天然气地球科学 ›› 2020, Vol. 31 ›› Issue (3): 436–446.doi: 10.11764/j.issn.1672-1926.2019.10.007

• 天然气地球化学 • 上一篇    下一篇

原油金刚烷类化合物2种常用检测方法的对比

晏继发1,2(),马安来3(),李杰豪4,李贤庆1,2   

  1. 1.中国矿业大学(北京)煤炭资源与安全开采国家重点实验室,北京 100083
    2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
    3.中国石油化工股份有限公司石油勘探开发研究院,北京 100083
    4.中国地质大学(北京)能源学院,北京 100083
  • 收稿日期:2019-08-01 修回日期:2019-10-08 出版日期:2020-03-10 发布日期:2020-03-26
  • 通讯作者: 马安来 E-mail:1341627067@qq.com;maal.syky@sinopec.com
  • 作者简介:晏继发(1995-),男,陕西西安人,硕士研究生,主要从事油气地质和地球化学研究.E-mail: 1341627067@qq.com.
  • 基金资助:
    国家自然科学基金项目(41772153);中国石油化工股份有限公司科技部项目(P17049-1);中国石油化工股份有限公司科技部项目(P19024)

Comparison of two determination methods for diamondoids in crude oil

Ji-fa YAN1,2(),An-lai MA3(),Jie-hao LI4,Xian-qing LI1,2   

  1. 1.State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Beijing 100083, China
    2.College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
    3.Exploration and Production Research Institute, Sinopec, Beijing 100083, China
    4.College of Energy Resources, China University of Geosciences, Beijing 100083, China
  • Received:2019-08-01 Revised:2019-10-08 Online:2020-03-10 Published:2020-03-26
  • Contact: An-lai MA E-mail:1341627067@qq.com;maal.syky@sinopec.com
  • Supported by:
    The National Science Foundation of China(41772153);The Project of Sinopec Ministry of Science and Technology(P17049-1)

摘要:

目前石油和烃源岩中金刚烷类化合物的检测主要采用气相色谱—质谱(GC?MS)仪和气相色谱—质谱—质谱(GC?MS?MS)仪。在GC?MS分析中,金刚烷类化合物普遍存在明显的共溢出现象,而GC?MS?MS分析通过多反应监测(MRM)方式有效解决了GC?MS分析中共溢出问题。通过对塔里木盆地4种不同类型原油样品中金刚烷类化合物的GC?MS、GC?MS?MS定量结果对比,发现MRM GC?MS?MS具有更低的检出下限和定量下限、更高的灵敏度和准确度,能够检测出更多的金刚烷类化合物,是一种较好的检测原油和烃源岩中金刚烷类化合物的分析方法。对三金刚烷、四金刚烷系列化合物含量低的原油样品, GC?MS?MS方法可以获得清晰谱图,但GC?MS?MS对金刚烷系列的准确定量仍需建立原油样品中金刚烷系列全部化合物的响应因子。

关键词: 原油, 金刚烷类化合物, 单金刚烷, 双金刚烷, 三金刚烷, 四金刚烷, 气相色谱—质谱—质谱, 气相色谱—质谱

Abstract:

At present, gas chromatography-mass spectrometry and gas chromatography-mass spectrometry-mass spectrometry are mainly used to detect diamondoids in petroleum and source rocks. There are obvious co-spillover phenomena of diamondoids by GC-MS analysis, while GC-MS-MS analysis effectively solves the co-spillover problem in GC-MS analysis through the multi-reaction monitoring. By comparing the quantitative results of GC-MS and GC-MS-MS in four different types of crude oil samples in Tarim Basin, it is found that MRM GC-MS-MS has lower detection and quantitative limits, higher sensitivity and accuracy, and can detect more diamondoids. It is a better analytical method for the determination of diamondoids in crude oil and source rocks. For crude oil samples with low contents of triamantanes and tetramantanes, clear chromatograms can be obtained by GC-MS-MS, but the response factors of all the diamondoids in crude oil samples need to be established for the accurate quantitative determination of diamondoids by GC-MS-MS.

Key words: Crude oil, Diamondoids, Adamantanes, Diamantanes, Triamantanes, Tetramantanes, GC-MS-MS, GC-MS

中图分类号: 

  • TE122.1

表1

塔里木盆地原油样品物性数据"

井号垂深/m原油类型密度/(g/cm3黏度/(mPa·s)凝固点/℃含硫量/%气油比/(m3/m3
AD46 448.50~6 558.00稠油0.947 226.00/2.26017
SB77 568.46~7 863.66轻质油0.854 815.63-80.128/
SB1-107 299.50~7 768.16挥发油0.798 22.82-320.116390
SN16 528.24~6 690.00凝析油0.796 61.15-340.140>10 000

表2

GC-MS 和 GC-MS-MS 分析中金刚烷类化合物的鉴定"

峰号分子式化合物名称简式相对分子质量基峰
1C10H16单金刚烷A13693
2C11H181-甲基单金刚烷1-MA150135
3C12H201,3-二甲基单金刚烷1,3-DMA164149
4C13H221,3,5-三甲基单金刚烷1,3,5-TMA178163
5C14H241,3,5,7-四甲基单金刚烷1,3,5,7-TeMA192177
6C11H182-甲基单金刚烷2-MA150135
7C12H201,4-二甲基单金刚烷(顺式)1,4-DMA(cis)164149
8C12H201,4-二甲基单金刚烷(反式)1,4-DMA(trans)164149
9C13H221,3,6-三甲基单金刚烷1,3,6-TMA178163
10C12H201,2-二甲基单金刚烷1,2-DMA164149
I.S.C10H16D16-单金刚烷D16-A152102
11C13H221,3,4-三甲基单金刚烷(顺式)1,3,4-TMA(cis)178163
12C13H221,3,4-三甲基单金刚烷(反式)1,3,4-TMA(trans)178163
13C14H241,2,5,7-四甲基单金刚烷1,2,5,7-TeMA192177
14C12H201-乙基单金刚烷1-EA164135
15C12H202,6-+2,4-二甲基单金刚烷2,6-+2,4-DMA164149
16C13H221-乙基-3-甲基单金刚烷1-E-3-MA178149
17C13H221,2,3-三甲基单金刚烷1,2,3-TMA178163
18C14H241-乙基-3,5-二甲基单金刚烷1-E-3,5-DMA192163
19C12H202-乙基单金刚烷2-EA164135
20C14H241,3,5,6-四甲基单金刚烷1,3,5,6-TeMA192177
21C14H241,2,3,5-四甲基单金刚烷1,2,3,5-TeMA192177
22C15H261-乙基-3,5,7-三甲基单金刚烷1-E-3,5,7-TMA192177
23C14H20双金刚烷D188131
24C15H224-甲基双金刚烷4-MD202187
25C16H244,9-二甲基双金刚烷4,9-DMD216201
26C15H221-甲基双金刚烷1-MD202187
27C16H241,4-+2,4-二甲基双金刚烷1,4-+2,4-DMD216201
28C16H244,8-二甲基双金刚烷4,8-DMD216201
29C17H261,4,9-三甲基双金刚烷1,4,9-TMD230215
30C15H223-甲基双金刚烷3-MD202187
31C16H243,4-二甲基双金刚烷3,4-DMD216201

图1

SB1-10井原油GC-MS(a)与GC-MS-MS(b)质量色谱图对比"

图2

AD4井原油GC-MS(a)与GC-MS-MS(b)质量色谱图对比"

表3

GC-MS和GC-MS-MS分析获得的单金刚烷、双金刚烷含量"

井名(As+Ds)/(μg/g)As/(μg/g)Ds/(μg/g)[(4-+3-)MD]/(μg/g)
GC-MSGC-MS-MSGC-MSGC-MS-MSGC-MSGC-MS-MSGC-MSGC-MS-MS
AD4397.56182.93346.67106.9150.8976.0217.7836.96
SB7161.68142.91136.4873.8325.2069.089.2534.92
SB1-10879.28952.64801.26622.4778.01330.1727.57167.33
SN134 538.3740 220.6429 200.0516 994.555 338.3223 226.091 562.1011 687.79

图3

GC-MS-MS和GC-MS分析获得的金刚烷含量对比"

图4

GC-MS-MS和GC-MS分析获得的单金刚烷、双金刚烷含量对比"

图5

GC-MS-MS和GC-MS分析获得的金刚烷含量比值"

图6

AD4井原油三金刚烷、四金刚烷GC-MS-MS质量色谱图"

表4

GC-MS 和 GC-MS-MS分析获得原油中三金刚烷、四金刚烷含量的对比"

井名三金刚烷含量/ (μg/g)四金刚烷含量/ (μg/g)
GC-MSGC-MS-MSGC-MSGC-MS-MS
AD4/32.56/18.69
SB7/36.51/26.10
SB1-10/128.23/68.34
SN1352.184 83965.462 027.48

表5

GC-MS和GC-MS-MS分析计算的金刚烷类化合物指标"

指标SB7SN1SB1-10AD4
MAIGC-MS0.650.800.740.69
GC-MS-MS0.460.650.600.55
DMAI-1GC-MS0.480.680.610.58
GC-MS-MS0.460.560.550.51
DMAI-2GC-MS0.380.540.470.46
GC-MS-MS0.340.450.430.40
MDIGC-MS0.470.440.450.45
GC-MS-MS0.400.410.410.39
DMDI-1GC-MS0.440.380.360.34
GC-MS-MS0.320.330.310.31
DMDI-2GC-MS0.270.420.350.25
GC-MS-MS0.510.630.580.53
EAIGC-MS0.190.670.520.43
GC-MS-MS0.190.500.380.33
MA/AGC-MS6.229.596.878.52
GC-MS-MS4.086.363.874.72

图7

GC-MS-MS和GC-MS分析计算的金刚烷指标"

1 LANDA S, MACHACEK V. Adamantane, a new hydrocarbon extracted from petroleum[J]. Collection of Czechoslovak Chemical Communications, 1933, 5(1): 1-5.
2 米镇涛, 郭建维, 邱立勤. 笼状烃金刚烷的新合成方法[J]. 燃料化学学报, 1998, 26(1): 89-92.
Mi Z T, Guo J W, Qiu L Q. Study on the new synthesis method of adamantane[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1): 89-92.
3 CHEN J H, FU J M, SHENG G Y, et al. Diamondoid hydrocarbon ratios: Novel maturity indices for highly mature crude oils[J]. Organic Geochemistry, 1996, 25(3/4): 179-190.
4 GRICE K, ALEXANDER R, KAGI R I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils[J]. Organic Geochemistry, 2000, 31(1): 67-73.
5 WILLIAMS J A, BJORÙY M, DOLCATER D L, et al. Biodegradation in south Texas Eocene Oils:Effects on aromatics and biomarkers[J]. Organic Geochemistry, 1986, 10(3/4): 451-461.
6 WINGERT W S. GC-MS analysis of diamondoid hydrocarbons in Smackover petroleums[J]. Fuel, 1992, 71(1): 37-43.
7 WEI Z B, MOLDOWAN J M, ZHANG S C, et al. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: Geochemical models from hydrous pyrolysis[J]. Organic Geochemistry, 2007, 38: 227-249.
8 马安来, 金之钧, 朱翠山, 等. 塔河油田原油中金刚烷化合物绝对定量分析[J]. 石油学报, 2009, 30(2): 214-218.
MA A L, JIN Z J, ZHU C S, et al. Quantitative analysis on absolute concentration of diamondoids in oils from Tahe Oilfield[J]. Acta Petrolei Sinica, 2009, 30(2): 214-218.
9 陈军红, 傅家谟, 盛国英, 等. 金刚烷化合物在石油中的分布特征研究[J]. 自然科学进展, 1997, 7(3): 363-367.
CHEN J H, FU J M, SHENG G Y, et al. The research in the distribution characteristic of diamondoid hydrocarbons in crude oils[J]. Advancement Nature Science, 1997, 7(3): 363-367.
10 SCHULZ L K, WILHELMS A, REIN E, et al. Application of diamondoids to distinguish source rock facies[J]. Organic Geochemistry, 2001, 32(3): 365-375.
11 WEI Z B, MOLDOWAN J M, JARVIE D M, et al. The fate of diamondoids in coals and sedimentary rocks[J]. Geology, 2006, 34(12): 1013-1016.
12 房忱琛, 吴伟, 刘丹, 等. 煤系中金刚烷化合物演化特征及应用[J]. 天然气地球科学, 2015, 26(1): 110-117.
FANG C C, WU W, LIU D, et al. Evolution characteristics and application of diamondoids in coal measures[J]. Natural Gas Geoscience, 2015, 26(1): 110-117.
13 郑伦举, 曹建平, 薛建华, 等. 原油及烃源岩成熟度的新指标—甲基双金刚烷指数[J]. 石油实验地质, 1998, 20(4): 411-416.
ZHENG L J, CAO J P, XUE J H, et al. A new index for the maturity of crude oil and hydrocarbon source rock: Methyl-diamantane index[J]. Experimental Petroleum Geology, 1998, 20(4): 411-416.
14 LIN R, WILK Z A. Natural occurrence of tetramantane (C22H28), pentamantane (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir[J].Fuel,1995,74(10):1512-1521.
15 SASSEN R, POST P. Enrichment of diamondoids and 13C in condensate from Hudson Canyon, US Atlantic[J]. Organic Geochemistry, 2008, 39: 147-151.
16 张水昌, 赵文智, 王飞宇, 等. 塔里木盆地东部地区古生界原油裂解气成藏历史分析——以英南2气藏为例[J]. 天然气地球科学, 2004, 15(5): 441-451.
ZHANG S C, ZHAO W Z, WANG F Y, et al. Paleozoic oil cracking gas accumulation history from eastern part of the Tarim Basin: A case study of the YN2 gas reservoir[J]. Natural Gas Geoscience, 2004, 15(5): 441-451.
17 侯读杰, 赵增迎, 唐友军, 等. 柯克亚地区原油裂解气的地质—地球化学特征[J]. 天然气地球科学, 2004, 15(2): 137-142.
HOU D J, ZHAO Z Y, TANG Y J, et al. The geological and geochemical characteristics of oil cracked gas in Kekeya region, Tarim Basin[J]. Natural Gas Geoscience, 2004, 15(2): 137-142.
18 FANG C C, XIONG Y Q, LIANG Q Y, et al. Variation in abundance and distribution of diamondoids during oil cracking[J]. Organic Geochemistry, 2012, 47: 1-8.
19 FANG C C, XIONG Y Q, LI Y, et al. The origin and evolution of adamantanes and diamantanes in petroleum[J]. Geochimica et Cosmochimica Acta, 2013, 120(11): 109-120.
20 DAHL J E, MOLDOWAN J M, PETERS K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(5): 54-57.
21 马安来, 金之钧, 朱翠山. 塔里木盆地塔河油田奥陶系原油成熟度及裂解程度研究[J]. 天然气地球科学, 2017, 28(2): 313-323.
MA A L, JIN Z J, ZHU C S. Maturity and oil-cracking of the Ordovician oils from Tahe Oilfield, Tarim Basin, NW China[J]. Natural Gas Geoscience, 2017, 28(2): 313-323.
22 WEI Z B, MOLDOWAN J M, PETERS K E, et al. The abundance and distribution of diamondoids in biodegraded oils from the San Joaquin Valley: Implications for biodegradation of diamondoids in petroleum reservoirs[J]. Organic Geochemistry, 2007, 38: 1910-1926.
23 CHENG X, HOU D J, XU C G. The effect of biodegradation on adamantanes in reservoired crude oils from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2018, 123: 38-43.
24 HANIN S, ADAM P, KOWALEWSKI I, et al. Bridgehead alkylated 2-thiaadamantanes: Novel markers for sulfurisation occurring under high thermal stress in deep petroleum reservoirs[J]. Chemical Communications, 2002, 16: 1750-1751.
25 姜乃煌,朱光有,张水昌,等. 塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J]. 科学通报, 2007,52(24):2871-2875.
JIANG N H, ZHU G Y, ZHANG S C, et al. Detection of 2-thiaadamantanes in the oils from Well TZ 83 in Tarim Basin and its geological implication[J]. Chinese Science Bulletin, 2007,52(24):2871-2875.
26 WEI Z B, WALTERS C C, MOLDOWAN J M, et al. Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J]. Organic Geochemistry, 2012,44: 53-70.
27 马安来, 金之钧, 朱翠山. 塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J]. 石油学报, 2018, 39(1): 313-323.
MA A L, JIN Z J, ZHU C S. Detection and research significance of Thiadiamondoids from crude oil in Well Shunnan 1,Tarim Basin[J].Acta Petrolei Sinica, 2018, 39(1): 313-323.
28 JIANG W M, LI Y, XIONG Y Q. The effect of organic matter type on formation and evolution of diamondoids[J]. Marine and Petroleum Geology, 2018, 89: 714-720.
29 LI Y, CHEN Y, XIONG Y Q, et al. Origin of adamantanes and diamantanes in marine source rock[J]. Energy Fuels, 2015, 29: 8188-8194.
30 ZHU G Y, WANG H T, WENG N, et al. Use of comprehensive two-dimensional gas chromatography for the characterization of ultra-deep condensate from the Bohai Bay Basin, China[J]. Organic Geochemistry, 2013, 63: 8-17.
31 ZHU G Y, WENG N, WANG H T, et al. Origin of diamondoid and sulphur compounds in the Tazhong Ordovician condensate,Tarim Basin, China: Implications for hydrocarbon exploration in deep-buried strata[J]. Marine and Petroleum Geology, 2015, 62: 14-27.
32 王汇彤, 翁娜, 张水昌, 等. 全二维气相色谱/飞行时间质谱对饱和烃分析的图谱识别及特征[J]. 质谱学报, 2010, 31(1): 18-27.
WANG H T, WENG N, ZHANG S C, et al. Characteristics and identification of saturated hydrocarbons by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2010, 31(1): 18-27.
33 王汇彤, 翁娜, 张水昌, 等. 石油样品中金刚烷类化合物的定量分析新方法[J]. 石油实验地质, 2019, 41(3): 443-450.
WANG H T, WENG N, ZHANG S C, et al. A novel for quantitative analysis of diamodoids in petroleum samples[J]. Petroleum Geology & Experiment, 2019, 41(3): 443-450.
34 LIANG Q Y, XIONG Y Q, FANG C C, et al. Quantitative analysis of diamondoids in crude oils using gas chromatography-triple quadrupole mass spectrometry[J]. Organic Geochemistry, 2012, 43: 83-91.
35 梁前勇, 熊永强, 房忱琛, 等. 两种测定原油中金刚烷化合物方法的对比研究[J]. 地球化学, 2012, 41(5): 433-441.
LIANG Q Y, XIONG Y Q, FANG C C, et al. Comparison of two methods for the determination of diamondoids in crude oils[J]. Geochimica, 2012, 41(5): 433-441.
36 马安来, 金之钧, 朱翠山, 等. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J]. 中国科学: 地球科学, 2018b, 48(10): 1-12.
MA A L, JIN Z J, ZHU C S, et al. Detection and significance of higher thiadiamondoids and diamondoidthiols in oil from the Zhongshen 1C well of the Tarim Basin, NW China[J]. Science China Earth Sciences, 2018, 48(10): 1-12.
37 ZHU G Y, WANG H T, WENG N. TSR-altered oil with high-abundance thiaadamantanes of a deep-buried Cambrian gas condensate reservoir in Tarim Basin[J]. Marine and Petroleum Geology, 2016, 69: 1-12.
38 CAI C F, XIAO Q L, FANG C C, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016, 101: 49-62.
39 MEI M, BISSADA K K, THOMAS B, et al. Improved method for simultaneous determination of saturated and aromatic biomarkers, organosulfur compounds and diamondoids in crude oils by GC-MS/MS[J]. Organic Geochemistry, 2018, 116: 35-50.
40 QIAN Y, WANG Z D, TUO J C, et al. Multiple reaction monitoring of GC/MS/MS analysis of terpanes and its application to petroleum exploration[J]. Petroleum Science and Technology, 2016, 35(2):134-140.
[1] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[2] 刘诗局, 高岗, 徐新德, 周肖肖, 刘凤妍, 甘军, 梁刚. 北部湾盆地涠西南凹陷涠洲11⁃4—涠洲11⁃4N油田油气运聚的源控特征[J]. 天然气地球科学, 2019, 30(9): 1312-1318.
[3] 翟佳, 房忱琛, 胡国艺, 黄凌, 刘红缨, 魏彩云, 许雷. 烃源岩前处理过程对金刚烷类化合物定量分析的影响[J]. 天然气地球科学, 2019, 30(2): 295-304.
[4] 唐海忠,赵建宇,高岗,马国福,赵乐义,杨智明,胡丹丹. 酒泉盆地营尔凹陷油—源地质分布关系[J]. 天然气地球科学, 2019, 30(11): 1590-1599.
[5] 包建平, 朱翠山, 申旭. 金刚烷类化合物与库车坳陷克拉2构造凝析油的形成机理研究[J]. 天然气地球科学, 2018, 29(9): 1217-1230.
[6] 王强, 张大勇, 王杰, 陶成, 腾格尔, 刘文汇. 烃类与非烃综合判识干酪根与原油裂解气[J]. 天然气地球科学, 2018, 29(9): 1231-1239.
[7] 李梦茹, 唐友军, 刘岩, 胡辉, 贺其川. 江陵凹陷不同地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2018, 29(9): 1240-1251.
[8] 马安来, 朱翠山, 顾忆, 李慧莉. 塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析[J]. 天然气地球科学, 2018, 29(7): 1009-1019.
[9] 沈安江,付小东,张友,郑兴平,刘伟,邵冠铭,曹彦清. 塔里木盆地塔东地区震旦系—下古生界碳酸盐岩油气生储条件与勘探领域[J]. 天然气地球科学, 2018, 29(1): 1-16.
[10] 陈燕燕,胡素云,李建忠,王铜山, 陶小晚. 原油裂解过程中组分演化模型及金刚烷类化合物的地球化学特征[J]. 天然气地球科学, 2018, 29(1): 114-121.
[11] 陈双,黄海平,张博原,谢增业. 原油及源内残余沥青裂解成气差异及地质意义[J]. 天然气地球科学, 2017, 28(9): 1375-1384.
[12] 王钊,周新平,李树同,李士祥,邱军利,张文选,王琪. 鄂尔多斯盆地吴起地区长9段和长10段原油地球化学特征对比[J]. 天然气地球科学, 2017, 28(9): 1385-1395.
[13] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[14] 包建平,何丹,朱翠山,刘玉瑞,王文军,刘宏宇. 北部湾盆地迈陈凹陷徐闻X3井原油地球化学特征及其成因[J]. 天然气地球科学, 2017, 28(5): 665-676.
[15] 刘岩,杨池银,肖敦清,廖前进,周立宏,于学敏,国建英,蒲秀刚,姜文亚,邹磊落,聂国振,刘庆新,滑双君. 裂陷湖盆深层烃类赋存相态极限的动力学过程分析——以渤海湾盆地歧口凹陷为例[J]. 天然气地球科学, 2017, 28(5): 703-712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[2] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .
[3] 何家雄;刘全稳;刘宝明;张树林;. 从两口深井看莺歌海盆地中深层天然气成藏特征[J]. 天然气地球科学, 2004, 15(3): 230 -237 .
[4] 张荣虎;张惠良;马玉杰;沈扬;李昌;张丽娟 . 特低孔特低渗高产储层成因机制—以库车坳陷大北1气田巴什基奇克组储层为例[J]. 天然气地球科学, 2008, 19(1): 75 -82 .
[5] 李春荣;陈开远. 碳氧同位素分析在潜江盐湖沉积环境中的应用[J]. 天然气地球科学, 2004, 15(3): 320 -322 .
[6] 孙国强;郑建京;胡慧芳;张道伟;徐自远;. 关于压陷型沉降拗陷盆地的讨论――以柴达木盆地为例[J]. 天然气地球科学, 2004, 15(4): 395 -400 .
[7] 邬光辉,吉云刚,赵仁德,汪 海,高 辉,刘玉魁 . 一种油气资源量计算新方法及其应用[J]. 天然气地球科学, 2007, 18(1): 41 -44 .
[8] 李银真;崔洪庆;张铁刚;. 阜新盆地天然气成藏与分布特征[J]. 天然气地球科学, 2006, 17(3): 414 -417 .
[9] 党犇;赵 虹;燕洲泉;郑小杰;陈永胜;贾玉琴. . 鄂尔多斯盆地志丹探区西南部延安组和延长组储层物性比较研究[J]. 天然气地球科学, 2007, 18(3): 356 -359 .
[10] 刘明球;周天鹏;敬祖佑;王春生;吴云才;. 高压高产气田完井采气工艺技术研究――以克拉2气田开采配套工艺技术的推荐方案为例[J]. 天然气地球科学, 2003, 14(2): 140 -144 .