天然气地球科学 ›› 2020, Vol. 31 ›› Issue (2): 295–306.doi: 10.11764/j.issn.1672-1926.2019.10.012

• 天然气勘探 • 上一篇    下一篇

相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用

苏洲1,2(),刘永福2,韩剑发2,杨淑雯2,刘博2,赖鹏3,彭鹏2,张慧芳2,易珍丽2   

  1. 1.长江大学地球物理与石油资源学院,湖北 武汉 430100
    2.中国石油塔里木油田公司,新疆 库尔勒 841000
    3.中国石油辽河油田公司勘探开发研究院, 辽宁 盘锦 124010
  • 收稿日期:2019-05-20 修回日期:2019-10-20 出版日期:2020-02-10 发布日期:2019-11-06
  • 作者简介:苏洲(1986-),男,湖北荆州人,博士,主要从事地震地质研究.E-mail:suzhou200508136@163.com.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”课题“大型地层油气藏形成主控因素与有利区带评价”(2017ZX05001-001);中国石油股份公司重大专项“缝洞型碳酸盐岩油气藏效益开发关键技术研究与应用”(2018E-1806)

Application of ultra-deep sandstone reservoirs prediction technology under seismic facies controlled in Yudong Block of Tabei Uplift, Tarim Basin

Zhou SU1,2(),Yong-fu LIU2,Jian-fa HAN2,Shu-wen YANG2,Bo LIU2,Peng LAI3,Peng PENG2,Hui-fang ZHANG2,Zhen-li YI2   

  1. 1.College of Geophysics and Oil Resources,Yangtze University,Wuhan 430100,China
    2.PetroChina Tarim Oilfield Company,Kolar 841000,China
    3.Research Institute of Petroleum Exploration & Development, PetroChina Liaohe Oilfield Company,Panjin 124010, China
  • Received:2019-05-20 Revised:2019-10-20 Online:2020-02-10 Published:2019-11-06
  • Supported by:
    the National Major Special Project(2017ZX05001-001);The Major Project of China Petroleum Corporation(2018E-1806)

摘要:

塔北隆起西部玉东地区白垩系巴西改组广泛发育薄层砂岩,形成受构造控制的岩性圈闭。储层厚度约3~5 m,而常规地震资料分辨率有限,储层预测难度大。从正演模拟出发,结合实钻井资料,设计不同的正演模型,分析了不同薄储层发育模式对地震波形的影响,实验结果表明:厚层块状砂岩发育时,振幅最强,而薄砂层发育时,振幅相对减弱;块状砂岩内部泥岩隔层发育时,振幅降低的同时波谷变宽。通过波谷宽度与振幅2种属性聚类交会,参考已钻井岩相信息,形成地震相平面图,平面上实现储层的定性预测;在此基础上开展相控约束下的高分辨率地震波形指示反演,明确含油砂体分布范围。实钻结果证实储层预测吻合率较高,纵横向上符合地质认识,从而明确了玉东地区白垩系巴西改组千万吨级油气勘探潜力,取得了较好的应用效果,对后期薄砂层油气藏勘探与开发具有重要的指导作用。

关键词: 薄砂层预测, 正演模拟, 波形指示反演, 地震相

Abstract:

Thin sand layers are widely developed in the Cretaceous Baxigai Formation in Yudong area, western Tabei Uplift,and series of lithologic traps controlled by structures are formed. The thickness of target layer is 3-5 m, which is beyond the resolution of conventional seismic data, and the prediction of reservoir becomes difficult. Starting from the forward simulation, a forward model was designed based on well logging data and characteristics of the strata in the well area to analyze the impact of different thin reservoir development modes on seismic waveform. The experimental results show that the amplitude of thick sandstone is strong, while that of thin sandstone is weaker. When mudstone barriers developed in sandstones, the amplitude decreases and the trough widens. Based on results above, the seismic facies plan is formed by clustering the two attributes of wave trough width and amplitude, and the qualitative prediction of reservoir can be realized on the plane by referring to the drilled rock information. Based on this, high-resolution seismic waveform inversion was carried out to achieve vertical reservoir prediction. The results of inversion results on the profile are higher than those of well logging, and the geological knowledge is met on the plane and good application results are obtained.

Key words: Prediction of thin sand layer, Forward modeling, SMI, Seismic facies

中图分类号: 

  • TE132.1+4

图1

玉东地区构造位置特征"

图2

YD7井区白垩系巴西改组沉积相对比"

图3

拓频前后地震剖面与地震属性对比"

图4

正演模型及模拟结果"

图5

玉东7井区地震相与沉积相综合解释图版"

图6

玉东地区巴西改组地震相(a)及沉积相图(b)"

图7

测井曲线直方图"

图8

过YD710—YD701—YD7—YD704—YD2井反演剖面"

表1

玉东地区巴西改组II段砂岩预测误差分析"

井名II-1砂组II-2砂组
预测厚度/m井上厚度/m绝对误差/m相对误差/%预测厚度/m井上厚度/m绝对误差/m相对误差/%
平均0.090.05
YD15.004.600.400.097.507.800.300.04
YD24.303.900.400.102.902.600.300.12
YD2-13.403.600.200.065.606.000.400.07
YD36.907.400.500.076.406.100.300.05
YD76.005.001.000.205.105.000.100.02
YD7017.006.900.100.015.505.600.100.02
YD7023.404.000.600.157.907.700.200.03
YD704H5.606.100.500.086.206.900.700.10
YD7105.305.000.300.067.507.700.200.03

图9

巴西改组下段II-2砂组(a)II-1砂组(b)砂体预测厚度"

1 文鑫,戴宗,唐辉,等.珠江口盆地XJ油田薄油层水平井三维地质导向技术[J].石油钻探技术,2016,44(6):42-47.
WEN X, DAI Z, TANG H, et al. Three-dimensional geosteering horizontal drilling technique in thin reservoirs in the XJ Oilfield,Pearl River Mouth Basin[J]. Petroleum Drilling Techniques,2016,44(6):42-47.
2 孙鲁平,郑晓东,首皓,等.薄层地震峰值频率与厚度关系研究[J].石油地球物理勘探, 2010, 45(2):254-259.
SUN L P, ZHENG X D, SHOU H, et al. The studies on relationship between thin layer seismic peak frequency and its thickness[J]. Oil Geophysical Prospecting, 2010, 45(2):254-259.
3 王晓辉,范素芳,任毅军,等.多属性回归与神经网络串联反演预测薄储集层[J].新疆石油地质,2013,34(3):324-327.
WANG X H, FAN S F, REN Y J, et al. Application of series inversion of multi-attribute regression and probabilistic neural network to thin reservoir prediction[J]. Xinjiang Petroleum Geology,2013,34(3):324-327.
4 熊冉,赵继龙,厚刚福.用频谱分解和地震峰值属性分析预测薄砂岩储集层[J].新疆石油地质, 2013,34(2):225-227.
XIONG R,ZHAO J L,HOU G F.Using spectral decomposition technology and seismic peak attribute analysis for prediction of thin sandstone reservoir[J]. Xinjiang Petroleum Geology, 2013,34(2):225-227.
5 王江,张宏,杨微,等.地层切片技术在复杂勘探区储层预测与地质体识别中的应用[J].海相油气地质,2011,16(1):74-78.
WANG J, ZHANG H, YANG W, et al. Application of stratal slicing in reservoir predication and geological body identification in complicated exploration area[J].Marine Origin Petroleum Geology,2011,16(1):74-78.
6 孙颖,卢异,佘晓宇,等.地层(体)切片技术及其应用[J].天然气地球科学,2011,22(5):884-888.
SUN Y, LU Y, SHE X Y, et al. Stratal(body) slice technology and its application[J]. Natural Gas Geoscience, 2011,22(5):884-888.
7 倪长宽,苏明军,刘化清,等.有关地层切片应用条件和分辨率的探讨[J].天然气地球科学, 2014,25(11):1830-1838.
NI C K, SU M J, LIU H Q, et al. Discussion on application conditions and resolution of stratal slice[J]. Natural Gas Geoscience, 2014,25(11):1830-1838.
8 陈文浩,王志章,侯加根,等.地层切片技术在沉积相研究中的应用探讨[J].石油地球物理勘探, 2015, 50(5):1007-1015.
CHEN W H, WANG Z Z, HOU J G, et al. Strata slices in sedimentary facies research[J]. Oil Geophysical Prospecting, 2015, 50(5):1007-1015.
9 郭晓龙,李璇,李波,等.利用多属性融合方法预测新疆滴西178井区梧桐沟组薄砂岩储层[J].天然气地球科学,2018,29(8):1172-1180.
GUO X L, LI X, LI B, et al. Prediction of thin sandstone reservoirs of Wutonggou Formation in the DX178 well area of Xinjiang by using liquid mobility factor method[J]. Natural Gas Geoscience, 2018,29(8):1172-1180.
10 周家雄,刘薇薇,孙月成,等.小于地震分辨率极限的薄储集层预测技术[J].新疆石油地质,2010,31(5):554-556.
ZHOU J X, LIU W W, SUN Y C, et al. Prediction of thin reservoir thickness less than seismic resolution limitation[J]. Xinjiang Petroleum Geology,2010,31(5):554-556.
11 赵殿栋,郑泽继,吕公河,等.高分辨率地震勘探采集技术[J].石油地球物理勘探, 2001, 36(3):263-272.
ZHAO D D, ZHENG Z J, LU G H, et al. Seismic acquisition technique for high-resolution [J]. Oil Geophysical Prospecting,2001, 36(3):263-272.
12 魏水建,程冰洁,徐天吉.地震资料高分辨率处理识别生物礁储集层方法[J].新疆石油地质, 2014,35(6):678-683.
WEI S J,CHENG B J,XU T J.Methods for organic reef reservoir identification by high resolution processing of seismic data[J]. Xinjiang Petroleum Geology, 2014,35(6):678-683.
13 刘正文,党青宁,董瑞霞,等. 塔里木盆地寒武系白云岩地震处理技术应用及效果——以塔北英买32地区中下寒武统为例[J].天然气地球科学,2015,26(7):1334-1343.
LIU Z W, DANG Q N, DONG R X, et al.Seismic imaging technique and application of Cambrian dolomite rock in Tarim Basin:A case of Middle-Lower Cambrian layers of Yingmai 32 area[J]. Natural Gas Geoscience,2015,26(7):1334-1343.
14 姜文龙,杨锴.岩石物理参数高分辨率地质统计学反演[J].石油物探,2012,51(6):638-648.
JIANG W L,YANG K. High resolution geostatistical petrophysical parameter inversion[J].Geophysical Prospecting for Petroleum,2012,51(6):638-648.
15 李弘艳, 杨子川,韩强,等.属性分析和地质统计反演在塔里木盆地深层薄砂体识别中的联合应用[J]. 工程地球物理学报, 2017, 14(2):159-164.
LI H Y, YANG Z C, HAN Q,et al. The combined application of attribute analysis and geo-statistical inversion to identification of the deep thin sand body in sandaoqiao area of the Tarim Basin[J]. Chinese Journal of Engineering Geophysics2017, 14(2):159-164.
16 刘超,谢传礼,李宇鹏,等.利用虚拟井提高相控随机建模中地质约束的原理和方法[J].天然气地球科学,2015,26(4):616-624.
LIU C, XIE C L, LI Y P, et al. The principle and method to enhance geological constraint by inserting virtual wells in facies controlling stochastic reservoir modeling[J]. Natural Gas Geoscience, 2015,26(4):616-624.
17 彭军,周家雄,马光克,等.高精度三参数小波谱分析法在薄储集层预测中的应用[J].新疆石油地质,2018,39(2):230-235.
PENG J, ZHOU J X, MA G K, et al. Application of high-precision three-parameter wavelet spectrum analysis in Thin reservoir prediction[J]. Xinjiang Petroleum Geology, 2018,39(2):230-235.
18 王振卿,王宏斌,张虎权,等.分频波阻抗反演技术在塔中西部台内滩储层预测中的应用[J].天然气地球科学,2014,25(11):1847-1854.
WANG Z Q, WANG H B, ZHANG H Q, et al. Frequency division inversion for the intraplatform shoal reservoir[J]. Natural Gas Geoscience, 2014,25(11):1847-1854.
19 韩长城, 林承焰, 任丽华,等. 地震波形指示反演在东营凹陷王家岗地区沙四上亚段滩坝砂的应用[J]. 中国石油大学学报:自然科学版, 2017, 41(2):60-69.
HAN C C, LIN C Y, REN L H, et al. Application of seismic waveform inversion in Es4s beach-bar sandstone in Wangjiagang area,Dongying Depression[J]. Journal of China University of Petroleum:Edition of Natural Science, 2017, 41(2):60-69.
20 高君,毕建军,赵海山,等.地震波形指示反演薄储层预测技术及其应用[J].地球物理学进展,2017, 32(1):142-145.
GAO J, BI J J, ZHAO H S, et al. Seismic waveform inversion technology and application of thinner reservoir prediction [J].Progress in Geophysics,2017, 32(1):142-145.
21 顾雯,徐敏,王铎翰,等.地震波形指示反演技术在薄储层预测中的应用——以准噶尔盆地B地区薄层砂岩气藏为例[J].天然气地球科学,2016,27(11):2064-2069.
GU W, XU M, WANG D H, et al. Application of seismic motion inversion technology in thin reservoir prediction:A case study of the thin sandstone gas reservoir in the B area of Junggar Basin[J]. Natural Gas Geoscience, 2016,27(11):2064-2069.
22 程海艳, 李江海, 赵星. 塔北隆起西部不同构造层构造样式及其成因关系[J].高校地质学报, 2009, 15(4): 529-536.
CHENG H Y, LI J G, ZHAO X. The structural styles of different structural layers in the western part of north Tarim uplift and their genetic mechanisms[J]. Geological Journal of China Universities, 2009, 15(4): 529-536.
23 刘勇,王振宇,马青. 英买力地区白垩系沉积特征及沉积相类型[J].新疆石油地质,2007,28(1):20-24.
LIU Y, WANG Z Y, MA Q. Characteristics and types of sedimentary facies of cretaceous in Yingmaili area[J].Xinjiang Petroleum Geology,2007,28(1):20-24.
24 刘永福,夏辉,孙琦,等.塔里木盆地塔北隆起西部巴什基奇克组层序地层及沉积演化[J]. 天然气地球科学,2019,30(1):62-73.
LIU Y F, XIA H, SUN Q, et al. Sequence stratigraphy and depositional evolution of the Bashijiqike Formation in the western Tabei Uplift,Tarim Basin[J]. Natural Gas Geoscience,2019,30(1):62-73.
25 李建龙,吴高奎,林畅松,等.古隆起斜坡区不整合三角带对地层圈闭的控制——以塔北隆起西部白垩系为例[J].东北石油大学学报, 2019,43(2):68-78.
LI J L, WU G K, LIN C S, et al. Restriction of unconformity triangle zone on stratigraphic traps in the slope area with paleo-uplift: A case study of the Cretaceous in the west North-Tarim Uplift[J]. Journal of Northeast Petroleum University,2019,43(2):68-78.
26 朱光有,杨海军,张斌,等.油气超长运移距离[J].岩石学报,2013,29(9):3192-3212.
ZHU G Y, YANG H J, ZHANG B, al et. Ultra-long distance migration of hydrocarbon[J]. Acta Petrologica Sinica,2013,29(9):3192-3212.
27 王永炜,李荣西,赖生华.基于地震信息的沉积体系平面分布特征研究——以鄂尔多斯盆地延长探区高家河三维区本溪组下部沉积体系为例[J].天然气地球科学,2017,28(6):888-897.
WANG Y W, LI R X, LAI S H. Depositional system distribution characteristics based on seismic data: Case study of the Lower Benxi Formation, Gaojiahe 3-D block, Yanchang exploration area, Ordos Basin, China[J]. Natural Gas Geoscience. 2017,28(6):888-897.
28 黄云峰,韩小峰,魏立花,等.用于沉积分析的地震沉积学技术研究——以鄯南地区为例[J].天然气地球科学,2015,26(4):706-710.
HUANG Y F, HAN X F, WEI L H, et al. Seismic sedimentology for the deposition analysis in Shannan region[J]. Natural Gas Geoscience. 2015,26(4):706-710.
29 乐友喜,黄健良,张阳,等.地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J]. 吉林大学学报:地球科学版, 2013,43(2):632-640.
YUE Y X, HUANG J L, ZHANG Y, et al. Seismic reservoir prediction technology constrained by geology model and the application in Lishu Fault Depression[J]. Journal of Jilin University:Earth Science Edition,2013,43(2):632-640.
30 肖佃师,卢双舫,王海生,等.三角洲外前缘薄砂体地震综合预测方法[J].中国石油大学学报:自然科学版,2015,39(4):62-69.
XIAO D S, LU S F, WANG H S, et al. Comprehensive prediction method of seismic to thin sandstone reservoir in the delta-frontal[J]. Journal of China University of Petroleum:Editionof Natural Science,2015,39(4):62-69.
31 关达,张卫华,管路平,等.相控储层预测技术及其在大牛地气田D井区的应用[J].石油物探,2006,45(3):230-233.
GUAN D, ZHANG W H, GUAN L P,et al.Reservoir prediction under the constraint of seismic or sediment phase and application to DND Gas Field[J]. Geophysical Prospecting for Petroleum,2006,45(3):230-233.
32 李斌,王兴志,聂万才,等.塔河油田卡4段地层相控储层预测[J].地球物理学进展,2009,24(6):2163-2168.
LI B,WANG X Z, NIE W C, et al. Prediction of facies-controlled reservoir karratha four in Tahe Oilfield[J].Progress in Geophysics,2009,24(6):2163-2168.
33 刘魁元.渤南洼陷沙三段浊积水道砂岩油藏相控储层预测[J].中国石油大学学报:自然科学版, 2008,32(1):24-28.
LIU K Y. Faces-controlling reservoir prediction of turbidity channel sandstone reservoir of Es3 in Bonan subsag[J].Journal of China University of Petroleum:Edition of Natural Science, 2008,32(1):24-28.
34 张生,黄捍东,王星星,等.车西洼陷西北陡坡沙三下亚段地震相控反演砂砾岩储层预测[J].地学前缘,2018,25(2):246-253.
ZHANG S,HUANG H D,WANG X X,et al. Prediction of sand-conglomerate reservoirs via seismic facies controlled inversion in the Lower Es-3 of the northern steep slope of the Chexi Sag[J]. Earth Science Frontiers,2018,25(2):246-253.
35 朱超,刘占国,杨少勇,等.利用相控分频反演预测英西湖相碳酸盐岩储层[J].石油地球物理勘探, 2018,53(4):832-842.
ZHU C, LIU Z G, YANG S Y, et al. Lacustrine carbonate reservoir prediction in Yingxi,Qaidam Basin with the facies-constrained and segmented-frequency-band inversion[J]. Oil Geophysical Prospecting, 2018,53(4):832-842.
36 周生友,许杰,马艳,等.滨里海盆地F区块盐下深层碳酸盐岩相控储层预测[J].中山大学学报:自然科学版,2013,52(3):138-142
ZHOU S Y,XU J,MA Y, et al. Facies-constrained reservoir prediction of pre-salt carbonate reservoir deeply buried in F-block of the Caspian Basin[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013,52(3):138-142.
[1] 熊冉, 郑剑锋, 黄理力, 陈永权, 倪新锋. 塔里木盆地寒武系肖尔布拉克组丘滩体露头地质建模及地震正演模拟[J]. 天然气地球科学, 2020, 31(5): 735-744.
[2] 王俊, 高银山, 王洪君, 王新星, 鲍志东, 张红静. 基于正演模拟的水下分流复合河道内单一河道划分[J]. 天然气地球科学, 2018, 29(9): 1310-1322.
[3] 金丽娜,于兴河,董亦思,单新,何玉林,林霖. 琼东南盆地水合物探区第四系深水沉积体系演化及与BSR关系[J]. 天然气地球科学, 2018, 29(5): 644-654.
[4] 张艳,张春雷,高世臣. 基于SOM和HSV染色技术的致密砂岩储层地震相分析[J]. 天然气地球科学, 2018, 29(2): 259-267.
[5] 孙东, 石小茜, 王振卿, 陈利新, 王靖, 孙甲庆, 代冬冬, 房启飞. 塔里木盆地哈拉哈塘地区二叠系火成岩体对下伏地层地震成像影响[J]. 天然气地球科学, 2018, 29(12): 1781-1787.
[6] 杨鑫,李慧莉,岳勇,刘士林,李建交,熊平. 塔里木盆地震旦纪末地层—地貌格架与寒武纪初期烃源岩发育模式[J]. 天然气地球科学, 2017, 28(2): 189-198.
[7] 殷杰,王权. 利用测井和地震信息识别和预测优质烃源岩——以渤海湾盆地饶阳凹陷沙一段为例[J]. 天然气地球科学, 2017, 28(11): 1761-1770.
[8] 顾雯, 徐敏, 王铎翰, 郑虹, 章雄, 张洞君, 罗晶. 地震波形指示反演技术在薄储层预测中的应用——以准噶尔盆地B地区薄层砂岩气藏为例[J]. 天然气地球科学, 2016, 27(11): 2064-2069.
[9] 石新朴, 胡清雄, 解志薇, 杨朝栋, 周隶华, 孙德强, 吕灿, 贾智彬, 赵振. 火山岩岩性、岩相识别方法——以准噶尔盆地滴南凸起火山岩为例[J]. 天然气地球科学, 2016, 27(10): 1808-1816.
[10] 韩剑发,胡有福,胡晓勇,于金星,刘炜博,张丽微,齐凤林,何睿. 塔里木盆地塔中隆起良里塔格组礁滩体储集特征及油气富集规律[J]. 天然气地球科学, 2015, 26(S2): 106-114.
[11] 李磊,王小刚,陈玲玲,谭卓,曹冰,申雯龙. 东海西湖凹陷始新统复合潮汐水道三维地震表征[J]. 天然气地球科学, 2015, 26(2): 352-359.
[12] 陈宇航,刘震,姚根顺,吕福亮,唐鹏程,陈亮. 一个深水区深层沉积相早期预测方法——以南海北部深水区D凹陷渐新统为例[J]. 天然气地球科学, 2015, 26(11): 2122-2130.
[13] 许多年, 潘建国, 蒋春玲, 谭开俊, 陈永波, 尹路. 准噶尔盆地乌夏地区二叠系火山岩储层气孔充填机理及定量化预测方法[J]. 天然气地球科学, 2014, 25(11): 1746-1751.
[14] 梁建设,田兵,王琪,唐俊,廖朋,庞国印. 丽水—椒江凹陷月桂峰组地震—沉积响应及烃源岩特征[J]. 天然气地球科学, 2012, 23(3): 482-488.
[15] 张杰, 张振红, 辛红刚, 赵德勇, 李美, 黄黎刚. 地震相分析技术在马岭油田储层预测中的应用[J]. 天然气地球科学, 2012, 23(3): 590-595.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .