2002, 32(5): 374-382.
YU B S, CHEN J Q, LI X W, et al. Geochemistry of black shale at the bottom of Lower Cambrian in Tarim Basin and its significance for lithospheric evolution[J].Science China: Earth Science,2002, 32(5): 374-382.
48 BURKE W H, DENISON R E, HETHERINGTON E A, et al. Variation of seawater 87 Sr/ 86 Sr throughout Phanerozoic time[J]. Geology, 1982, 10: 516-519.
49 FAURE G. Principles of Isotope Geology[M]. New York: John Wiley and Sons, 1986: 160-230.
50 PALMER M R, ELDERFIELD H. Sr isotope composition of sea water over the past 75 Myr[J].Nature,1985,314: 526-528.
51 冯乔,柳益群,郝建荣.三塘湖盆地芦草沟组烃源岩及其古环境[J].沉积学报, 2004, 22(3): 721-725.
FENG Q, LIU Y Q, HAO J R. The Source rock and its palaeo-environment of Lucaogou Formation, Permian in Santanghu Basin[J].Acta Sedimentologica Sinica,2004,22(3): 721-725.
52 GILL R. Igneous Rocks and Processes: A Practical Guide[M]. Oxford: Wiley-Blackwell, 2010: 1-19.
53 LIU Y Q, YUAN M S, ZHOU D W, et al. New progress on geothermal history of the Turpan-Hami Basin, Xinjiang, China [J]. Science in China (Series D), 2001, 44(2): 166-176.
[1] 陈军, 陈静, 李娜, 王忠泉. 准噶尔盆地东部石炭系天然气勘探潜力[J]. 天然气地球科学, 2020, 31(7): 952-961.
[2] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[3] 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜null, 米巨磊. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257.
[4] 郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 准噶尔盆地页岩油“甜点区”评价与关键技术应用——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179.
[5] 高永亮, 文志刚, 李威. 湖相富有机质细粒沉积岩地球化学特征及其对致密油气成藏的影响——以鄂尔多斯盆地陇东地区延长组长7段为例[J]. 天然气地球科学, 2019, 30(5): 729-739.
[6] 吴靖,姜在兴,王欣. 湖相细粒沉积岩三—四级层序地层划分方法与特征——以渤海湾盆地东营凹陷古近系沙四上亚段为例[J]. 天然气地球科学, 2018, 29(2): 199-210.
[7] 张云钊,曾联波,罗群,张晨,吴浩,吕文雅,代全齐,朱德宇. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层裂缝特征和成因机制[J]. 天然气地球科学, 2018, 29(2): 211-225.
[8] 张超,张立强,陈家乐,罗红梅,刘书会. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别[J]. 天然气地球科学, 2017, 28(5): 713-723.
[9] 邱振, 吴晓智, 唐勇, 郑民, 王桂君, 郭秋麟, 王社教, 谢红兵. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组致密油资源评价[J]. 天然气地球科学, 2016, 27(9): 1688-1698.
[10] 刘丽, 鲍志东, 秦智, 范正平, 林艳波, 邓西里, 安锴胜. 超低渗透储层钙质夹层分布控制因素分析——来自岩石学及成岩作用研究的微观证据[J]. 天然气地球科学, 2016, 27(6): 1035-1045.
[11] 高岗, 向宝力, 王轩, 王熠, 周然然, 马万云, 任江铃, 赵克. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相混合沉积中缝合线发育与有机质富集研究[J]. 天然气地球科学, 2016, 27(11): 1963-1969.
[12] 邱振, 卢斌, 施振生, 董大忠, 王红岩, 周杰, 陶辉飞, 郑民, 吴晓智, 郭和坤. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油滞留聚集机理及资源潜力探讨[J]. 天然气地球科学, 2016, 27(10): 1817-1827.
[13] 郭晖,倪振,张顺存,黄海兵,季焕成. 准噶尔盆地吉木萨尔凹陷梧桐沟组沉积相精细分析[J]. 天然气地球科学, 2015, 26(S2): 83-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .