天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 93–99.doi: 10.11764/j.issn.1672-1926.2019.10.011

• 非常规天然气 • 上一篇    下一篇

川南煤田古叙矿区DC⁃5井上二叠统龙潭组煤层甲烷吸附性及其主控因素

鲍园1,2(),安超1,琚宜文3(),尹中山4,熊建龙4,王文愽1   

  1. 1.西安科技大学地质与环境学院,陕西 西安 710054
    2.自然资源部煤炭资源勘查与综合利用重点实验室,陕西 西安 710021
    3.中国科学院计算地球动力学重点实验室,中国科学院大学地球与行星科学学院,北京 100049
    4.四川省煤田地质局工程勘察设计研究院,四川 成都 610072
  • 收稿日期:2019-08-24 修回日期:2019-10-21 出版日期:2020-01-10 发布日期:2019-11-06
  • 通讯作者: 琚宜文 E-mail:y.bao@foxmail.com;juyw03@163.com
  • 作者简介:鲍园(1983-),男,江苏邳州人,副教授,博士,主要从事非常规天然气地质研究. E?mail: y.bao@foxmail.com.
  • 基金资助:
    国家自然科学基金项目“低阶煤生物气化过程中微纳米孔隙与大分子结构演化及其耦合机理”(41972183);四川省科技支撑计划项目“四川盆地东南缘古蔺县大村区块煤层气抽采试验”(2016JZ0037);西安科技大学博士启动金项目“煤系生物成因气生成演化机制”(2018QDJ001)

Constraints of methane absorbability in the Upper Permian Longtan Formation of Well DC-5 in Guxu mine area of southern Sichuan Coalfield

Yuan BAO1,2(),Chao AN1,Yi-wen JU3(),Zhong-shan YIN4,Jian-long XIONG4,Wen-bo WANG1   

  1. 1.College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
    2.Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, China
    3.Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    4.Geological Engineering Investigation and Design Institute, Sichuan Coalfield Geological Bureau, Chengdu 610072, China
  • Received:2019-08-24 Revised:2019-10-21 Online:2020-01-10 Published:2019-11-06
  • Contact: Yi-wen JU E-mail:y.bao@foxmail.com;juyw03@163.com
  • Supported by:
    the National Natural Science Foundation of China(41972183);The Science and Technology Support Program Project of Sichuan Province, China(2016JZ0037);The Ph.D Start-up Fund Project of Xi’an University of Science and Technology(2018QDJ001)

摘要:

煤层甲烷吸附性研究对于指导煤层气勘探开发以及揭示煤层储气机理具有重要作用。通过钻井取样、煤岩—煤质特性分析以及甲烷等温吸附实验,研究了川南煤田古叙矿区龙潭组不同深度煤层的煤质特征与甲烷吸附性差异,运用多元线性逐步回归方法分析了影响煤层甲烷吸附能力的主要因素。结果表明:古叙矿区龙潭组煤镜质组最大反射率RO,max值为2.83%~3.22%,属于高阶煤;显微组分以镜质组为主,惰质组次之,不含壳质组,无机矿物以黏土类为主;不同煤层的水分含量和挥发份产率差别不大,但是灰分产率和固定碳含量差别较大,导致朗格缪尔体积变化在11.39~25.06 m3/t之间。认为固定碳含量是影响古叙矿区煤层甲烷吸附能力的主要因素,且固定碳含量与朗格缪尔体积呈正相关关系。

关键词: 甲烷吸附, 控制因素, 龙潭组, 古叙矿区, 川南煤田

Abstract:

Research on the absorbability of coalbed methane is of importance for guiding the exploration and exploitation of coalbed methane and revealing the storage mechanism of coalbed methane. This study investigates the coal quality and methane adsorption capacity at different depth of the Longtan Formation in the Guxu mine area of southern Sichuan Coalfield by drilling sampling, coal rock and coal analysis, and methane isothermal adsorption testing. The main geological factors affecting methane adsorption capacity are analyzed using a multiple linear stepwise regression method. Results show that the coal rank of the Longtan Formation in the Guxu mine area has reached the anthracite stage (Ro, max ranges from 2.83% to 3.22%), which belongs to high-rank coals. Vitrinite is the main component of coal maceral and followed by inertinite without exinite. Clay mineral is the main component of the inorganic mineral. The difference of moisture and volatile matter contents between coal seams in the Longtan Formation is small, while a large difference between ash and fixed carbon contents is observed. Langmuir volume (VL) of different coal seams ranges from 11.39 to 25.06 m3/t. Fixed carbon content is the main factor affecting the methane adsorption capacity of the coal seams in the Guxu mine area. The content of fixed carbon is positively correlated with the methane adsorption quantity.

Key words: Methane adsorption, Constraint, Longtan Formation, Guxu mine area, South Sichuan Coalfield

中图分类号: 

  • TE122.2

图1

研究区地理位置及构造分布(据文献[17],有修改)"

图2

古叙矿区DC-5井地层柱状图及采样位置"

表1

煤岩显微组分鉴定结果"

样品编号采样埋深 /m

镜质体反射率

RO,max)/%

煤岩显微组分/%煤体结构类型
镜质组壳质组惰质组无机矿物(黏土类)
C14726.92.9642.50.09.847.7(41.7)糜棱煤
C16741.23.1473.90.015.810.3(6.6)碎裂煤
C17-1746.62.9476.90.09.613.5(8.6)碎裂煤
C17-2747.83.1646.20.047.86.0(3.2)碎裂煤
C23758.32.9270.30.09.420.3(12.0)糜棱煤
C24763.73.2274.10.010.315.6(4.7)碎裂煤
C25-1775.73.0841.60.011.447.0(35.1)糜棱煤
C25-3777.42.8363.20.015.721.1(14.1)碎裂煤
C25-4779.53.1369.00.011.319.7(12.5)碎裂煤
C11a/2.6456.20.017.426.4(/)/
C17 a/2.6672.80.06.221.0(/)/
C19 a/2.6467.70.025.46.9(/)/
C23 a/2.6168.30.018.213.5(/)/
C25 a/2.6371.10.017.311.6(/)/

表2

煤岩工业分析测试结果"

样品编号原煤工业分析/%

发热量/

(MJ/kg)

全硫/%
MadAdVdFCd
C142.2050.859.4337.5214.330.14
C161.7710.466.3881.3930.650.22
C17-12.1628.037.9761.8423.020.37
C17-22.1912.046.3179.46//
C232.4032.898.3356.3821.130.59
C241.8228.126.9563.1123.660.38
C25-12.1144.158.4145.3317.083.64
C25-32.2612.706.9478.10//
C25-41.8130.848.1059.25//
C13a0.48~0.920.70?(37)17.13~38.6926.44(40)6.81~9.358.08(37)60.79~68.4364.6121.07~29.1825.68(37)0.31~3.262.66(38)
C14 a0.67~1.480.95(42)14.33~39.1524.04(46)6.43~8.427.61(40)52.31~67.9662.8120.53~30.1126.39(38)0.19~1.860.85(44)
C16 a0.64~1.400.95(14)16.52~35.3823.11(14)6.23~7.536.73(14)44.39~77.4760.3120.74~29.6725.40(14)0.16~1.670.57(13)
C17 a0.66~1.300.91(37)15.44~36.8423.93(41)5.98~10.817.96(37)43.23~73.7959.3920.87~29.6926.33(37)0.18~1.620.94(41)
C23 a0.42~1.230.77(47)10.75~39.2222.60(47)6.44~8.777.77(47)6.25~67.6162.5719.84~31.6926.48(47)0.54~3.862.74(46)
C24 a0.34~1.340.77(37)12.37~39.9024.73(37)5.93~8.447.40(35)66.22~70.7568.0220.25~31.7327.41(35)0.93~7.942.52(35)
C25 a0.33~0.830.55(39)9.47~38.2418.26(43)6.78~12.108.85(38)54.91~76.9764.1520.31~32.1828.44(39)1.49~7.594.47(42)

图3

DC-5井煤岩甲烷等温吸附曲线"

表3

基于平衡水分基的甲烷等温吸附实验数据及Langmuir参数"

样品编号Langmuir模型
VL/(m3/t)PL/MPa
C1411.391.22
C1621.790.97
C17-118.251.01
C17-225.061.05
C2316.181.06
C2421.881.17
C25-116.031.15
C25-324.691.41
C25-421.981.04

表4

各因素对VL的Pearson 相关性分析结果"

采样埋深镜质体反射率镜质组惰质组无机矿物黏土类煤体结构类型MadAdVdFCd
相关性0.4180.3080.3320.551-0.773-0.785-0.852-0.329-0.889-0.8950.895
显著性0.2620.420.3830.1240.0150.0120.0040.3870.0010.0010.001
是否显著显著显著显著显著显著显著

表5

多元线性回归方程系数及95%置信区间计算结果"

非标准化系数tSig.B的95.0%置信区间
B标准误差下限上限
(常量)3.0163.2210.9360.380-4.60010.632
固定碳含量0.2670.0505.3130.0010.1480.386

图4

固定碳含量与朗格缪尔体积关系"

图5

固定碳含量与微孔体积的关系[21]"

1 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007.
FU X H, QIN Y, WEI C T. Coalbed Methane Geology[M]. Xuzhou: Chinese University of Mining & Technology Press, 2007.
2 BAO Y, WEI C T, WANG C Y, et al. Geochemical characteristics and identification of thermogenic CBM generated during the low and middle coalification stages[J]. Geochemical Journal, 2013, 47(4): 451-458.
3 陈春琳, 林大杨. 等温吸附曲线方法在煤层气可采资源量估算中的应用[J]. 中国矿业大学学报, 2005, 34(5): 679-682.
CHEN C L, LIN D Y. Application of isothermal curves in estimating minable resource of coalbed methane[J]. Journal of Chinese University of Mining & Technology, 2005, 34(5): 679-682.
4 姚艳斌, 刘大锰. 华北重点矿区煤储层吸附特征及其影响因素[J]. 中国矿业大学学报, 2007, 36(3): 308-314.
YAO Y B, LIU D M. Adsorption characteristics of coal reservoirs in North China and its influencing factors[J]. Journal of Chinese University of Mining & Technology, 2007, 36(3): 308-314.
5 李振涛, 姚艳斌, 周鸿璞, 等. 煤岩显微组成对甲烷吸附能力的影响研究[J]. 煤炭科学技术, 2012, 40(8): 125-128.
LI Z T, YAO Y B, ZHOU H P, et al. Study on coal and rock maceral composition affected to methane adsorption capacity[J]. Coal Science and Technology, 2012, 40(8): 125-128.
6 崔永君, 李育辉, 张群, 等. 煤吸附甲烷的特征曲线及其在煤层气储集研究中的作用[J]. 科学通报, 2005, 50(z1): 76-81.
CUI Y J, LI Y H, ZHANG Q, et al. Characteristic curve of coal adsorption of methane and application in coalbed gas storage[J]. Chinese Science Bulletin, 2005, 50(z1): 76-81.
7 CROSDALE P J, BEAMISH B B, VALIX M. Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology, 1998, 35: 147-158.
8 LAXMINARAYANA C, CROSDALE P J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals[J]. International Journal of Coal Geology, 1999, 40: 309-325.
9 CHATTARAJ S, MOHANTY D, KUMAR T, et al. Thermodynamics, kinetics and modeling of sorption behaviour of coalbed methane: A review[J]. Journal of Unconventional Oil and Gas Resources, 2016, 16: 14-33.
10 苏现波, 张丽萍, 林晓英. 煤阶对煤的吸附能力的影响[J]. 天然气工业, 2005, 25(1): 19-21.
SU X B, ZHANG L P, LIN X Y. Influence of coal rank on coal and sorption capacity[J]. Natural Gas Industry, 2005, 25(1): 19-21.
11 钟玲文. 煤的吸附性能及影响因素[J]. 地球科学: 中国地质大学学报, 2004, 29(3): 327-332.
ZHONG L W. Adsorptive capacity of coals and its affecting factors[J]. Journal of China University of Geosciences: Earth Science, 2004, 29(3): 327-332.
12 秦勇, 傅雪海, 叶建平, 等. 中国煤储层岩石物理学因素控气特征及机理[J]. 中国矿业大学学报, 1999, 28(1): 14-19.
QIN Y, FU X H, YE J P, et al. Geological controls and their mechanisms of coal-reservoir petrography and physics of coalbed methane occurrence in China[J]. Journal of Chinese University of Mining & Technology, 1999, 28(1): 14-19.
13 苏现波, 刘国伟, 郭盛强, 等. 甲烷在煤表面的吸附势与煤阶的关系[J]. 中国煤层气, 2006, 3(3): 21-23.
SU X B, LIU G W, GUO S Q. et al. Relationship of coalbed methane adsorption and coal rank[J]. China Coalbed Methane, 2006, 3(3): 21-23.
14 马东民, 温兴宏. 无烟煤对甲烷等温吸附解吸特性实验研究[J]. 煤田地质与勘探, 2007,35(2): 25-27.
MA D M, WEN X H. Study on adsorption/desorption character of anthracite in CH4 isotherm experiments[J]. Coal Geology & Exploration, 2007,35(2): 25-27.
15 魏迎春, 项歆璇, 王安民, 等.不同矿化度水对煤储层吸附性能的影响[J]. 煤炭学报, 2019,44(9):2833-2839.
WEI Y C, XIANG X X, WANG A M, et al. The influence of water with different salinity on the adsorption performance of coal reservoir[J]. Journal of China Coal Society,2019,44(9):2833-2839.
16 尹中山. 川南煤田古叙矿区煤层气勘探选层的探讨[J]. 中国煤炭地质, 2009, 21(2): 24-27.
YIN Z S. A discussion on CBM exploration target in Guxu mining area, south Sichuan Coalfield[J]. Coal Geology of China, 2009, 21(2): 24-27.
17 朱志敏, 陈岑, 尹中山. 川南煤田晚二叠世含煤系统分析[J]. 煤炭科学技术, 2010, 38(7): 104-108.
ZHU Z M, CHEN C, YIN Z S. Analysis on Upper Permian coal system in Chuannan Coalfield[J]. Coal Science and Technology, 2010, 38(7): 104-108.
18 门玉澎, 陈小炜, 戚明辉, 等. 川南古叙矿区煤层气资源有利区优选[J]. 沉积与特提斯地质, 2019, 39(1): 68-74.
MEN Y P, CHEN X W, QI M H, et al. Assessment of the favourable areas of the coalbed gas resources in the Gulin-Xuyong mining district in southern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2019, 39(1): 68-74.
19 LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403.
20 四川煤田地质局一三五队. 四川省古蔺县川南煤田古叙矿区大村勘探区普查地质报告[R]. 成都: 四川省煤田地质局, 1998.
Team of Sichuan Coalfield Geology Bureau. Geological Survey Report of Dacun Exploration Area, Guxu Mining Area, South Sichuan Coalfield, County Gulin, Sichuan Province[R]. Chengdu: Sichuan Coalfield Geology Bureau, 1998.
21 赵锦程. 沁南地区高阶煤全尺度孔隙结构表征及流体差异流动性[D]. 徐州:中国矿业大学, 2017.
ZHAO J C. Full Scale Pore Structure of High Rank Coals in the South of Qinshui Basin and its Flow Difference[D]. Xuzhou:China University of Mining and Technology, 2017.
22 刘胖. 中高阶烟煤对甲烷的吸附/解吸特征研究[D].西安:西安科技大学, 2010.
LIU P. A Research on the Methane Adsorption/Desorption in the Mid and High Rank Bituminous[D]. Xi’an:Xi’an University of Science and Technology, 2010.
23 李夏伟, 刘大锰, 蔡益栋,等. 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘, 2018,25(4): 237-244.
LI X W, LIU D M, CAI Y D, et al. Moisture content characteristics of high rank coal reservoir and its influence on adsorption capacity[J]. Earth Science Frontiers, 2018, 25(4): 237-244.
24 韩思杰, 桑树勋, 梁晶晶. 沁水盆地南部中高阶煤高压甲烷吸附行为[J]. 煤田地质与勘探, 2018, 46(5): 10-18, 25.
HAN S J, SANG S X, LIANG J J. High pressure methane adsorption of medium and high-rank coal in southern Qinshui Basin[J].Coal Geology & Exploration,2018,46(5):10-18, 25.
25 何俊. 煤岩吸附能力实验及影响因素研究[D]. 秦皇岛:燕山大学, 2018.
HE J. Experimental Research on the Adsorption Capacity of Coal and Its Influence Factors[D]. Qinhuangdao: Yanshan University, 2018.
[1] 郭广山, 邢力仁, 李娜, 陈峥嵘. 煤层气井组生产特征及产能差异控制因素[J]. 天然气地球科学, 2020, 31(9): 1334-1342.
[2] 史超群, 张慧芳, 周思宇, 王佐涛, 蒋俊, 章学岐, 左小军, 娄洪, 王振鸿, 陈常超. 塔里木盆地库车坳陷克拉苏构造带—秋里塔格构造带白垩系巴什基奇克组深层、高产储层特征及控制因素[J]. 天然气地球科学, 2020, 31(8): 1126-1138.
[3] 郭明强, 周龙刚, 张兵, 潘新志, 王应斌. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855-864.
[4] 张宸赫, 韩军铮, 纪友亮, 周勇, 苏芮, 王世超, 尹俊霞, 张素华, 唐林, 刘尽贤. 陆相湖盆扇三角洲—滩坝体系砂体展布特征与叠置模式[J]. 天然气地球科学, 2020, 31(4): 518-531.
[5] 李祖兵, 李剑, 崔俊峰, 邢立平, 吴雪松. 渤海湾盆地北大港潜山中生界碎屑岩储层特征及发育主控因素[J]. 天然气地球科学, 2020, 31(1): 13-25.
[6] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[7] 罗超, 郭建林, 李易隆, 冀光, 窦丽玮, 尹楠鑫, 陈岑. 砂质辫状河隔夹层成因及分布控制因素分析[J]. 天然气地球科学, 2019, 30(9): 1272-1285.
[8] 付爽, 庞雷, 许学龙, 曹元婷, 刘振宇, 张顺存, . 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素[J]. 天然气地球科学, 2019, 30(4): 468-477.
[9] 谢宁,操应长,王健,金杰华,张文杰,钟泽红. 北部湾盆地涠西南凹陷古近系流三段成岩作用及对储层物性影响[J]. 天然气地球科学, 2019, 30(12): 1743-1754.
[10] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[11] 朱立文, 王震亮, 张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[12] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
[13] 胡向阳,李宏涛,史云清,肖开华,郭艳东,李浩,高君. 川西坳陷斜坡带蓬莱镇组三段沉积特征与储层分布——以什邡地区JP32砂组为例[J]. 天然气地球科学, 2018, 29(4): 468-480.
[14] 田瀚, 唐松, 张建勇, 辛勇光, 王鑫, 李文正. 川西地区中三叠统雷口坡组储层特征及其形成条件[J]. 天然气地球科学, 2018, 29(11): 1585-1594.
[15] 任丽华,代俊杰,林承焰,曹铮. 松辽盆地扶新隆起带南部青山口组超压特征及油气地质意义[J]. 天然气地球科学, 2017, 28(7): 1020-1030.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .