天然气地球科学 ›› 2019, Vol. 30 ›› Issue (12): 1701–1708.doi: 10.11764/j.issn.1672-1926.2019.09.004

• 天然气开发 • 上一篇    

低渗透气藏产水压裂水平井产能评价

张芨强(),雷霄,张乔良,薛国庆,汤明光   

  1. 中海石油(中国)有限公司湛江分公司,广东 湛江 524057
  • 收稿日期:2019-03-27 修回日期:2019-09-19 出版日期:2019-12-10 发布日期:2020-03-25
  • 作者简介:张芨强(1990-),男,四川广安人,工程师,硕士,主要从事油藏工程及油田开发方面的研究. E-mail:tiyou0201@sina.cn.
  • 基金资助:
    中海石油(中国)有限公司综合科研项目“南海西部油田上产2000万方关键技术研究”课题“南海西部在生产油气田提高采收率技术研究”(CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ)

Productivity evaluation of water-producing fractured horizontal wells in low permeability gas reservoir

Ji-qiang Zhang(),Xiao Lei,Qiao-liang Zhang,Guo-qing Xue,Ming-guang Tang   

  1. Zhanjiang Branch of CNOOC Ltd. , Zhanjiang 524057, China
  • Received:2019-03-27 Revised:2019-09-19 Online:2019-12-10 Published:2020-03-25

摘要:

低渗气藏自然产能低,通常需要水力压裂等有效的储层改造手段才能正常见产,同时地层水的产出对气井产量的影响也不容忽视。基于对压裂水平井影响下流体的渗流规律分析,充分考虑流体渗流时产生的达西效应和非达西效应,划分流体的流动为地层内椭圆流以及裂缝到井筒间的线性流和径向流。引入椭圆坐标系下的标度因子和两相拟压力函数,对椭圆坐标系和直角坐标系进行换算,并利用当量井径理论和势的叠加原理,推导出地层内和裂缝内流动的综合产能方程。实例计算表明,该方程能较为准确地计算气井的无阻流量,具有较强的矿场实用性。从敏感性分析可知,裂缝的应力敏感和裂缝的技术参数对产能影响较大,其中裂缝参数存在一个最优设计值,在发挥气井产能同时也能带来最优的经济性;气井产水会严重影响气井产能,需要做好防水及治水措施。

关键词: 低渗气藏, 气水两相, 压裂水平井, 标度因子, 产能评价

Abstract:

Low-permeability gas reservoirs have low natural productivity, and usually require effective reservoir reforming methods such as hydraulic fracturing to normal production, and the influence of formation water production on gas well production cannot be ignored. Based on the analysis of the seepage law of fluids, the Darcy effect and non-Darcy effect are fully considered. The flow is divided into elliptical flow within formation and linear and radial flow within fracture. Based on the equivalent wellbore theory and the potential superposition principle, the comprehensive productivity of the flow in the formation and within the fracture was established respectively by introducing the scale factor and the two-phase pseudo-pressure function, converting the elliptical coordinate system and the rectangular coordinate system. The equation can calculate the open flow capacity of gas wells more accurately and has strong field practicability. From the sensitivity analysis, the stress sensitivity of the fracture and the technical parameters of the fracture have great influence on the productivity. There is an optimum design value of the fracture parameters, which can bring about the optimum economy while exerting the productivity of the gas well. Water production in gas wells has a great influence on gas well productivity, and it is necessary to do waterproof and water control measures.

Key words: Low-permeability gas reservoir, Gas-water two-phase, Fractured horizontal well, Scale factor, Productivity evaluation

中图分类号: 

  • TE377

图1

压裂水平井渗流三维模型"

图2

基质—裂缝的椭圆流动"

图3

气体在裂缝中渗流二维模型"

表1

气藏基本参数"

井名 原始地层压力(p i)/MPa 供给边界压力(p e)/MPa 地层温度(T)/K 地层原始渗透率(K m0)/(×10-3μm2)
气藏有效厚度(h)/m 地层渗透率变异系数(α m)/MPa-1 滑脱因子(b)/MPa 泄气半径(r e)/m
A1 29.3 28.2 367.4 0.5
15.4 0.01 0.4 420
A2 28.7 27.8 366.3 0.09
16.7 0.01 0.4 395

表2

气井压裂参数"

井名 裂缝半长(L f)/m 裂缝导流能力(K fo·W f)/(×10-3μm2·m) 裂缝条数 井筒半径(r w)/m 裂缝渗透率变异系数(α k)/MPa-1
A1 70.3 229.4 5 0.107 9 0.08
A2 61.6 213.2 7 0.107 9 0.08

图4

气水两相相渗曲线"

表3

产能评价结果"

井名 压裂气井无阻流量(q AOF)/(×104m3/d)
本文计算公式 修正等时试井
A1 15.25 16.08
A2 22.46 23.97

图5

自动拟合流程"

图6

敏感性参数对气水两相压裂井流入动态的影响"

1 Cvetkovic B , Halvorsen G , Sagen J , et al . Modelling the Productivity of a Multifractured-horizontal Well[C]. Paper SPE 71076 Presented at SPE Rocky Mountain Petroleum Technology Conference held in Keystone, USA:Colorado, 21-23 May, 2001.
2 Guo J , Zeng F , Zhao J , et al . A New Model to Predict Fractured Horizontal Well Production[C]. Paper PETSOC2006-076 Present at Canadian International Petroleum Conference Held in Calgary, Canada:Alberta, 13-15 June, 2006.
3 Yuan H , Zhou D . A New Model for Predicting Inflow Performance of Fractured Horizontal Wells[C]. Paper SPE 133610 Present at SPE Western Regional Meeting, Held in Anaheim, USA:California, 27-29 May, 2010.
4 Hao M , Hu Y , Liu X , et al . Predicting and Optimizing the Productivity of Multiple Transverse Fractured Horizontal Wells in Ultra-Low Permeability Reservoirs[C]. Paper IPTC 16891 Present at International Petroleum Technology Conference Held in Beijing, China, 26-28 March, 2013.
5 Wei Yunsheng , Jia Ailin , He Dongbo , et al . A new method of predicting productivity of multi-stage fractured horizontal well in tight gas reservoir[J].Natural Gas Geoscience, 2016, 27(6): 1101-1109.
位云生, 贾爱林, 何东博,等 . 致密气藏多级压裂水平井产能预测新方法[J]. 天然气地球科学, 2016, 27(6): 1101-1109.
6 Gu Jianwei , Yu Xiuling , Tian Tonghui , et al . Productivity calculation and analysis of fractured horizontal wells in tight low permeability gas reservoirs[J]. Special Oil & Gas Reservoirs, 2016, 23(2): 77-80.
谷建伟, 于秀玲, 田同辉,等 . 致密低渗透气藏压裂水平井产能计算与分析[J]. 特种油气藏, 2016, 23(2): 77-80.
7 Cheng Shiqing , Xie Linfeng , Li Xiangfang , et al . Productivity equation of 3-phase flow for water-producing condensate wells[J]. Natural Gas Industry, 21672-1926-2019-30-12-1701, 24(12): 99-101.
程时清, 谢林峰, 李相方, 等 . 产水凝析气井三相流产能方程[J]. 天然气工业, 21672-1926-2019-30-12-1701, 24(12): 99-101.
8 Zhu Guangya , Liu Xiangui , Gao Shusheng , et al . A gas-water two-phase flow model for low permeability gas reservoirs and deliverability analysis[J].Natural Gas Industry, 2009, 29(9): 67-69.
朱光亚,刘先贵,高树生, 等 .低渗透气藏气水两相渗流模型及产能分析[J]. 天然气工业, 2009, 29(9): 67-69.
9 Zhang Jiqiang , Li Xiaoping , Yuan Lin , et al . Influence of non-Darcy flow on deliverability of gas-water producing horizontal well in low permeability gas reservoirs[J]. Lithologic Reservoirs, 2014, 26(6): 120-125.
张芨强, 李晓平, 袁淋,等 . 非达西渗流对低渗透气藏气水同产水平井产能的影响[J]. 岩性油气藏, 2014, 26(6): 120-125.
10 Yuan Lin , Li Xiaoping . The productivity study of gas-water two phase horizontal well in low-permeability gas reservoir[J]. Natural Gas Geoscience, 2014, 25(9): 1455-1461.
袁淋, 李晓平 . 低渗透气藏水平井气水两相产能研究[J]. 天然气地球科学, 2014, 25(9): 1455-1461.
11 Li Bo , Jia Ailin , He Dongbo , et al . A new method for predicting productivity of fractured horizontal wells in low-permeability tight gas reservoir[J]. Natural Gas Geoscience, 2015, 26(9): 1793-1802.
李波, 贾爱林, 何东博,等 . 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2015, 26(9): 1793-1802.
12 He Jixiang , Jiang Ruizhong , Mao Yu , et al . Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir[J]. Lithologic Reservoirs, 2017, 29(4): 154-161.
何吉祥, 姜瑞忠, 毛瑜, 等 . 致密气藏气水两相压裂水平井产能计算方法[J]. 岩性油气藏, 2017, 29(4): 154-161.
13 Wang Xinjie . Calculation method for productivity of fractured horizontal well in tight gas reservoir[J]. Lithologic Reservoirs, 2018, 30(5): 161-168.
王新杰 . 致密气藏压裂水平井产能计算方法[J]. 岩性油气藏, 2018, 30(5): 161-168.
14 Lv Zhikai , Jia Ailin , Tang Haifa , et al . Productivity evaluation and new understanding for horizontal well of large scale tight sandstone gas[J]. Natural Gas Geoscience, 2018, 29(6): 873-879.
吕志凯, 贾爱林, 唐海发, 等 . 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
15 George D V . Application of Stress-dependent Rock Properties in Reservoir Studies[R]. SPE 86979, 21672-1926-2019-30-12-1701.
16 Klinkenberg L J . The Permeability of Porous Media to Liquids and Gases[C]. Paper API 41-200 presented at API Drilling and Production Practice in New York, USA, 1 January, 1941.
17 Forchheimer P . Wasserbewegung durch boden[J]. Zeitz Vereines Deutsch Ingenieure, 1901, 45(1): 1782-1788.
18 Li Shilun . Natural Gas Engineering[M]. Beijing: Petroleum Industry Press, 2008: 37-40.
李士伦 .天然气工程[M].北京:石油工业出版社,2008: 37-40.
[1] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[2] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[3] 陈建勋, 杨胜来, 邹成, 梅青燕, 周源, 孙丽婷. 川中须家河组低渗有水气藏渗流特征及其影响因素[J]. 天然气地球科学, 2019, 30(3): 400-406.
[4] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[5] 罗红文,李海涛,蒋贝贝,李颖,卢宇. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法[J]. 天然气地球科学, 2019, 30(11): 1639-1645.
[6] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[7] 曾凡辉, 王小魏, 郭建春, 郑继刚, 李亚州, 向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[8] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[9] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[10] 王琰琛, 陈军, 邓亚, 肖聪. 页岩气藏体积压裂水平井渗流模型[J]. 天然气地球科学, 2018, 29(12): 1795-1802.
[11] 杨浩珑,向祖平,袁迎中,李龙. 低渗气藏压裂气井稳态产能计算新方法[J]. 天然气地球科学, 2018, 29(1): 151-157.
[12] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[13] 乔霞,罗明高, 王洪峰,肖香姣,阳建平. #br# 一种利用生产动态历史评价异常高压气井产能的新方法[J]. 天然气地球科学, 2017, 28(12): 1908-1913.
[14] 魏明强, 段永刚, 方全堂, 李安豪, 卢婷. 页岩气藏压裂水平井产量递减曲线分析法[J]. 天然气地球科学, 2016, 27(5): 898-904.
[15] 何军,范子菲,赵伦,宋珩,李孔绸,孔璐琳. 点汇离散法在压裂水平井产能评价中的应用[J]. 天然气地球科学, 2016, 27(1): 134-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!