天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 61–72.doi: 10.11764/j.issn.1672-1926.2019.10.001

• 天然气地球化学 • 上一篇    下一篇

柴达木盆地西部地区原油地球化学特征及油源对比

张迈1,2(),刘成林1,2(),田继先3,庞皓4,曾旭3,孔骅3,杨赛1,2   

  1. 1.中国石油大学(北京)油气资源与探测国家重点实验室,北京 102249
    2.中国石油大学(北京)地球科学学院,北京 102249
    3.中国石油勘探开发研究院,河北 廊坊 065007
    4.青海油田公司采油五厂,甘肃 敦煌 736200
  • 收稿日期:2019-07-13 修回日期:2019-10-02 出版日期:2020-01-10 发布日期:2020-01-09
  • 通讯作者: 刘成林 E-mail:790369252@qq.com;liucl@cup.edu.cn
  • 作者简介:张迈(1995-),男,湖北荆州人,硕士研究生,主要从事油气地球化学与资源评价研究.E-mail:790369252@qq.com.
  • 基金资助:
    国家自然科学基金面上项目“氯化盐浓度对气源岩生成天然气组成的影响”(41272159);国家自然科学基金面上项目“碳沥青与钒矿物伴生机理研究”(41272099);国家自然科学基金面上项目“咸化湖盆条件下盐类对地层超压的作用机制研究”(41872127)

Characteristics of crude oil geochemical characteristics and oil source comparison in the western part of Qaidam Basin

Mai ZHANG1,2(),Cheng-lin LIU1,2(),Ji-xian TIAN3,Hao PANG4,Xu ZENG3,Hua KONG3,Sai YANG1,2   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China
    2.College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
    3.PetroChina Exploration and Development Research Institute, Langfang 065007, China
    4.No. 5 Oil Production Plant of Qinghai Oilfield Company, Dunhuang 736200, China
  • Received:2019-07-13 Revised:2019-10-02 Online:2020-01-10 Published:2020-01-09
  • Contact: Cheng-lin LIU E-mail:790369252@qq.com;liucl@cup.edu.cn
  • Supported by:
    National Science Foundation of China(41272159)

摘要:

柴达木盆地西部地区(简称柴西)新生界蕴藏着十分丰富的油气资源,勘探前景良好。根据原油和烃源岩中的生物标志物组成特征,对柴西原油的成熟度、沉积环境及生物来源等进行了探讨,从而进行原油成因类型划分以及油源对比。研究发现柴西原油显示出低成熟—成熟原油的特征且形成于水体盐度较高的还原性环境,有机质来源为混合源,低等水生植物输入量较大。根据原油的沉积环境、母质来源和成熟度特征,柴西原油可划分为4类:Ⅰ类来自于狮子沟—跃进地区,伽马蜡烷含量高,姥植比低,具有C27甾烷优势,有“翘尾”现象;Ⅱ类来自于切克里克—扎哈泉及南翼山—油泉子一带,伽马蜡烷含量较Ⅰ类低,具有C27甾烷优势,无“翘尾”现象;Ⅲ类来自于大风山、黄瓜峁等地区,具有C29甾烷优势,无“翘尾”现象;Ⅳ类来自于开特米里克地区,伽马蜡烷含量较前3类低,具有C27甾烷优势,无“翘尾”现象。油源对比结果表明,柴西原油主要来自E3和N1烃源岩。

关键词: 柴西, 生物标志物, 地球化学特征, 油源对比

Abstract:

The Cenozoic in the western part of the Qaidam Basin is rich in oil and gas resources and has good prospects for exploration. Based on the biomarker composition characteristics of crude oil and source rocks, this paper discusses the maturity, sedimentary environment and organic matter sources of crude oil, so as to classify crude oil genesis and oil source comparison. Studies have found that crude oil has a lower maturity and is formed in a reducing environment with high salinity. The source of organic matter is a mixed source, and the input of lower aquatic plants is large. Crude oil can be classified into four categories based on the crude oil deposition environment, parent material source and maturity characteristics. The first kind of crude oil is mainly from the Shizigou-Yuejin areas, with high gamma wax content, low planting ratio, C27 decane advantage, and “hook-tail” phenomenon; the second kind of crude oil is mainly from the Cherick-Zhahaquan areas and the Nanyishan-Youquanzi areas, which has the advantage of C27 decane and no “hook-tail” phenomenon, the content of gamma wax is lower than the former; the third kind of crude oil is mainly from Dafengshan and Huangguamao regions, with C29 decane advantage and no “hook-tail” phenomenon; the fourth kind of crude oil is mainly from the Kaitemilik region, with C27 decane advantage and no “hook-tail” phenomenon, and the content of gamma wax is lower than that of others. The result of oil-source correlation shows that the crude oil is dominantly derived from E3 and N1 source rocks.

Key words: Western Qaidam Basin, Biomarker, Geochemical characteristics, Oil-source correlation

中图分类号: 

  • TE122.1+13

图1

柴西构造区划分与地层特征简图(据文献[7,8],有修改)"

图2

柴西原油链烷烃系列分布特征"

表1

柴西原油生物标志化合物参数"

地区井名深度/m层位CPIOEPPr/Ph

C24TeT

/C23TT

C24TeT/C30H

Ga/

C30H

Ts/TmC29-αββ/(αββ+ααα)

C29-ααα20S

/(20R+20S)

C31αβ22S/

(22S+22R)

扎哈泉扎7-2-33 546.4~3 552.0N11.021.050.650.110.070.561.100.460.470.64
扎2183 732.0~3 740.0N11.000.960.580.190.050.410.650.400.390.62
扎11-8-52 478.2~2 494.1N210.950.900.500.190.060.610.510.300.360.61
扎平13 269.0~4 147.0N210.991.020.580.230.060.540.660.350.400.61
南翼山南H3-41 790.14~2 001.87N210.970.940.610.180.090.400.940.410.430.61
南H6-41 751.72~1 989.52N210.950.910.560.370.080.430.750.420.400.61
开特米里克开特09-1124.13~378.86N221.031.020.840.370.060.280.900.330.240.58
开特14-1-N221.061.020.900.350.070.270.950.360.230.59
大风山风21-5-2882.7~998N221.010.960.780.370.060.311.160.490.470.61
风17-5-2866.6~986.2N221.010.950.800.350.060.321.150.500.470.60
狮子沟狮524 416~4 426E320.910.850.450.340.160.810.560.520.520.67
狮2053 380~3 598E320.890.800.340.240.070.940.980.420.420.63
切克里克切6H2061 943.3~2 011.2E311.011.030.620.200.070.550.980.420.460.62
切12H12 150~2 340E31.020.990.540.250.070.620.660.370.440.61
跃进跃75211 431.4~1 511.6N10.950.890.370.290.090.780.360.250.290.58
油泉子油1-581 57.74~676.81N20.940.880.540.330.090.470.750.380.360.61
油1-30136.4~526.03N20.930.880.520.330.140.470.880.400.380.60
黄瓜峁峁平12 695~2 901N210.940.930.650.290.070.472.300.560.540.63

图3

柴西原油m/z=191质量色谱"

图4

柴西原油Ga/C30H─Pr/Ph 关系"

图5

柴西原油m/z=217质量色谱"

图6

柴西原油C29-20S/(20S+20R)-C29-αββ/(ααα+αββ)关系"

图7

柴西原油成因类型划分"

图8

柴西原油及烃源岩生物标志物参数对比"

图9

狮子沟—跃进地区原油与烃源岩生物标志物特征对比"

图10

切克里克—乌南地区原油与烃源岩生物标志物特征对比"

图11

南翼山地区原油与烃源岩生物标志物特征对比"

1 付锁堂.柴达木盆地西部油气成藏主控因素与有利勘探方向[J].沉积学报,2010,28(2):373-379.
FU S T. Main controlling factors and favorable exploration direction of hydrocarbon accumulation in the western Qaidam Basin[J]. Acta Sedimentologica Sinica,2010,28(2):373-379.
2 段毅,张辉,郑朝阳,等.柴达木盆地原油成因研究[J].沉积学报,2004,22(S1):61-65.
DUAN Y, ZHANG H, ZHENG C Y, et al. Study on the genesis of crude oil in Qaidam Basin[J]. Acta Sedimentologica Sinica, 2004,22(S1):61-65.
3 张小波,周莉,毛建英,等.柴西原油物性特征及其成因分析[J].中国石油和化工标准与质量,2016,36(20):48-50.
ZHANG X B, ZHOU L, MAO J Y, et al. Physical property characteristics and genesis analysis of crude oil in western area of Qaidam Basin[J]. China Petroleum and Chemical Standards and Quality, 2016,36(20):48-50.
4 宋振响,周世新,穆亚蓬,等.正构烷烃分布模式判断柴西主力烃源岩[J].石油实验地质,2011,33(2):182-187,192.
SONG Z X, ZHOU S X, MU Y P, et al. The distribution model of n-alkanes determines the main source rocks in the western Qaidam Basin[J]. Petroleum Geology & Experiment, 2011,33(2):182-187,192.
5 张津宁,张金功,黄传卿,等.柴达木盆地西部地区地层发育特征[J].地下水,2016,38(1):207-208.
ZHANG J N, ZHANG J G, HUANG C Q, et al. Stratigraphic development characteristics in the western Qaidam Basin[J]. Ground Water,2016,38(1):207-208.
6 付锁堂.柴达木盆地天然气勘探领域[J].中国石油勘探,2014,19(4):1-10.
FU S T. Natural gas exploration field in Qaidam Basin[J]. China Petroleum Exploration,2014,19(4):1-10.
7 米乃哲. 柴达木盆地西北缘裂缝油藏特征及开发研究[D].西安:长安大学,2008.
MI N Z. Characteristics and Development of Fractured Reservoirs in the Northwestern Margin of Qaidam Basin[D]. Xi’an:Chang’an University,2008.
8 刘占国,朱超,李森明,等.柴达木盆地西部地区致密油地质特征及勘探领域[J].石油勘探与开发,2017,44(2):196-204.
LIU Z G, ZHU C, LI S M, et al. Geological characteristics and exploration of tight oil in the western part of Qaidam Basin[J]. Petroleum Exploration and Development, 2017,44(2):196-204.
9 郭泽清,孙平,张春燕,等.柴达木盆地西部地区致密油气形成条件和勘探领域探讨[J].天然气地球科学,2014,25(9):1366-1377.
GUO Z Q, SUN P, ZHANG C Y, et al. Discussion on formation conditions and exploration fields of tight oil and gas in western area of Qaidam Basin[J]. Natural Gas Geoscience,2014,25(9):1366-1377.
10 胡明安.正构烷烃的成矿意义——以广西田林高龙卡林型金矿为例[J].地球科学,2003,28(3):301-305.
HU M A. Metallogenic significance of n-alkanes: A case study of the Gaolong Carlin-type gold deposit in Tianlin, Guangxi[J]. Earth Science,2003,28(3):301-305.
11 MEI B W, LIU X J. China's crude oil in the isoprenoid distribution and geological environment [J].Oil and Gas Geology,1980,1 (2):99-115.
12 李世臻,周新桂,王丹丹,等.内蒙古突泉盆地突参1井原油地球化学特征与油源分析[J].地质通报,2015,34(10):1946-1951.
LI S Z, ZHOU X G, WANG D D, et al. Geochemical characteristics and oil source analysis of crude oil from Tucan 1 well in Tuquan Basin, Inner Mongolia[J]. Geological Bulletin of China, 2015,34(10):1946-1951.
13 CHANDRA K, MISHRA C S, SAMANTA U, et al. Correlation of different maturity parameters in the Ahmedabad-Mehsana block of the Cambay Basin[J]. Organic Geochemistry, 1994,21:313-321.
14 ESCOBAR M, MáRQUEZ G, INCIARTE S, et al. The organic geochemistry of oil seeps from the Sierra de Perijá eastern foothills, Lake Maracaibo Basin, Venezuela[J].Organic Geochemistry, 2011,42:727-738.
15 卢学军,高平,丁修建,等.二连盆地阿尔凹陷下白垩统烃源岩地球化学特征及油源对比[J].岩性油气藏,2014,26(3):101-108.
LU X J, GAO P, DING X J, et al. Geochemical characteristics and oil source comparison of the Lower Cretaceous source rocks in the Aerde, Erlian Basin[J]. Lithologic Reservoir,2014,26(3):101-108.
16 OURISSON G, ALBRECHT P, ROHMER M. Predictive microbial biochemistry-from molecular fossils to prokaryotic membranes[J]. Trends in Biochemical Sciences, 1982, 7: 236-239.
17 VOLKMAN J K, BANKS M R, DENWER K, et al. Biomarker composition and depositional setting of Tasmanite oil shale from northern Tasmania, Australia[C].The 14th International Meeting on Organic Geochemistry,1989:18-22.
18 AQUINO NETO F R, TRENDEL J M, RESTLE A, et al. Occurrence and Formation of Tricyclic and Teracyclic Terpanes in Sediments and Petroleums[M]. New York: John Wiley & Sons,1983:659-676.
19 PHILP R P, GILBERT T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986,10:73-84.
20 BOREHAM C J, BLEVIN J E, RADLINSKI A P, et al. Coal as a source of oil and gas: A case study from the Bass basin, Australia[J]. Australian Petroleum Production and Exploration Association, 2003,43:117-148.
21 侯读杰,冯子辉.油气地球化学[M].北京:石油工业出版社,2011.
HOU D J, FENG Z H. Oil and Gas Geochemistry[M]. Beijing:Petroleum Industry Press,2011.
22 杨福林,云露,王铁冠,等.塔里木盆地寒武系源岩地化特征及与典型海相原油对比[J].石油与天然气地质,2017,38(5):851-861.
YANG F L, YUN L, WANG T G, et al. Geochemical characteristics of Cambrian source rocks in the Tarim Basin and comparison with typical marine crude oil[J]. Oil and Gas Geology,2017,38(5):851-861.
23 崔景伟,王铁冠,李美俊,等.塔河油田白垩系原油地化特征与成因类型[J].中国矿业大学学报,2011,40(3):430-437.
CUI J W, WANG T G, LI M J, et al. Geochemical characteristics and genetic types of Cretaceous crude oil in Tahe Oilfield[J]. Journal of China University of Mining and Technology,2011,40(3):430-437.
24 李贤庆,王铁冠,钟宁宁,等.未熟—低熟烃源岩有机岩石学研究的若干进展[J].地学前缘,2000,9(3):103-110.
LI X Q, WANG T G, ZHONG N N, et al. Some advances in the study of organic petrology of immature-low mature source rocks[J]. Earth Science Frontiers,2000,9(3):103-110.
25 HAVEN H L TEN, ROHMER M, RULLKOTTER J, et al. Tetrahymanol, the most likely precursor of gammacerane occurs ubiquitously in marine sediments[J]. Geochimica et Cosmochimica Acta,1989,53:3073-3079.
26 MOLDOWAM J M, SEIFORT W K, GALLEGOS E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J].AAPG Bulletin,1985,69:1255-1268.
27 包建平,朱翠山,汪立群.柴达木盆地西部原油地球化学特征对比[J].石油与天然气地质,2010,31(3):353-359.
BAO J P, ZHU C S, WANG L Q. Comparison of geochemical characteristics of crude oil in the western Qaidam Basin[J]. Oil and Gas Geology,2010,31(3):353-359.
28 PETERS K E, WALTERS C C, MOLDOWAN J M. The Biomarker Guide: Volume 2, Biomarkers and Isotopes in Petroleum Systems and Earth History(Ⅱ)[M]. Cambridge: Cambridge University Press,2005.
29 袁际华,柳广弟.苏北盆地泰州组原油有机地球化学特征及成因[J].西南石油大学学报,2007,29(6):34-38.
YUAN J H, LIU G D. Organic geochemical characteristics and genesis of crude oil in Taizhou Formation in Subei Basin[J]. Journal of Southwest Petroleum University,2007,29(6):34-38.
30 龚建明,张莉,陈小慧,等.青藏高原乌丽冻土区过成熟烃源岩原始有机质类型讨论[J].西北地质,2014,47(2):208-215.
GONG J M, ZHANG L, CHEN X H, et al. Discussion on the types of primitive organic matter of over-mature source rocks in Wuli frozen soil region of the Qinghai-Tibet Plateau[J]. Northwest Geology,2014,47(2):208-215.
31 黎茂稳,梅博文,王培荣.对中国东部未熟——低熟原油成因模式的初步认识[C].第七届全国有机地球化学学术会议论文摘要汇编.1988:88-89.
LI M W, MEI B W, WANG P R. Preliminary Understanding of the Genetic Model of Immature-Low Mature Crude Oil in Eastern China[C]. Compilation of abstracts of the 7th National Conference on Organic Geochemistry. 1988:88-89.
32 陈安定.“未熟油”与“未熟生烃”异议[J].地质论评.1988,44(5):470-475.
CHEN A D. Objection of "Unripe Oil" and "Unripe Hydrocarbon Generation"[J]. Geological Review,1988,44(5):470-475.
33 王章章,李奇缘,廖文春,等.生物标志物在探讨烃源岩及原油成熟度研究中的应用[J].地下水,2016,38(2):213-215.
WANG Z Z, LI Q Y, LIAO W C, et al. Application of biomarkers in the study of source rock and crude oil maturity[J]. Ground Water,2016,38(2):213-215.
34 李梦茹,唐友军,刘岩,等.江陵凹陷不同地区原油地球化学特征及油源对比[J].天然气地球科学,2018,29(9):1240-1251.
LI M R, TANG Y J, LIU Y, et al. Geochemical characteristics and oil source comparison of crude oil in different areas of Jiangling Depression[J]. Natural Gas Geoscience,2018,29(9):1240-1251.
35 黄第藩,李晋超.陆相沉积中的未熟石油及其意义[J].石油学报,1987,8(1):1-9.
HUANG D F, LI J C. Unripe oil in continental sediments and its significance[J]. Acta Petrolei Sinica,1987,8(1):1-9.
36 任军虎,王万春,康晏.有机地球化学指标的分析[J].矿物岩石地球化学通报.2006,25(3):266-271.
REN J H, WANG W C, KANG Y. Analysis of organic geochemical indicators[J]. Bulletin of Minerology, Petrology and Geochemistry,2006, 25(3):266-271.
37 HUANG D F, LI J C, ZHANG D J,et al. Maturation sequence of Ternary crude oils in the Qaidam Basin and its significance in petroleum resource assessment[J]. Journal of Southeast Asian Earth Sciences,1991,5:359-3365.
38 张辉. 柴达木盆地原油地球化学特征与油源对比[D].兰州:中国科学院研究生院(兰州地质研究所),2004
ZHANG H. Geochemical Characteristics and Oil Source Comparison of Crude oil in Qaidam Basin[D]. Lanzhou:Graduate School of the Chinese Academy of Sciences (Lanzhou Institute of Geology), 2004.
39 SEIFERT W K, MOLDOWAN J M. Use of biological markers in petroleum exploration[J]. Methods in Geochemistry and Geophysics, 1986,24:261-290.
40 段毅,彭德华,张晓宝,等.柴达木盆地原油碳同位素组成的主控因素与成因类型[J].沉积学报,2003,21(2):355-359.
DUAN Y, PENG D H, ZHANG X B, et al. Main controlling factors and genetic types of carbon isotope composition of crude oil in Qaidam Basin[J]. Acta Sedimentologica Sinica,2003,21(2):355-359.
41 卢政环,甘华军,时阳,等.福山凹陷西部地区原油地化特征与油源对比[J].地球科学,2016,41(11):1909-1920.
LU Z H, GAN H J, SHI Y, et al. Comparison of geochemical characteristics and oil source of crude oil in the western part of Fushan Depression[J]. Earth Science,2016,41(11):1909-1920.
[1] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[2] 郭萍. 渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化[J]. 天然气地球科学, 2020, 31(9): 1306-1315.
[3] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[4] 赛彦明, 田辉, 李杰, 刘银山, 张彬, 刘俊杰. 含油气系统Re⁃Os定年及Re⁃Os元素和同位素体系研究新进展[J]. 天然气地球科学, 2020, 31(7): 939-951.
[5] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[6] 李婷婷, 朱光有, 赵坤, 王鹏举. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721-734.
[7] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[8] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[9] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[10] 郭志扬,刘华,程斌,杨贵丽,徐昊清,张芷晴. 渤海湾盆地济阳坳陷埕岛—桩西潜山油气特征与来源[J]. 天然气地球科学, 2020, 31(10): 1437-1452.
[11] 马安来, 李慧莉, 李杰豪, 高晓鹏, 王凡, 姚尧, 冯帆. 塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比[J]. 天然气地球科学, 2020, 31(1): 47-60.
[12] 熊小峰, 郭潇潇, 朱继田, 郭明刚, 李兴. 南海西部深水区气田天然气地球化学特征差异及其成因[J]. 天然气地球科学, 2019, 30(7): 1053-1062.
[13] 周国晓, 魏国齐, 胡国艺. 四川盆地龙岗与元坝气田陆相油气系统差异[J]. 天然气地球科学, 2019, 30(6): 809-818.
[14] 吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 2019, 30(6): 819-827.
[15] 李剑, 郝爱胜, 齐雪宁, 陈旋, 国建英, 冉启贵, 李志生, 谢增业, 曾旭, 李谨, 王瑀, 刘如红, . 中国西北地区侏罗系煤成气地球化学特征与勘探潜力[J]. 天然气地球科学, 2019, 30(6): 866-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[4] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .
[5] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[6] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[7] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[8] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[9] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[10] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .