天然气地球科学 ›› 2020, Vol. 31 ›› Issue (2): 268–281.doi: 10.11764/j.issn.1672-1926.2019.10.016

• 天然气地球化学 • 上一篇    下一篇

华北克拉通北缘中元古界杨庄组碳酸盐岩地球化学特征及其地质意义

杨晋东1(),赵峰华1(),秦胜飞2,邹雨1,宋昌贵1,孙宇翔1   

  1. 1.中国矿业大学(北京) 地球科学与测绘工程学院,北京 100083
    2.中国石油勘探开发研究院,北京 100083
  • 收稿日期:2019-07-02 修回日期:2019-10-31 出版日期:2020-02-10 发布日期:2019-11-06
  • 通讯作者: 赵峰华 E-mail:yjd3801278@sina.com;zfh@cumtb.edu.cn
  • 作者简介:杨晋东(1994-),男,山西晋城人,硕士研究生,主要从事沉积地球化学研究. E-mail:yjd3801278@sina.com.
  • 基金资助:
    国家重点研发计划专项(2016YFC0601001)

Geochemical characteristics and geological significance of carbonate rocks in the Middle Mesoproterozoic Yangzhuang Formation of northern margin of North China Craton

Jin-dong YANG1(),Feng-hua ZHAO1(),Sheng-fei QIN2,Yu ZOU1,Chang-gui SONG1,Yu-xiang SUN1   

  1. 1.College of Geoscience and Surveying Engineering,China University of Geosciences (Beijing),Beijing 100083,China
    2.PetroChina Research Institute of Petroleum Exploration and Development,Beijng 100083,China
  • Received:2019-07-02 Revised:2019-10-31 Online:2020-02-10 Published:2019-11-06
  • Contact: Feng-hua ZHAO E-mail:yjd3801278@sina.com;zfh@cumtb.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2016YFC0601001)

摘要:

为探究燕山地区中元古界杨庄组碳酸盐岩物源及其构造沉积环境,采集研究区碳酸盐岩样品进行常微量元素(主要是稀土)地球化学测试,结合地质背景,通过地球化学分析得出如下

结论

样品稀土含量(平均50.8×10-6)远高于纯白云岩(小于10×10-6),Al2O3与∑REE+Y呈显著正相关,且PAAS标准化稀土配分模式图呈平坦页岩型(除Eu的正异常),说明杨庄组碳酸盐岩受到显著陆源碎屑混染。杨庄组经历海侵海退旋回沉积,与Sr/Ba值和∑REE+Y值变化曲线相对应,暗示海平面升降控制陆源碎屑输入量;通过La/Sc—Th/Co、La/Yb—∑REE+Y和TiO2—Zr等关系图解和元素地球化学特征分析,结合华北克拉通北缘岩浆活动和构造演化,认为研究区的陆源碎屑最可能源于华北元古代大陆裂谷背景下形成的的酸性长英质火成岩类;杨庄组沉积相总体为潮上—潮间带,海水氧化性较强,不利于烃源岩的发育。

关键词: 杨庄组, 碳酸盐岩, 稀土元素, 物源

Abstract:

In order to study its structural-sedimentary environment and provenance, we collected carbonate rocks in research area and used method of combining geochemical analysis and geological background. Conclusions are drawn as follows. The content of rare earth elements of Yangzhuang Formation outclasses that of pure dolomite and shows a remarkable correlativity between Al2O3 and ∑REE+Y, and REE+Y distribution pattern of PAAS is similar to shale (besides Eu positive anomaly), which indicate its depositional process was influenced by terrigenous clastic significantly. Yangzhuang Formation experienced marine transgression-regression cycle, and change curves of Sr/Ba and ∑REE+Y and their correlation show that sea level eustacy controls the content of terrigenous clastic. The relation diagrams of La/Sc-Th/Co, La-Th-Sc and TiO2-Zr and analysis of element geochemical characteristics combined with magmatism and tectonic evolution show that the terrigenous clastic of carbonate rocks in Yangzhuang Formation originated from acid-felsic igneous rocks under continental rift environment in Proterozoic. The sedimentary facies of the Yangzhuang Formation are supralittoral zone and inter tidal zone, and seawater has strong oxidability, which is not conducive to the source rock development.

Key words: Yangzhuang Formation, Carbonate rocks, Rare earth elements, Provenance

中图分类号: 

  • TE122.1+13

图1

研究区交通位置及地质略图(据文献[10],有修改)"

图2

华北克拉通北缘杨庄组柱状图及野外照片(据文献[15,16,17],有修改)"

图3

华北克拉通北缘杨庄组碳酸盐岩岩相学特征(a) 样品Y-3;(b) 样品Y-14"

表1

杨庄组样品信息及主要氧化物含量"

样品

编号

岩性SiO2Al2O3MgOK2OCaO位置
Y-29硅质细晶白云岩91.150.0861.760.0262.42三段
Y-28砂质(含砾)白云岩30.726.2314.813.9515.56
Y-27粉砂质白云岩24.274.0316.622.5319.25
Y-26燧石岩60.50.9391.470.56418.99
Y-25白云岩61.970.1750.8030.05719.66
Y-24微晶白云岩22.610.971130.47127.34
Y-23白云岩25.643.7116.612.2518.82
Y-22含砂细晶白云岩30.113.7617.171.9316.79
Y-21细晶白云岩24.672.7318.111.3519.63
Y-20微晶白云岩30.713.5618.411.8215.82
Y-19砂质白云岩26.52.7517.911.2718.68
Y-18微—细晶白云岩25.752.8818.611.5218.62
Y-17微晶白云岩34.562.4617.841.2515.22
Y-16含砂细晶白云岩34.063.1617.651.5915.24
Y-15炭质细晶白云岩24.713.0216.831.7319.93二段
Y-14含燧微晶白云岩33.044.6415.282.4816.03
Y-13含砂微细晶白云岩28.794.4816.522.4616.87一段
Y-12微晶白云岩32.453.9914.031.7816.61
Y-11细晶白云岩27.463.8316.672.1218.13
Y-10砂质白云岩27.412.5817.461.4219.06
Y-9微—细晶白云岩25.783.3417.891.8218.68
Y-8含粉砂微晶白云岩26.22.2918.621.0619.28
Y-7粉砂质微晶白云岩24.863.0617.461.7219.3
Y-6白云质含泥粉砂岩28.184.316.712.4217.36
Y-5含粉砂微晶白云岩23.332.618.661.219.75
Y-4微晶白云岩19.530.90817.970.46823.69
Y-3含粉砂微晶白云岩23.163.3317.821.819.85
Y-2细晶白云岩2.270.1621.630.0630.06
Y-1微晶白云岩24.913.418.921.3618.56

表 2

杨庄组碳酸盐岩稀土元素分析结果 10-6"

样品编号LaCePrNdSmEuGdTbDyYHoErTmYbLu
Y-290.440.690.130.550.120.020.110.020.100.590.020.050.010.050.01
Y-2817.835.23.8814.42.510.422.250.422.400.501.450.271.630.2314.1
Y-2713.625.33.0511.32.010.391.730.311.670.330.900.161.050.159.43
Y-269.0915.11.725.820.870.170.800.110.500.090.260.040.270.043.02
Y-251.982.420.260.940.130.040.130.020.080.500.020.040.010.050.01
Y-245.909.281.224.710.880.170.760.140.815.110.160.450.080.450.07
Y-2312.421.12.7910.51.940.301.650.291.650.320.890.150.960.149.16
Y-2211.721.42.499.191.670.331.460.251.330.260.730.130.810.127.47
Y-219.9218.42.168.021.450.331.250.221.140.240.640.110.710.106.59
Y-2010.919.72.278.351.440.271.280.211.200.240.650.110.700.106.72
Y-199.5117.52.027.531.330.281.160.211.090.220.620.110.670.106.15
Y-189.3316.91.997.381.340.281.140.201.126.110.210.600.110.670.09
Y-178.4815.31.816.801.220.501.100.180.995.430.190.540.100.550.09
Y-1610.218.42.148.131.490.261.260.221.160.240.670.120.710.116.67
Y-1510.118.92.258.391.520.321.350.241.280.250.710.120.750.117.17
Y-1412.323.62.8310.31.760.401.510.261.390.280.800.150.880.137.56
Y-1312.922.72.8010.41.810.341.640.281.480.300.850.150.960.148.71
Y-1213.223.62.7710.31.810.711.640.271.430.280.780.140.850.127.59
Y-1113.525.23.0111.42.110.431.740.301.710.330.920.160.980.159.34
Y-109.3217.32.057.601.350.401.210.201.136.480.220.630.100.660.10
Y-910.918.82.338.711.600.611.430.241.300.250.710.120.720.106.87
Y-88.7217.51.917.211.270.401.130.201.116.210.210.600.110.650.09
Y-711.520.12.388.791.510.631.370.251.360.270.750.130.820.127.81
Y-614.728.33.2012.02.030.551.810.331.819.730.350.970.171.030.15
Y-57.2414.31.625.971.030.270.960.170.945.280.190.520.100.550.08
Y-45.6112.91.395.351.050.270.860.160.864.90.170.440.080.440.06
Y-310.721.22.328.691.500.291.390.241.330.260.720.130.770.117.23
Y-23.406.790.762.890.460.110.440.060.301.980.060.140.020.100.01
Y-19.9418.42.188.241.450.381.260.231.340.260.750.130.840.127.5

表3

杨庄组碳酸盐岩主量(%)和部分微量元素参数分析结果 10-6"

样品编号SrBaAl2O3ThScTiZr∑REE+YLaN/YbNδEuδCeLREE/HREE
Y-296.2448.10.0860.0740.0230.0160.8872.890.701.010.660.53
Y-2853.46966.236.925.360.2586397.470.810.810.970.54
Y-271443 1814.034.993.810.21531.871.380.960.980.890.64
Y-263223 2320.9390.7271.110.0966.1437.912.511.050.861.10
Y-2570.75010.1750.1580.2290.0791.376.622.921.621.011.18
Y-241887510.9711.221.310.0977.9730.190.970.920.850.56
Y-2336.11203.714.33.40.25525.364.240.950.780.820.59
Y-2272.32 9913.763.993.420.1727.259.351.061.000.920.66
Y-21903 9762.733.332.790.1422.451.281.041.140.910.68
Y-2041.81 5433.563.643.250.17624.754.141.150.940.920.67
Y-1954.52 7242.753.262.720.1292348.481.061.040.930.66
Y-1846.52 6132.883.112.640.14320.947.481.021.050.910.66
Y-172251 2492.462.852.680.13219.243.281.132.050.920.79
Y-1644.11 9343.163.593.050.18122.551.771.050.880.940.65
Y-1583.32 6633.023.4930.14523.853.461.001.060.910.64
Y-1491.63 6944.644.854.260.22232.764.141.041.140.880.70
Y-1368.51 6684.484.644.390.23630.665.441.000.920.870.63
Y-124432 0743.994.33.560.18524.765.491.151.970.920.81
Y-111414 5433.834.863.680.21130.471.281.011.040.920.66
Y-101796 1012.583.082.360.15221.248.761.041.500.900.71
Y-998.22 9613.343.443.490.17819.154.691.121.920.870.79
Y-845.78052.2932.440.1417.747.300.991.541.000.70
Y-766.91 8193.063.9833.80.16923.157.781.042.040.900.74
Y-655.91 0294.34.84.010.24832.277.121.051.320.960.69
Y-5343512.62.792.50.1216.239.210.981.270.940.64
Y-498.62 1100.9081.521.40.0456.7634.520.951.271.030.68
Y-334.11553.333.733.130.19323.356.871.030.930.990.63
Y-240.8750.160.1410.4330.0130.9417.522.491.190.980.98
Y-142.26363.43.863.260.18624.953.020.881.290.920.63

图4

杨庄组样品稀土配分特征(PAAS数据据文献[42];D图据文献[21])"

图5

样品Sr/Ba值与REE+Y值变化曲线"

图6

杨庄组样品Eu/Eu*和Ce/Ce*值变化曲线"

图7

元素相关性分析散点图"

图8

杨庄组碳酸盐岩陆源碎屑物源判别图解(底图据文献[29,30,31,32])"

图9

杨庄组白云岩碎屑物源La-Th-Sc(a)、La/Sc-Ti/Zr(b)构造背景判别图解(底图据文献[47])A、 大洋岛弧;B、大陆岛弧;C、活动大陆边缘;D、被动大陆边缘"

图10

杨庄组样品Eu/Eu*和Ce/Ce*值变化曲线图(Al计算后)"

图11

杨庄组化学地层和沉积相综合柱状图"

1 孔祥淮,刘健,李巍然,等. 山东半岛东北部滨浅海区表层沉积物的稀土元素及其物源判别[J]. 海洋地质与第四纪地质,2007,27(3): 51-59.
KONG X H,LIU J,LI W R,et al. Rare earth elements and its provenance discrimination in surface sediments of the northeastern coast of Shandong Peninsula[J]. Marine Geology and Quaternary Geology,2007,27(3): 51-59.
2 蓝先洪,王红霞,张志珣,等. 南黄海表层沉积物稀土元素分布与物源关系[J]. 中国稀土学报,2006,24(6): 745-749.
LAN X H,WANG H X,ZHANG Z X,et al. Relationship between REE distribution and provenance in surface sediments of the Southern Yellow Sea[J]. Journal of The Chinese Rare Earth Society,2006,24(6): 745-749.
3 杨守业,李从先,Lee C B,等. 黄河周边河流的稀土元素地球化学及沉积物物源示踪[J]. 科学通报,2003,48(11): 1233-1236.
YANG S Y,LI C X,LEE C B,et al. REE geochemistry and tracer of sediment provenance around the Yellow River[J]. Chinese Science Bulletin,2003,48(11): 1233-1236.
4 陈衍景,邓健,胡桂兴. 环境对沉积物微量元素含量和配分型式的制约[J]. 地质地球化学,1996,(3): 97-105.
CHEN Y J,DENG J,HU G X. Environmental constraints on the contents and distribution patterns of trace elements in sediments[J]. Earth and Environment,1996,(3): 97-105.
5 CHEN Y J,HU S X,LU B. Contrasting REE geochemical features between Archean and Proterterozoic khondalite series in North China Craton[J]. Mineralogical Magazine,1998,62A(1): 318-319.
6 BOLHAR R,KRANENDONK M J VAN. A non-marine depositional setting for the northern Fortescue Group,Pilbara Craton,inferred from trace element geochemistry of stromatolitic carbonates[J].Precambrian Research,2007,155(3-4): 229-250.
7 刘鹏举,王成文,孙跃武,等. 河北平泉中元古代高于庄组和杨庄组地球化学特征[J]. 吉林大学学报,2005,35(1): 1-6.
LIU P J,WANG C W,SUN Y W,et al. Geochemical characteristics of Mesoproterozoic Gaoyuzhuang Formation and Yangzhuang Formation in Pengquan,Hebei[J]. Journal of Jilin University,2005,35(1): 1-6.
8 吴怀春,张世红,李正祥,等. 华北地台蓟县系杨庄组古地磁新结果及其大地构造意义[J]. 科学通报,2005,50(13): 1370-1376.
WU H C,ZHANG S H,LI Z X,et al. New result of Paleomagnetism and its tectonic significance in the Yangzhuang Formation of North China platform[J]. Chinese Science Bulletin,2005,50(13): 1370-1376.
9 吕奇奇,罗顺社. 燕山地区冀北坳陷中元古界杨庄组沉积特征与层序地层[J]. 地质科技情报,2012,31(1): 41-46.
LV Q Q,LUO S S. Sedimentary characteristics and sequence stratigraphy of the Mesozoic Proterozoic Yangzhuang Formation in the northern Hebei depression,Yanshan[J]. Geological Science and Technology Information,2012,31(1): 41-46.
10 刘波,张秀莲. 天津蓟县中元古界蓟县系杨庄组岩石特征及其地质意义[J]. 北京大学学报:自然科学版,2004,40(4): 601-610.
LIU B,ZHANG X L. Petrology of Yangzhuang Formation and its geological significance,Middle Proterozoic Jixian System from Jixian,Tianjin,North China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2004,40(4): 601-610.
11 汪凯明,罗顺社. 燕山地区中元古界高于庄组和杨庄组地球化学特征及环境意义[J]. 矿物岩石地球化学通报,2009,28(4): 356-364.
WANG K M,LUO S S. Geochemical characteristics and environmental significance of Mesoproterozoic Gaoyuzhuang Formation and Yangzhuang Formation in Yanshan area[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2009,28(4): 356-364.
12 李家华,旷红伟,彭楠,等. 冀北宽城中元古界杨庄组地球化学特征[J]. 岩石矿物学杂志,2010,29(3): 289-297.
LI J H,KUANG H W,PENG N,et al. Geochemical characteristics of Mesoproterozoic Yangzhuang Formation in Kuan-cheng County,Northern Hebei Province[J]. Acta Petrologica et Mineralogica,2010,29(3): 289-297.
13 万渝生,董春艳,颉颃强,等. 华北克拉通太古宙研究若干进展[J].地球学报,2015,36(6):685-700.
WANG Y S,DONG C Y,XIE H Q,et al. Some progress in the study of Archean Basement of the North China Craton[J]. Acta Geoscience Sinica,2015,36(6):685-700.
14 MENG Q R,WEI H H,QU Y Q,et al. Stratigraphic and sedimentary records of the rift to drift evolution of the northern North China craton at the Paleo-to Mesoproterozoic transition[J]. Gondwana Research,2011,20(1): 205-218.
15 ZOU Y,LIU D N,ZHAO F H,et al. Reconstruction of nearshore chemical conditions in the Mesoproterozoic: Evidence from red and grey beds of the Yangzhuang Formation, North China Craton[J].International Geology Review,2019.
16 LI H K, SU W B, ZHOU H Y, et al. The first precise age constraints on the Jixian system of the Meso-to Neoproterozoic standard section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling Formations in the Jixian section, North China Craton[J]. Acta Petrologica Sinica, 2014, 30(10):2999-3012.
17 LI H K, ZHU S X, XIANG Z Q, et al. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing:Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 2010, 26(7):2131-2140.
18 孙宇翔,赵峰华,刘东娜,等. 神农架后山坪地区古城组碳酸盐岩地球化学特征及其意义[J]. 矿物岩石地球化学通报,2019,38(2): 299-307.
SUN Y X,ZHAO F H,LIU D N,et al. Geochemical charcateristics of carbonates in the Gucheng Formation in the Houshanping Area of Shennongjia and its significance[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(2): 299-307.
19 李乐,姚光庆,刘永河,等. 塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义[J]. 地球科学:中国地质大学学报, 2015, 40(9):1480-1496.
LI L,YAO G Q,LIU Y H,et al. Major and trace elements geochemistry and geological implication of dolomite-bearing mudstones in lower part of Shahejie Formation in Tanggu Area,Eastern China[J]. Earth Science: Journal of China University of Geosciences,2015, 40(9):1480-1496.
20 何幼斌,王文广.沉积岩与沉积相[M].北京:石油工业出版社,2007.
HE Y B,WANG W G. Sedimentary Rocks and Sedimentary Facies[M]. Beijing:Petroleum Industry Press,2007.
21 汤好书,陈衍景,武广,等. 辽东辽河群大石桥组碳酸盐岩稀土元素地球化学及其对Lomagundi事件的指示[J]. 岩石学报,2009,25(11): 3075-3093.
TANG H S,CHEN Y J,WU G,et al. Rare elements geochemical of carbonates of Dashiqiao Formation,Liaohe Group,eastern Liaoning province: Implication for Lomagundi Event[J]. Acta Petrologica Sinica,2009,25(11): 3075-3093.
22 BAU M. Controls on fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho,Zr/Hf,and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology,1996,123(3): 323-333.
23 WEBB G E,KAMBER B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta,2000,64(9): 1557-1565.
24 NOTHDURFT L D,WEBB G E ,KAMBER B S. Rare earth element geochemistry of Late Devonian reefal carbonates,Canning Basin,Western Australis: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta,2004,68: 263-283.
25 DAI S F,GRAHAM I T,WARD C R. A review of anomalous rare earth elements and yttrium in coal [J]. International Journal of Coal Geology,2016,159: 82-95.
26 吴明清,欧阳自远,宋云华. 塔里木盆地西缘古海洋氧化还原条件的变化——介壳化石的稀土元素铈异常证据[J]. 中国科学,1992(2):206-215.
WU Q M,OUYANG Z Y,SONG Y H. Changes of redox condition in the paleoceanographic area on the western margin of Tarim Basin:The evidence of Ce anomalies in Shell fossils[J].Science China,1992(2):206-215.
27 倪志耀,莫怀毅,刘援朝. 冕宁前寒武纪沉积岩的铕、铈异常特征及成因解释[J].四川地质学报,1998,18(4):259-265.
NI Z Y,MO H Y,LIU Y C. Characteristics and origin of Eu and Ce anomalies in Precambrian sedimentary rocks of Mianning[J]. Acta Geologica Sichuan,1998,18(4): 259-265.
28 BAS L,M J. Using geochemical data: Evaluation,presentation,interpretation[J]. Geochimica Et Cosmochimica Acta,1994,59(3): 439-441.
29 罗情勇,钟宁宁,王延年,等. 华北北部中元古界洪水组页岩地球化学特征: 物源及其风化作用[J]. 地质学报,2013,87(12): 1913-1921.
LUO Q Y,ZHONG N N,WANG Y N,et al. Geochemical characteristics of the Mesoproterozoic Hongshui Formation shales in the northern part of North China[J]. Journal of Geology,2013,87(12): 1913-1921.
30 CULLERS R L. Implications of elemental concentrations for provenance,Redox Conditions,and Metamorphic studies of shales and limestones near Pueblo,CO,USA[J]. Chemical Geology,2002,191: 305-327.
31 ALLEGRE C J,MINSTER J F. Quantitative models of trace element behavior in magmatic processes[J]. Earth and Planetary Science Letters,1978,38(1): 0-25.
32 MCLENNAN S M,BOCK B,HEMMING S R,et al. The roles of provenance sedimentary processes in the geochemistry of sedimentary rocks[J]. Geological Association of Canada Short Course Notes,2003.
33 BHATIA M R,CROOK K A. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins[J]. Contribution to Mineralogy Petrology,2012,92(2): 181-193.
34 肖玲玲,刘福来,张健. 华北克拉通新太古代早期构造热事件的响应: 来自左权地区ca. 2. 7Ga TTG片麻岩的证据[J]. 岩石学报,2019,35(2): 325-348.
XIAO L L,LIU F L,ZHANG J. Response to the Early Neoarchean tectono-thermal events in the North China Craton: Evidence of ca. 2. 7Ga TTG gneisses from the Zuoquan metamorphic complex[J].Acta Petrologica Sinica,2019,35(2): 325-348.
35 ZHAO T P,CHEN W,ZHOU M F. Geochemical and Nd-Hf isotopic constraints on the origin of the 1.74-Ga Damiao anorthosite complex,North China Craton[J]. Lithos,2009,113(3): 673-690.
36 刘富. 华北克拉通晚太古代怀安TTG 片麻岩地体的岩石成因地球化学研究[D]. 北京: 中国科学院地质与地球物理研究所,2010:71-80.
LIU F. Petrogenesis and its Geochemical Characteristics of TTG Gneisses in Huaian of North China Craton of Late Archean[D]. Beijing:The Institute of Geology and Geophysics,Chinese Academy of Sciences. 2010:71-80.
37 ZHAO S H,LIU S W,ZHAO Y,et al. The 1.75-1.68 Ga anorthosite-mangerite-alkaligranitoid-rapakivi granite suite from the northern North China Craton: Magmatism related to a Paleoproterozoic orogen[J]. Precambrian Research,2007,155(3-4): 287-312.
38 WANG X L,JIANG S Y,DAI B Z,et al. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: Evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite‐like granites[J]. Geological Journal,2013,48(5): 498-515.
39 BHATIA M R.Plate tectonics and geochemical composition of sandstones[J]. Journal of Geology,1983,91(6): 611-627.
40 ROSER B P,COOPER R A,NATHAN S,et al. Reconnaissance sandstonegeochemistry,provenance,and tectonic setting of the Lower Paleozoic terranes of the West Coast and Nelson,New Zealand[J]. New Zealand Journal of Geology and Geophysics,1996,39(1) : 1-16
41 MUKUL R B,KEITH A,CROOK W,等. 杂砂岩的微量元素特征和沉积盆地构造环境判别[J]. 基础地质译丛,1987,(2): 7-18.
MUKUL R B,KEITH A,CROOK W,et al. Trace elements characteristics of graywacke and tectonic setting discrimination of sedimentary basin[J]. Journal of Gems and Gemmology,1987(2): 7-18.
42 TAYLOR S R,MCLENNAN S M. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications,1985:1-312.
43 ZHAI M G,SANTOSH M. The early Precambrian odyssey of north China craton: A synoptic overview[J]. Gondwana Research,2011,20: 6-25.
44 胡波,翟明国,彭澎,等. 华北克拉通古元古代末—新元古代地质事件——来自北京西山地区寒武系和侏罗系碎屑锆石LA-ICP-MS U-Pb年代学的证据[J]. 岩石学报,2013,29(7): 2508-2536.
HU B,ZHAI M G,PENG P,et al. Late Paleoproterozoic to Neoproterozoic geological events of the North China Craton: Evidences from LA-ICP-MS U-Pb geochronology of detrital zircons from the Cambrian and Jurassic sedimentary rocks in western Hills of Beijing[J]. Acta Petrologica Sinica,2013,29(7): 2508-2536.
45 王一先,裘愉卓,高计元,等. 内蒙古白云鄂博矿区元古代非造山岩浆岩及其对成矿的制约[J]. 中国科学:地球科学,2002, 32(S1): 21-32.
WANG Y X,QIU Y Z,GAO J Y,et al. Proterozoic non-orogenic magmatic rocks and its constraint on Mineralization in Bayan Obo mining area of Inner Mongolia[J]. Scientia Sinica:Terrae,2002,32(S1): 21-32.
46 柏道远,周亮,王先辉,等.湘东南南华系—寒武系砂岩地球化学特征及对华南新元古代-早古生代构造背景的制约[J]. 地质学报,2007,81(6): 755-771.
BAI D Y,ZHOU L,WANG X H,et al. Geochemistry of Nanhuan-Cambrian sandstones in Southeastern Hunan,and its constraints on Neoproterozoic-Early Paleozoic tectonic setting of South China[J]. Acta Geologica Sinica,2007,81(6): 755-771.
47 BHATIA M R,CROOK K A W. Trace element characteristics of gyaywakes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Perology,1986,92: 181- 193.
48 邓宏文,钱凯.沉积地球化学与环境分析[M]. 兰州:甘肃科学技术出版社,1993.
DENG H W,QIAN K. Sedimentary Geochemistry and Environmental Analysis[M]. Lanzhou:Gansu Science and Technology Press,1993.
49 LAWRENCE M G,GREIG A,COLLERSON K D,et al. Rare earth element and yttrium variability in South East Queensland waterways[J]. Aquatic Geochemistry,2006,12(1):39-72.
50 陈衍景,杨忠芳,赵太平,等. 沉积物微量元素示踪物源区和地壳成分的方法和现状[J].地球与环境,1996,(3):7-11.
CHEN Y J,YANG Z F,ZHAO T P,et al. Method and present situation of tracing of provenance area and crustal composition by trace elements in sediment[J]. Earth and Envoiroment,1996,(3):7-11.
51 王铁冠,龚剑明.中国中—新元古界地质学与油气资源勘探前景[J].中国石油勘探,2018,23(6):1-9.
WANG T G,GONG J M. Meso-Neoproterozoic geology and petroleum resources prospect in China[J]. China Petroleum Exploration,2018,23(6):1-9.
[1] 林潼, 王铜山, 董景海, 曾寅, 武志德. 典型碳酸盐岩渗透力学行为特征及其对储、盖性质的判定[J]. 天然气地球科学, 2020, 31(8): 1139-1151.
[2] 朱光有, 孙崇浩, 赵斌, 李婷婷, 陈志勇, 杨海军, 高莲花, 黄金华. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限[J]. 天然气地球科学, 2020, 31(5): 587-601.
[3] 张敏, 张正红, 熊益学, 陈永权, 王晓雪, 何皓, 亢茜, 马源, 苏东坡. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律[J]. 天然气地球科学, 2020, 31(5): 636-646.
[4] 王珊,曹颖辉,张亚金,杜德道,齐井顺,白莹,闫磊,杨敏,张君龙. 塔里木盆地古城地区上寒武统碳酸盐岩储层发育特征及主控因素[J]. 天然气地球科学, 2020, 31(10): 1389-1403.
[5] 蔡珺君, 梁锋, 占天慧, 王俐佳, 唐青松, 邓庄, 甘笑非. 动静态资料在四川盆地磨溪—高石梯地区震旦系碳酸盐岩储层类型识别中的应用[J]. 天然气地球科学, 2020, 31(1): 132-142.
[6] 吴因业, 吕佳蕾, 方向, 杨智, 王岚, 马达德, 陶士振. 湖相碳酸盐岩—混积岩储层有利相带分析——以柴达木盆地古近系为例[J]. 天然气地球科学, 2019, 30(8): 1150-1157.
[7] 王勇飞, 赵向原, 刘成川. 川东北元坝地区长兴组礁滩相储层裂缝特征及主控因素[J]. 天然气地球科学, 2019, 30(7): 973-981.
[8] 李长海, 赵伦, 李伟强, 李建新, 丁宇韬, 李昂, 祁永平. 碳酸盐岩缝合线研究进展及对油气开发的意义[J]. 天然气地球科学, 2019, 30(4): 493-502.
[9] 李少华, 卢昌盛, 何维领, 陆嫣, 段冬平, 丁芳, 黄鑫. 一种基于目标的非贯穿型河道建模方法[J]. 天然气地球科学, 2019, 30(3): 305-311.
[10] 文开丰, 杨国平, 高君微, 郝玉鸿, 白慧, 张银德, 叶葱林, 孙龙. 鄂尔多斯盆地榆林气田马五 1+2气藏不同地质储量计算及采收率评价[J]. 天然气地球科学, 2019, 30(2): 266-273.
[11] 沈瑛楚,宋新民,刘波,王根久,郭睿,罗清清,石开波,王欢,刘航宇. 伊拉克AD油田上白垩统Kh2段生物扰动与储层非均质性[J]. 天然气地球科学, 2019, 30(12): 1755-1770.
[12] 刘学珍,王雪艳,钟安宁,杨迎春,张世祥,周翔. 松辽盆地徐家围子断陷沙河子组物源特征及对储集砂体的控制作用[J]. 天然气地球科学, 2019, 30(11): 1551-1559.
[13] 王帅, 王甘露, 秦政, 高泽远, 罗腾. 黔北地区茅口组古岩溶储层稀土元素地球化学特征[J]. 天然气地球科学, 2019, 30(1): 143-150.
[14] 王清龙, 林畅松, 李浩, 韩剑发, 孙彦达, 何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[15] 刘琴琴, 陈桂华, 陈晓智, 祝彦贺, 杨小峰. 鄂尔多斯盆地L地区上古生界上石盒子组物源特征及其对储层的控制作用[J]. 天然气地球科学, 2018, 29(8): 1094-1101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[3] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[4] 李美俊;卢鸿;王铁冠;吴炜强;刘菊;高黎惠;. 北部湾盆地福山凹陷岩浆活动与CO2 成藏的关系[J]. 天然气地球科学, 2006, 17(1): 55 -59 .
[5] 施立志;林铁锋;王震亮;王卓卓;姚勇;. 库车坳陷下白垩统天然气运聚系统与油气运移研究[J]. 天然气地球科学, 2006, 17(1): 78 -83 .
[6] 王茹;. 胜坨油田两期成藏地球化学特征及成藏过程分析[J]. 天然气地球科学, 2006, 17(1): 133 -136 .
[7] 程同锦,朱怀平,陈浙春. 孔雀1井剖面地球化学特征与烃类的垂向运移[J]. 天然气地球科学, 2006, 17(2): 148 -152 .
[8] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[9] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[10] 倪金龙;吕宝凤;夏斌;. 渤海湾盆地八面河缓坡带断裂系统及其对孔店组油气成藏的影响[J]. 天然气地球科学, 2006, 17(3): 370 -373 .