天然气地球科学 ›› 2020, Vol. 31 ›› Issue (8): 1092–1098.doi: 10.11764/j.issn.1672-1926.2019.10.013

• 非常规天然气 • 上一篇    下一篇

三轴加载煤体品质因子与孔隙率实验

张凯1,2(),李东会1,2(),梁雁侠1,2   

  1. 1.河南理工大学安全科学与工程学院,河南 焦作 454000
    2.河南省瓦斯地质与瓦斯治理重点实验室—省部共建国家重点实验室培育基地,河南 焦作 454000
  • 收稿日期:2019-07-22 修回日期:2019-10-22 出版日期:2020-08-10 发布日期:2020-07-29
  • 通讯作者: 李东会 E-mail:18434369453@163.com;lidonghui@hpu.edu.cn
  • 作者简介:张凯(1995-),男,山西长治人,硕士研究生,主要从事安全工程研究.E-mail:18434369453@163.com.
  • 基金资助:
    河南联合国家自然科学基金项目(U1704129);河南省自然科学基金项目(182300410138);河南省博士后经费项目(19030070)

Experimental study on coal quality factor and porosity under triaxial loading

Kai ZHANG1,2(),Dong-hui LI1,2(),Yan-xia LIANG1,2   

  1. 1.College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
    2.State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2019-07-22 Revised:2019-10-22 Online:2020-08-10 Published:2020-07-29
  • Contact: Dong-hui LI E-mail:18434369453@163.com;lidonghui@hpu.edu.cn
  • Supported by:
    The?He’nan United National?Natural?Science?Foundation of China(U1704129);The Natural Science Foundation Projects of?He’nan Province of China(182300410138);The Postdoctoral funding program of?He’nan Province of China(19030070)

摘要:

煤的孔隙率是表征煤储层瓦斯富集程度的重要指标,对煤层气资源的开发至关重要。为了提高煤层气的开采和利用,且更好地研究煤储层的孔隙率。采用河南焦作古汉山矿原煤标准煤样,将煤样加工为平行于面割理、垂直于面割理和垂直于层理共3个方向,采用河南理工大学瓦斯地质研究所自制煤储层压裂模拟及物性特征实验系统,对每组煤样同步进行超声波特征和应力—应变测试实验,将所测得的品质因子、孔隙率和轴压进行两两拟合,并对其结果进行讨论。结果表明:在保持围压不变的情况下,煤样的孔隙率随轴压的增大呈线性趋势减小,并且不同方向的孔隙率压力影响系数表现出明显的各向异性;超声波在煤样中传播时,品质因子随轴压的增大而增大,且能量衰减有明显的层理效应;随着加载过程中轴压的增大,品质因子与孔隙率满足较好的线性关系,为利用纵波品质因子预测煤层的孔隙率提供了有效依据。

关键词: 孔隙率, 品质因子, 轴压, 线性拟合, 影响系数

Abstract:

The porosity of coal is an important index to indicate the degree of gas enrichment in coal reservoir and is very important to the development of coal bed methane resources. In order to improve the exploitation and utilization of coal bed methane and better study the porosity of coal reservoir, this article uses the Guhanshan mineral raw coal sample as standard coal, which was processed into three types: parallel to face cleat, perpendicular to the plane of cleat and perpendicular to the bedding three directions. Using coal reservoir fracturing simulation experiment and physical property simulation system made by the Institute of Gas Geology of Henan Polytechnic University, synchronous analysis of ultrasound characteristics and stress-strain test of each group of coal sample was performed. The measured quality factor, porosity and axial pressure are in dual fit and the results are discussed. The results show that the porosity of coal sample decreases linearly with the increase of axial pressure, and the influence coefficients of porosity pressure in different directions show obvious anisotropy. When the ultrasonic wave propagates in the coal sample, the quality factor increases with the increase of axial pressure, and the energy attenuation has obvious stratification effect. With the increase of axial pressure in the loading process, the quality factor and porosity satisfy a good linear relationship, which provides an effective basis for using longitudinal wave quality factor to predict the porosity of coal seam.

Key words: Porosity, The quality factor, Axial compression, Linear fitting, Influence coefficient

中图分类号: 

  • TE121

图1

煤体割理系统[17]"

图2

经过钻取后的煤块[17]"

表1

三轴加载煤体纵波品质因子QP与孔隙率测试结果"

编组轴压/MPaQP孔隙率/%
XYZXYZ

围压

1 MPa

114.161 910.772 97.290 34.729 546 2094.704 530 7194.721 871 732
214.238 911.035 97.525 74.728 399 1374.702 596 9094.698 924 962
314.326 411.037 17.674 54.728 099 9794.699 379 7884.680 646 715
414.530 311.320 57.806 54.727 163 4314.696 519 9634.665 102 936
514.595 811.470 27.892 64.726 581 8664.693 044 5284.650 985 717
614.722 311.476 37.995 44.726 365 2074.689 881 4934.638 880 497

围压

3 MPa

315.640 512.413 18.952 34.684 532 444.655 837 2114.622 952 234
415.666 212.641 79.002 44.682 767 8534.654 059 5394.614 339 186
515.744 112.958 69.095 94.680 345 3494.652 499 6554.603 965 483
615.833 713.109 59.199 24.678 669 3044.650 211 4094.592 974 223
715.820 113.432 29.305 44.676 900 3044.647 227 434.579 735 724
815.954 913.554 49.386 64.674 770 5114.645 413 1694.567 888 099

围压

5 MPa

516.027 813.775 19.696 94.639 343 6284.623 210 8044.552 847 753
616.109 613.866 39.755 24.636 133 1164.621 388 5634.547 057 108
716.259 514.003 19.875 64.634 549 2584.618 637 7874.537 485 761
816.327 614.094 39.922 34.632 320 7714.617 489 0934.528 183 157
916.428 714.094 310.015 64.630 074 8044.614 807 7134.517 409 599
1016.422 414.231 210.157 84.627 233 164.612 737 0314.506 248 73
围压 7 MPa716.433 914.185 610.157 34.593 801 6274.589 822 5064.493 026 41
816.595 614.185 610.182 34.591 195 3524.587 767 5574.487 769 282
916.788 414.322 410.290 24.588 920 124.585 778 8374.481 202 397
1016.866 914.36810.425 54.586 524 1874.583 693 5164.473 089 203
1117.111 214.589 210.486 34.582 623 2044.581 213 4124.464 164 535
1217.194 514.626 110.565 44.580 036 1974.579 364 9094.458 194 539

图3

孔隙率随轴压的变化"

表2

煤样孔隙率与轴压按式(4)的拟合结果"

围压/MPa1357
XYZXYZXYZXYZ
φ0/%4.729 94.708 14.733 54.690 44.662 64.658 34.650 64.633 74.602 54.613 54.604 74.544 9
A/MPa-10.000 130.000 630.003 470.000 40.000 450.002 380.000 50.000 450.002 060.000 610.000 460.001 58
R20.962 50.994 60.987 10.997 80.989 80.995 30.993 10.993 40.991 60.992 80.998 90.993 8

图4

纵波品质因子QP随轴压的变化"

表3

煤样纵波品质因子与轴压按式(5)的拟合结果"

围压/MPa1357
XYZXYZXYZXYZ
Q014.02210.6757.221 715.44311.7258.656 715.6213.3569.232 715.35813.4419.513
B/MPa-10.008 30.013 70.018 80.003 90.020 10.010 50.005 50.006 50.009 70.010 10.007 40.009 3
R20.980 60.933 70.966 80.937 30.988 40.991 50.945 10.959 50.979 90.986 20.932 10.976 4

图5

纵波品质因子QP随孔隙率的变化关系"

表4

煤样纵波品质因子与孔隙率按式(6)的拟合结果"

围压/MPa1357
XYZXYZXYZXYZ
Q0847.21236.4246.73162.21518.2946.69184.620552.76272.81229.8864.98
C0.207 90.202 80.178 60.192 90.209 60.174 80.196 80.201 70.179 20.204 50.204 50.187 8
R20.9450.909 50.994 40.945 80.976 60.996 90.915 70.949 60.988 20.986 50.944 50.982 9
1 戴林超,聂百胜.煤粒的微观孔隙结构特征实验研究[J]. 矿业安全与环保, 2013, 40(4): 4-7.
DAI L C, NIE B S. Experimental research on structural characteristics of microscopic pores of coal particles[J]. Mining Sa-fety & Environmental Protection, 2013, 40(4): 4-7.
2 CRAMPIN S, CHASTIN S, GAO Y. Shear-wave splitting in a critical crust: III Preliminary report of multi-variable measurements in active tectonics[J]. Journal of Applied Geophysics, 2003, 54(3-4): 265-277.
3 安勇,牟永光, 方朝亮. 沉积岩的速度衰减与岩石物理性质间的关系[J].石油地球物理勘探,2006,41(2):188-192, 248,17.
AN Y, MU Y G, FANG C L. Relationship between velocity and decay of sedimentary rocks and physical properties of rocks[J].Oil Geophysical Prospecting,2006,41(2):188-192, 248,17.
4 郝召兵, 秦静欣, 伍向阳. 地震波品质因子Q研究进展综述[J].地球物理学进展, 2009, 24(2): 375-381.
HAO Z B, QIN J X, WU X Y. Overview of research on the seismic wave quality factor (Q) [J]. Progress in Geophysics, 2009, 24(2): 375-381.
5 李生杰. 孔隙介质超声波衰减实验与分析[J]. 湖南理工学院学报:自然科学版, 2011, 24(3): 70-72, 78.
LI S J. Experiment on ultrasonic attenuation in porous media[J]. Journal of Hunan Institute of Science and Technology:Natural Sciences, 2011, 24(3): 70-72, 78.
6 汪瑞良, 曾驿, 刘军,等. 珠江口盆地东部碳酸盐岩品质因子测试与分析[J]. 中国海上油气, 2011, 23(2): 81-84.
WANG R L, ZENG Y, LIU J. Testing and analyzing quality factors of carbonate rocks in the eastern Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 2011, 23(2): 81-84.
7 钟羽云, 马起杨. 地震波衰减品质因子Q值与岩石孔隙度关系[J]. 国际地震动态, 2018(8): 130-131.
ZHONG Y Y, MA Q Y. Relationship between seismic wave attenuation quality factor Q and rock porosity[J]. Recent Developments in World Seismology, 2018(8): 130-131.
8 唐文渊. 非常规储层的黏弹性参数测试及定量化分析研究[D]. 成都:成都理工大学, 2018.
TANG W Y. Measurement and Quantitative Analysis of Viscoelastic Parameters of Unconventional Reservoirs[D]. Chengdu:Chengdu University of Technology, 2018.
9 王赟,许小凯,杨德义.常温压条件下五种变质程度构造煤的超声弹性特征[J].中国科学:地球科学,2014,44(11):2431-2439.
WANG Y, XU X K, YANG D Y. Ultrasonic elastic characteristics of five kinds of metamorphic deformed coals under room temperature and pressure conditions[J]. Science China: Earth Sciences, 2014, 44(11): 2431-2439.
10 王赟, 许小凯, 张玉贵. 常温压条件下六种变质程度煤的超声弹性特征[J]. 地球物理学报, 2016, 59(7): 2726-2738.
WANG Y, XU X K, ZHANG Y G. Ultrasonic elastic characteristics of six kinds of metamorphic coals in China under room temperature and pressure conditions[J].Chinese Journal of Geo-physics, 2016, 59(7): 2726-2738.
11 王云刚, 李满贵, 李盟, 等. 构造煤超声波参数影响因素的分析[J]. 中国安全生产科学技术, 2014, 10(7): 82-86.
WANG Y G, LI M G, LI M. Analysis on influence factors of ultrasonic parameters for tectonic coal[J]. Journal of Safety Science and Technology, 2014, 10(7): 82-86.
12 李满贵. 受载煤体超声波动力学特征研究[D]. 焦作:河南理工大学, 2015.
LI M G. Study on Dynamics Features of Ultrasonic Velocities in Loading Coal[D].Jiaozuo:Henan Polytechnic University, 2015.
13 赵宇, 张玉贵, 周俊义. 单轴加载条件下煤岩超声各向异性特征实验[J]. 物探与化探, 2017, 41(2): 306-310.
ZHAO Y, ZHANG Y G, ZHOU J Y. An experimental study of ultrasonic anisotropy of coal under uniaxial loading[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 306-310.
14 许小凯, 王赟, 孟召平. 六种不同煤阶煤的品质因子特征[J]. 地球物理学报, 2014, 57(2): 644-650.
XU X K, WANG Y, MENG Z P. Quality factor characteristics of six metamorphic kinds of coals[J]. Chinese Journal of Geophysics, 2014, 57(2): 644-650.
15 张平松, 刘盛东, 赵秋芳, 等. 淮南矿区煤层衰减特征及品质因子分析[J]. 煤炭科学技术, 2006,34(5): 83-85.
ZHANG P S, LIU S D, ZHAO Q F, et al. Factor analysis on seam reduced features and quality in Huainan Mining area[J]. Coal Science and Technology, 2006,34(5): 83-85.
16 徐晓炼, 张茹, 戴峰, 等. 煤岩特性对超声波速影响的试验研究[J]. 煤炭学报, 2015, 40(4): 793-800.
XU X L, ZHANG R, DAI F, et al. Effect of coal and rock characteristics on ultrasonic velocity[J]. Journal of China Coal Society, 2015, 40(4): 793-800.
17 陈卓. 加载过程煤体应力—应变超声响应特征[D]. 焦作:河南理工大学, 2018.
CHEN Z. Study on Coal Body Deformation and Ultrasonic Response at Load of Three Axis Stress[D]. Jiaozuo:Henan Polytechnic University, 2018.
18 张建利, 王赟, 张玉贵. 横波偏振方法在煤样超声测量实验中的应用[J]. 煤炭学报, 2013, 38(7): 1220-1226.
ZHANG J L, WANG Y, ZHANG Y G. Application of shear wave polarization method in ultrasonic measurement of coal samples[J]. Journal of China Coal Society, 2013, 38(7): 1220-1226.
[1] 刘德良,李振生,杨 强,李景明,袁学诚. 岩石吸收品质因子在天然气运移封闭研究中的应用[J]. 天然气地球科学, 2003, 14(5): 347-350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!