天然气地球科学 ›› 2019, Vol. 30 ›› Issue (12): 1794–1804.doi: 10.11764/j.issn.1672-1926.2019.08.007

• 非常规天然气 • 上一篇    

渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景

张成林1(),张鉴1,2,李武广1,田冲1,罗超1,赵圣贤1,钟文雯1   

  1. 1. 中国石油西南油气田分公司页岩气研究院,四川 成都 610051
    2. 页岩气评价与开采四川省重点实验室,四川 成都;610213
  • 收稿日期:2019-06-07 修回日期:2019-08-20 出版日期:2019-12-10 发布日期:2020-03-25
  • 作者简介:张成林(1990-),男,四川自贡人,工程师,硕士,主要从事页岩气地质综合研究. E-mail:zhangcl01@petrochina.com.cn.
  • 基金资助:
    国家科技重大专项“大型油气田及煤层气开发”项目“长宁—威远页岩气开发示范工程”(2016ZX05062);国家科技重大专项“大型油气田及煤层气开发”项目“页岩气气藏工程及采气工艺技术”(2017ZX05037);国家重点研发计划课题“页岩气资源勘查、地质评价与开发过程关键技术标准研究”(2018YFF0213802);中国石油天然气股份有限公司科技重大专项“西南油气田天然气上产300亿立方米关键技术研究与应用——四川盆地页岩气建产有利区评价优选及开发技术政策优化研究与应用”(2016E-0611);四川省重点研发项目“四川盆地及边缘古生代海相页岩气潜力评价方法”(2018SZ0272)

Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi Formations in Dazu area, western Chongqing

Cheng-lin Zhang1(),Jian Zhang1,2,Wu-guang Li1,Chong Tian1,Chao Luo1,Sheng-xian Zhao1,Wen-wen Zhong1   

  1. 1. Shale Gas Institute of PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China
    2. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610213, China
  • Received:2019-06-07 Revised:2019-08-20 Online:2019-12-10 Published:2020-03-25

摘要:

近年来,四川盆地上奥陶统五峰组—下志留统龙马溪组页岩气已在中浅层(埋深3 500m以浅)区域实现规模效益开发,正逐步向深层(埋深3 500~4 500m)拓展,并已在渝西大足区块等深层区域取得初步进展。通过分析评价大足区块生气潜力、储集物性、可压裂性和含气性等相关储层参数,认为该区块与长宁、威远区块相比,五峰组—龙一1亚段页岩储层脆性矿物含量和含气量基本相当,而TOC值和孔隙度略低,整体储层品质较优;发育有机质孔、粒间孔、粒内孔及微裂隙等孔隙类型,其中粒内孔所占比例最大;裂缝发育程度较高,以五峰组裂缝分布最为集中。综合研究认为:大足区块五峰组—龙一1亚段页岩Ⅰ+Ⅱ类储层厚度大,五峰组表现出较大资源潜力;压力系数高,保存条件好;具备“基质孔隙+裂缝型”富集高产模式的特征,该区块深层页岩气展示出良好的勘探开发前景。

关键词: 五峰组—龙马溪组, 深层页岩气, 储层特征, 勘探前景

Abstract:

In recent years, shale gas of Wufeng-Longmaxi Formations in Sichuan Basin has achieved economical developments on a large scale in middle-shallow reservoirs (vertical depth<3 500 meters), and gradually expanded to the deep reservoirs (vertical depth between 3 500 meters and 4 500 meters). It has made a preliminary progress in Dazu area of western Chongqing. Through analysis and evaluation of the hydrocarbon generation potential, reservoir pores, fracturing feasibility and gas content of shale in Dazu area, the study shows that compared with Changning and Weiyuan blocks, the O3w-S1l1-1 shale reservoir of Dazu is basically equal in brittle mineral and gas content, and is slightly weaker in organic matter abundance and porosity, which means the reservoir quality is comparatively excellent; There exist pore types including organic pores, intergranular pores, intragranular pores and microfissures, among which the proportion of intragranular pores is the largest. The fissure develops on a high level, while the concentration of fissure is the largest in the Wufeng Formation. By comprehensive research, it indicates that the O3w-S1l1-1 layers in Dazu area are characterized by large thickness of types Ⅰ+Ⅱ shale reservoir, and the Wufeng Formation shows great resource potential; the pressure factor is large and the preservation condition is excellent in this area; and it shows the enrichment and high yield mode of “matrix pores+fissures”, which implies a bright future for the exploration and development of deep shale gas in that area.

Key words: Wufeng-Longmaxi Formations, Deep shale gas, Reservoir characteristics, Exploration potential

中图分类号: 

  • TE122.2+3

图1

渝西大足区块构造位置"

图2

大足区块典型井五峰组—龙一1亚段综合评价柱状图"

表1

大足区块五峰组—龙一1亚段各小层脆性矿物含量、TOC值、孔隙度、含气量实验数据统计"

层位脆性矿物含量/%TOC值/%孔隙度/%含气量/(m3/t)
区间平均值区间平均值区间平均值区间平均值
龙一1亚段龙一14小层41.2~76.3(58)58.60.3~2.7(58)1.61.9~6.5(58)4.31.3~5.11(19)2.70
龙一13小层42.2~83.8(60)67.10.4~3.7(60)2.51.8~6.5(60)4.32.31~7.04(20)4.65
龙一12小层63.8~98.6(48)74.81.9~4.3(48)2.61.5~5.6(48)3.52.2~8.71(17)5.79
龙一11小层71.2~89.4(21)80.92.9~6.2(21)4.51.8~6.0(21)4.26.26~9.75(12)6.96
五峰组58.9~98.9(20)82.51.4~5.7(20)3.02.0~6.4(20)3.80.60~8.14(10)4.07

图3

Z1井五峰组—龙一1亚段各小层页岩全尺度孔径分布"

图4

Z1井五峰组—龙一1亚段页岩不同孔隙类型所占比例纵向分布特征"

图5

大足区块五峰组—龙一1亚段页岩孔隙类型(a)Z1井,4 366.11m,龙一11小层,有机质内部亚微米级和纳米级孔隙发育,多为椭圆形;(b) Z2井,3 890.04m,龙一11小层,有机质孔孔径介于150~350nm之间;(c) Z3井,4 105.07m,五峰组,有机质孔发育,连通性较好;(d) Z1井,4 366.11m,龙一11小层,方解石内存在粒内孔;(e) Z1井,4 364.23m,龙一12小层,方解石颗粒内溶蚀产生粒内孔,下部黏土矿片间形成粒间孔;(f) Z1井,4 355.02m,龙一13小层,方解石颗粒边缘因溶蚀产生粒间孔;(g) Z1井,4 366.11m,龙一11小层,黏土矿物开裂形成较大裂隙;(h) Z1井,4 364.23m,龙一12小层,黏土矿片开裂形成贯通性裂隙;(i) Z1井,4 355.02m,龙一13小层,黏土矿片边缘及内部开裂,形成较大裂隙"

图6

大足区块五峰组—龙一1亚段页岩微裂缝类型(a)Z2井,3 890.04m,龙一11小层,水平微裂缝发育;(b)Z3井,4 101.70m,龙一11小层,见水平缝和斜缝"

图7

大足地区五峰组—龙一1亚段岩心裂缝观察(a)Z2井,3 895.01~3 895.46m,五峰组,发育高角度裂缝4条,切穿层理,缝宽1~8mm,缝长2~12cm,方解石完全充填;(b)Z2井,3 897.71~3 897.84m,五峰组,斜交于层理面呈羽状分布的方解石充填缝;(c) Z2井,3 898.29~3 898.54m,五峰组,发育网状缝,裂缝顺层理发育,方解石全充填,顺层理缝并发育黄铁矿结核;另一期裂缝与层理缝相切穿,方解石充填,缝宽小于1mm; (d) Z1井,4 368.7~4 368.82m,五峰组,高角度裂缝,见擦痕;(e) Z3井,4 102.08~4 102.27m,龙一11小层,近水平方解石充填微裂缝;(f) Z5井,3 350.03~3 350.20m,龙一11小层,高角度方解石充填缝;(g) Z2井,3 888.60~3 888.80m,龙一12小层。底部发育高角度缝,缝宽约2mm,缝长较短,被方解石全充填,见黄铁矿;(h) Z2井,3 884.64~3 885.20m,龙一12小层。顶部发育网状裂缝,以高角度溶缝为主,缝宽可达1.5cm,缝长可达数十厘米,被方解石完全充填;(i)Z1井,4 342.09~4 342.17m,龙一14小层,高角度裂缝,见擦痕"

表2

大足区块典型井五峰组—龙一1亚段裂缝发育统计"

层位靠近断裂发育区典型井(Z2井)构造较稳定区典型井(Z1井)
裂缝数/条宽度/mm长度/cm裂缝数/条宽度/mm长度/cm
龙一1亚段龙一14小层21~26~851~82~12
龙一13小层23~206~1021~22~14
龙一12小层141~152~12///
龙一11小层61~32~10118
五峰组701~301~17121~51~10

图8

大足、长宁、威远区块五峰组—龙一1亚段各小层储层参数对比"

表3

四川盆地五峰组—龙马溪组页岩储层分类标准"

参数页岩储层
I类储层Ⅱ类储层Ⅲ类储层
TOC值/%≥32~31~2
孔隙度/%≥53~51~3
脆性指数/(v/v)≥5545~5530~45
含气量/(m3/t)≥32~31~2

表4

大足区块与长宁、威远、焦石坝区块关键地质参数对比"

区块大足长宁威远焦石坝
构造特征背斜+向斜向斜为主单斜坡似箱状断背斜
断层特征发育较发育欠发育较发育
主体埋深/m3 500~4 5002 000~3 5001 500~3 8002 000~3 500

五峰组—龙一1亚段

Ⅰ+Ⅱ类储层厚度/m

27~3925~4525~40约38m
压力系数1.8~1.91.3~2.01.2~2.01.55
地应力方向变化较小变化小变化小变化小
应力差/MPa18~209~1512~155~12
天然裂缝发育较发育较发育发育
1 Ma Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 1-10.
马新华.四川盆地南部页岩气富集规律与规模有效开发探索[J].天然气工业, 2018, 38(10): 1-10.
2 Long Shengxiang, Feng Dongjun, Li Fengxia, et al. Prospect of the deep marine shale gas exploration and development in the Sichuan Basin [J]. Natural Gas Geoscience, 2018, 29(4):443-451.
龙胜祥,冯动军,李凤霞,等.四川盆地南部深层海相页岩气勘探开发前景[J].天然气地球科学,2018,29(4):443-451.
3 Ma Xinhua, Xie Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169.
马新华,谢军.川南地区页岩气勘探开发进展及发展前景[J].石油勘探与开发, 2018, 45(1): 161-169.
4 Feng Dongjun, Hu Zongquan, Gao Bo, et al. Analysis of shale gas reservoir-forming condition of Wufeng Formation- Longmaxi Formation in southeast Sichuan Basin[J]. Geological Review, 2016, 62(6): 1521-1532.
冯动军,胡宗全,高波,等.川东南地区五峰组—龙马溪组页岩气成藏条件分析[J].地质论评, 2016, 62(6): 1521-1532.
5 Zhu Mengyue, Qin Qirong, Li Hu, et al. Fracture development feature and main controlling factors of Longmaxi Formation in DS area, southeastern Sichuan Basin[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(6): 54-59.
朱梦月,秦启荣,李虎,等.川东南 DS 地区龙马溪组页岩裂缝发育特征及主控因素[J].油气地质与采收率, 2017, 24(6): 54-59.
6 Zheng Herong, Gao Bo, Peng Yongmin, et al. Sedimentary evolution and shale gas exploration direction of the Lower Silurian in middle-upper Yangtze area[J]. Journal of Palaeogeography, 2013,15(5):645-656.
郑和荣,高波,彭勇民,等.上扬子地区下志留统沉积演化与页岩气勘探方向[J].古地理学报,2013,15(5):645-656.
7 Wang Yuman, Dong Dazhong, Li Xinjing, et al. Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in the Sichuan Basin and its peripheral areas[J]. Natural Gas Industry, 2015, 35(3):12-21.
王玉满,董大忠,李新景,等.四川盆地及其周缘下志留统龙马溪组层序与沉积特征[J].天然气工业,2015, 35(3):12-21.
8 Li Yifan, Fan Tailiang, Gao Zhiqian, et al. Sequence stratigraphy of Silurian black shale and its distribution in the southeast area of Chongqing[J]. Natural Gas Geoscience, 2012, 23(2):299-306.
李一凡,樊太亮,高志前,等.渝东南地区志留系黑色页岩层序地层研究[J].天然气地球科学,2012,23(2):299-306.
9 Zhao Shengxian, Yang Yueming, Zhang Jian, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2016, 27(3):470-487.
赵圣贤,杨跃明,张鉴,等.四川盆地下志留统龙马溪组页岩小层划分与储层精细对比[J].天然气地球科学,2016,27(3):470-487.
10 Ministry of Land and Resources of the People's Republic of China. DZ/T0254-2014 Regulation of Shale Gas Resources/Reserves Estimation[S]. Beijing: Standards Press of China, 2014.
中华人民共和国国土资源部. DZ/T0254-2014页岩气资源/储量计算与评价技术规范[S].北京:中国标准出版社,2014.
11 Zhao Jinzhou, Ren Lan, Shen Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1-14.
赵金洲,任岚,沈骋,等.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业, 2018, 38(3): 1-14.
12 Feng Guoxiu, Chen Shengji. Relationship between the reflectance of bitumen and vitrinite in rock[J]. Natural Gas Industry, 1988, 8(3): 20-25.
丰国秀,陈盛吉.岩石中沥青反射率与镜质体反射率之间的关系[J].天然气工业, 1988, 8(3): 20-25.
13 Li Wenbiao, Lu Shuangfang, Li Junqian, et al. The coupling relationship between material composition and pore microstructure of southern China marine shale[J]. Natural Gas Geoscience, 2019,30(1):27-38.
李文镖,卢双舫,李俊乾,等.南方海相页岩物质组成与孔隙微观结构耦合关系[J].天然气地球科学,2019,30(1):27-38.
14 Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6):1857-1864.
邹才能,朱如凯,白斌,等.中国油气储层中纳米孔首次发现及其科学价值[J].岩石学报,2011,27(6):1857-1864.
15 Hou Yuguang, He Sheng, Yi Jizheng, et al. Effect of pore on methane sorption capacity of shales[J]. Petroleum Exploration and Development, 2014,41(2):248-256.
侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256.
16 Ji Wenming, Song Yan, Jiang Zhenxue, et al. Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin, China[J]. International Journal of Coal Geology, 2014, 135(13):61-73.
17 Shi Miao, Yu Bingsong, Zhang Jinchuan, et al. Microstructural characterization of pores in marine shales of the Lower Silurian Longmaxi Formation, southeastern Sichuan Basin, China[J]. Marine & Petroleum Geology, 2018, 94(6):166-178.
18 Zhu Hanqing, Jia Ailin, Wei Yunsheng, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in southern Sichuan Basin[J]. Acta Petrolei Sinica,2018,39(4):391-401.
朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401.
19 Yang Rui, He Sheng, Yi Jizheng, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine & Petroleum Geology, 2016, 70(2):27-45.
20 Xi Zhangdong, Wang Jing, Hu Jingang, et al. Experimental investigation of evolution of pore structure in Longmaxi marine shale using an anhydrous pyrolysis technique[J].Mineral, 2018, 8(6):226.
21 Liu Wenping, Zhang Chenglin, Gao Guidong, et al. Controlling factors and evolution laws of shale porosity in Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica,2017, 38(2): 175-184.
刘文平,张成林,高贵冬,等.四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J].石油学报, 2017, 38(2): 175-184.
22 Tian Hua, Zhang Shuichang, Liu Shaobo, et al. Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J]. Acta Petrolei Sinica,2012, 33(3):419-427.
田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012, 33(3):419-427.
23 Guo Xusheng, Hu Dongfeng, Wei Xiangfeng, et al. Main controlling factors on shale fractures and their influences on production capacity in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6): 799-808.
郭旭升,胡东风,魏祥峰,等.四川盆地焦石坝地区页岩裂缝发育主控因素及对产能的影响[J]. 石油与天然气地质, 2016, 37(6): 799-808.
24 Li Xinjing,Hu Suyun,Cheng Keming. Suggestions from the development of fractured shale gas in North America[J].Petroleum Exploration and Development,2007,34(4):392-400.
李新景,胡素云,程克明.北美裂缝性页岩气勘探开发的启示[J].石油勘探与开发,2007,34(4):392-400.
25 Yang Di, Liu Shugen, Shan Yuming, et al. Fracture characteristics of shale in Upper Ordovician-Lower Silurian in Xishui area,southeast of Sichuan Basin,China[J]. Journal of Chengdu University of Technology: Science & Technology Edition,2013,40(5):543-552.
杨迪,刘树根,单钰铭,等.四川盆地东南部习水地区上奥陶统—下志留统泥页岩裂缝发育特征[J].成都理工大学学报:自然科学版,2013,40(5):543-552.
26 Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J].Acta Petrolei Sinica,2009,30(4):484-491.
聂海宽,唐玄,边瑞康.页岩气成藏控制因素及中国南方页岩气发育有利区预测[J].石油学报,2009,30(4):484-491.
27 Ding Wenlong, Li Chao, Li Chunyan, et al. Dominant factor of fracture development in shale and its relationship to gas accumulation[J].Earth Science Frontiers,2012,19(2):212-220.
丁文龙,李超,李春燕,等.页岩裂缝发育主控因素及其对含气性的影响[J].地学前缘,2012,19(2):212-220.
28 National Energy Administration of the People’s Republic of China. SY/T 6940-2013 Measurement Method of Shale Gas Content[S]. Beijing: Standards Press of China, 2013.
中华人民共和国国家能源局.SY/T 6940-2013页岩气含气量测定方法[S].北京:中国标准出版社,2013.
29 Xie Jun, Zhao Shengxian, Shi Xuewen, et al. Main geological factors controlling high production of horizontal shale gas wells in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(7): 1-12.
谢军,赵圣贤,石学文,等.四川盆地页岩气水平井高产的地质主控因素[J].天然气工业, 2017, 37(7): 1-12.
30 Hu Dongfeng, Zhang Hanrong, Ni Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23.
胡东风,张汉荣,倪楷,等.四川盆地东南缘海相页岩气保存条件及其主控因素[J].天然气工业, 2014, 34(6): 17-23.
31 Wang Yuman, Huang Jinliang, Li Xinjing, et al. Quantitative characterization of fractures and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9): 8-15.
王玉满,黄金亮,李新景,等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J].天然气工业, 2015,35(9): 8-15.
32 Wang Yuman, Huang Jinliang, Wang Shufang, et al. Dissection of two calibrated areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(3):423-432.
王玉满,黄金亮,王淑芳,等.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖[J].天然气地球科学,2016, 27(3):423-432.
[1] 李祖兵, 李剑, 崔俊峰, 邢立平, 吴雪松. 渤海湾盆地北大港潜山中生界碎屑岩储层特征及发育主控因素[J]. 天然气地球科学, 2020, 31(1): 13-25.
[2] 陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征[J]. 天然气地球科学, 2019, 30(8): 1180-1189.
[3] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[4] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[5] 付爽, 庞雷, 许学龙, 曹元婷, 刘振宇, 张顺存, . 准噶尔盆地玛湖凹陷下乌尔禾组储层特征及其控制因素[J]. 天然气地球科学, 2019, 30(4): 468-477.
[6] 李延丽, 苟迎春, 马新民, 李程程, 王朴, 陈芳芳. 柴达木盆地坪西地区基岩气藏储层特征[J]. 天然气地球科学, 2019, 30(2): 219-227.
[7] 谢宁,操应长,王健,金杰华,张文杰,钟泽红. 北部湾盆地涠西南凹陷古近系流三段成岩作用及对储层物性影响[J]. 天然气地球科学, 2019, 30(12): 1743-1754.
[8] 王丹丹,周新桂,刘丽红,李世臻,张交东,张文浩,刘卫彬,刘旭锋,曾秋楠. 通化盆地下白垩统亨通山组泥页岩储层特征[J]. 天然气地球科学, 2019, 30(12): 1771-1781.
[9] 曹香妮,姜振学,朱德宇,仇恒远,陈磊,罗东东,双子俊,李维邦. 川东北地区自流井组陆相页岩岩相类型及储层发育特征[J]. 天然气地球科学, 2019, 30(12): 1782-1793.
[10] 梁兴,陈科洛,张廷山,张朝,张介辉,舒红林. 沉积环境对页岩孔隙的控制作用[J]. 天然气地球科学, 2019, 30(10): 1393-1405.
[11] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[12] 刘虎, 曹涛涛, 戚明辉, 王东强, 邓模, 曹清古, 程斌, 廖泽文. 四川盆地东部华蓥山地区龙潭组页岩气储层特征[J]. 天然气地球科学, 2019, 30(1): 11-26.
[13] 赵文韬, 荆铁亚, 吴斌, 周游, 熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[14] 王珊, 曹颖辉, 杜德道, 王石, 李洪辉, 董洪奎, 严威, 白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[15] 王国龙,杜社宽. 准噶尔盆地北三台凸起二叠系梧桐沟组一段碎屑岩储层特征及控制因素[J]. 天然气地球科学, 2018, 29(5): 675-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!