天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 37–46.doi: 10.11764/j.issn.1672-1926.2019.08.006

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素

吕文雅1,2(),曾联波1,2(),周思宾3,吉园园4,梁丰2,惠晨2,尉加盛5   

  1. 1.油气资源与探测国家重点实验室,中国石油大学(北京)北京 102249
    2.中国石油大学(北京)地球科学学院,北京 102249
    3.中国石化华北油田分公司勘探开发研究院,河南 郑州 450006
    4.中国石化华北油气分公司采油一厂,甘肃 庆阳 745000
    5.中国石油长庆油田分公司第六采气厂,陕西 西安 710016
  • 收稿日期:2019-04-22 修回日期:2019-08-18 出版日期:2020-01-10 发布日期:2020-01-09
  • 通讯作者: 曾联波 E-mail:wylvwenwen@163.com;lbzeng@sina.com
  • 作者简介:吕文雅(1990-),女,湖南邵阳人,讲师,博士,主要从事储层裂缝形成、分布及预测与非常规油气藏开发地质研究.E-mail:wylvwenwen@163.com.
  • 基金资助:
    国家科技重大专项(2017ZX05009001-002);中国石油大学(北京)青年拔尖人才科研启动基金项目(2462017YJRC057)

Microfracture characteristics and its controlling factors in the tight oil sandstones in the southwest Ordos Basin: Case study of the eighth member of the Yanchang Formation in Honghe Oilfield

Wen-ya LÜ1,2(),Lian-bo ZENG1,2(),Si-bin ZHOU3,Yuan-yuan JI4,Feng LIANG2,Chen HUI2,Jia-sheng WEI5   

  1. 1.State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
    2.College of Geosciences, China University of Petroleum, Beijing 102249, China
    3.Exploration and Development Research Institute of North China Company, Sinopec, Zhengzhou 450006, China
    4.The First Oil Production Plant of North China Company, Sinopec, Qingyang 745000, China
    5.The Sixth Gas Production Plant of PetroChina Changqing Oilfield Company, Xi’an 710016, China
  • Received:2019-04-22 Revised:2019-08-18 Online:2020-01-10 Published:2020-01-09
  • Contact: Lian-bo ZENG E-mail:wylvwenwen@163.com;lbzeng@sina.com
  • Supported by:
    The National Science & Technology Major Projects of China(2017ZX05009001-002);The Science Foundation of China University of Petroleum, Beijing(2462017YJRC057)

摘要:

以鄂尔多斯盆地西南部红河油田长8致密砂岩储层为例,根据铸体薄片、扫描电镜分析,结合岩心和测井资料,采用地质学统计的方法,对微观裂缝的发育特征及控制因素进行系统分析,在此基础上,分析典型区块Q1井区的微观裂缝分布特征。结果表明:从地质成因上,该区致密砂岩储层的微观裂缝可以分为构造、成岩、构造—成岩和异常高压成因4种类型,其中以构造成因的微裂缝和构造—成岩成因的微裂缝为主,该区微观裂缝大部分为有效裂缝,少量无效裂缝被方解石、石英及炭质等充填。该区微观裂缝的发育程度受沉积作用、成岩作用、构造作用及异常高压作用控制。云母、岩屑等塑性成分含量越高,杂基含量越多,岩石颗粒越细,微裂缝发育程度越差;压实作用越强,越有利于构造—成岩成因的粒内缝、粒缘缝发育;随着胶结强度增强,粒内缝和粒缘缝发育程度降低,利于发育构造成因的微裂缝。典型区块Q1井区,在细砂岩强压实方解石强胶结相中,微观裂缝发育程度最强;其次为细砂岩强压实相和中—细砂岩方解石中胶结相;在细砂岩高岭石胶结相和绿泥石胶结中溶解相中,微观裂缝发育程度较弱;在泥岩中微观裂缝发育程度最弱。

关键词: 微观裂缝, 成因类型, 发育特征, 控制因素, 致密砂岩储层, 鄂尔多斯盆地

Abstract:

Based on the analysis of thin sections and scanning electron microscope, in combination with cores and well logs, microfracture characteristics and its controlling factors were systematicly analyzed in the tight sandstone reservoir of the eighth member of the Yanchang Formation in the Honghe Oilfield in the southwest Ordos Basin. Then, the distribution characteristics of microfractures in the typical Q1 well area were analyzed. The results show that from the perspective of geologic origins, microfractures can be divided into four types in the study area, i.e., tectonic origin, diagenetic origin, tectonic-diagenetic origin and overpressure origin. Among these microfractures, tectonic origin and tectonic-diagenetic origin microfractures are the most abundant. Most microfractures are effective, while some micorfractures are filled with calcite, quartz, mud and so on. Microfracture development degree is influenced by sedimentation, diagenesis, tectonism and overpressure. With the increase of matrix content and plastic element content such as mica debris, and the decrease of grain size, microfracture intensities decrease. The stronger the compaction is, the more abundant intragranular and grain edge fractures are developed, which are tectonic-diagenetic origins. Intragranular and grain-edge fracture intensities decrease as the cementing strength increases, thus being favorable for the development of tectonic origin microfractures. In the typical Q1 well area, microfractures are most developed in the fine sandstones with strong compaction and strong calcite cementation; next being fine sandstones with strong compaction and medium-fine sandstone with moderate calcite cementation. Microfractures are relatively weakly developed in fine sandstone with kaolinite compaction and fine sandstone with chlorite cementation and moderate dissolution. The development of microfractures is the weakest in mudstones.

Key words: Mircofractures, Origin types, Characteristics, Controlling factors, Tight sandstone reservoir, Ordos Basin

中图分类号: 

  • TE122.1

图1

鄂尔多斯盆地构造单元及研究区位置"

图2

微观裂缝成因类型及其分布特征(a)Q3井,2 268.92 m,构造成因裂缝(箭头所指),未被充填为有效裂缝;(b)Q9井,2 108.7 m,层理缝(箭头所指),沿矿物定向排列方向分布,被石油充填;(c)Q7井,2 243.51 m,粒内缝(箭头所指),未被充填为有效裂缝;(d)Q10井,2 195.9 m,异常高压相关的微裂缝(箭头所指),呈透镜状,被沥青质充填"

图3

微观裂缝面密度分布频率(a)穿粒缝面密度分布频率图 (b)粒内缝和粒缘缝面密度分布频率图"

图4

微观裂缝长度分布频率(a)穿粒缝长度分布频率图 (b)粒内缝和粒缘缝长度分布频率图"

图5

微观裂缝开度分布频率(a)穿粒缝开度分布频率图 (b)粒内缝和粒缘缝开度分布频率图"

图6

长8储层微观照片(a) Q10井,2 426.4 m,强压实,矿物颗粒定向排列,云母发生塑性形变呈条带状;(b) Q1井,2 101.03 m,强压实,颗粒整体破碎,粒内缝发育"

图7

不同沉积微相微观裂缝面密度分布"

图8

不同颗粒接触关系的微观裂缝分布频率"

图9

Q1井区微尺度裂缝发育程度分布特征"

1 贾承造,邹才能,李建忠,等.中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报,2012, 33(3): 343-349.
JIA C Z, ZOU C N, LI J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):343-349.
2 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012, 33(2): 173-187.
ZOU C N, ZHU R K, WU S T, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
3 NELSON R A. Geologic Analysis of Naturally Fractured Reservoirs[M]. Houston: Gulf Publish Company,1985.
4 LORENZ J C, STERLING J L, SCHECHTER D S, et al. Natural fractures in the Spraberry Formation, Midland Basin, Texas: The effects of mechanical stratigraphy on fracture variability and reservoir behavior[J]. AAPG Bulletin, 2002, 86(3):505-524.
5 ZENG L B, LI X Y. Fractures in sandstone reservoirs with ultra-low permeability: A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin, 2009, 93(4): 461-477.
6 PETER C, JOHN C. Prediction of fracture-induced permeability and fluid flow in the crust using experimental stress data [J]. AAPG Bulletin, 1999, 83:757-777.
7 NELSON R A, MOLDOVANYI E P, MATCEK C C, et al. Production characteristics of the fractured reservoirs of the La Paz Field, Maracaibo Basin, Venezuela[J]. AAPG Bulletin, 2000, 84(11): 1791-1809.
8 MULLEN M J, PITCHER J L, HINZ D, et al. Does the Presence of Natural Fractures Have an Impact on Production: A Case Study from the Middle Bakken Dolomite, North Dakota[C]. SPE135319. SPE Annual Technical Conference and Exhibition, 2010:1-15.
9 曾联波,李跃纲,王正国,等.邛西构造须二段特低渗透砂岩储层微观裂缝的分布特征[J]. 天然气工业,2007,27(6): 45-47.
ZENG L B, LI Y G, WANG Z G, et al. Distribution of microfractures in ultralow permeability sandstone reservoirs of the second member of Xujiahe Formation in Qiongxi structure[J]. Natural Gas Industry, 2007, 27(6):45-47.
10 LAUBACH S E. A method to detect natural fracture strike in sandstones[J]. AAPG Bulletin, 1997, 81(4): 604-623.
11 ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: A review[J]. Journal of Structural Geology, 2014, 69: 377-394.
12 LAUBACH S E, MARRETT R, OLSON J. New directions in fracture characterization[J]. The Leading Egde,2000,19(7): 704-711.
13 PALCIAUSKAS V V, DOMENICO P A. Microfracture development in compacting sediments: relation to hydrocarbon-maturation kinetics[J]. AAPG Bulletin, 1980, 64(6): 927-937.
14 MARQUEZ X M, MOUNTJOY E W. Microfractures due to overpressures caused by thermal cracking in well-sealed Upper Devonian reservoirs, deep Alberta Basin[J]. AAPG Bulletin, 1996, 80(4): 570-588.
15 BERG R R, GANGI A F. Primary migration by oil-generation microfracturing in low-permeability source rocks: application to the Austin Chalk, Texas[J]. AAPG Bulletin, 1999, 83(5): 727-756.
16 LAUBACH S E. Practical approaches to identifying sealed and open fractures[J]. AAPG Bulletin, 2003, 87(4):561-579.
17 王景,凌升阶,南中虎.特低渗透砂岩微裂缝分布研究方法探索[J]. 石油勘探与开发,2003, 30(2): 51-53.
WANG J, LING S J, NAN Z H. Microfracture distribution in extremely lower permeable sandstone reservoirs of Yanchang Formation and its geologic significance, Ordos Basin, Northwest China[J]. Petroleum Exploration and Development, 2003, 30(2):51-53.
18 FLOTTMANN T, CAMPAGNA D J, HILLIS R, et al. ,Horizontal microfractures and core discing in sandstone reservoirs,Basin Cooper Australia[C]∥Eastern Australasian Basins Sym-posium II. Petroleum Exploration Society of Australia Special Publication, 2004: 689-694.
19 南珺祥,王素荣,姚卫华,等.鄂尔多斯盆地陇东地区延长组长6—8特低渗透储层微裂缝研究[J]. 岩性油气藏,2007, 19(4): 40-44.
NAN J X, WANG S R, YAO W H, et al. Microfractures in ultra-low permeability reservoir of the sixth-eighth member of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4):40-44.
20 王瑞飞,陈明强,孙卫. 特低渗透砂岩储层微裂缝特征及微裂缝参数的定量研究——以鄂尔多斯盆地沿25区块、庄40区块为例[J]. 矿物学报,2008, 28(2): 215-220.
WANG R F, CHEN M Q, SUN W.Quantitative research on the characteristics of and parameters for micro cracks in ultra-low permeability sandstone reservoirs: Taking Yan 25 and Zhuang 40 areas in the Ordos Basin for example[J]. Acta Mineralogica Sinica, 2008, 28(2):215-220.
21 徐波,孙卫,韩宗元,等.姬塬油田长4+5砂岩储层微裂缝与水驱油特征[J]. 西北大学学报: 自然科学版,2008,38(6): 971-976.
XU B, SUN W, HAN Z Y, et al. Characteristics of microfracture and waterflooding in Chang 4+5 sandstone reservoir of Jiyuan Oilfield[J]. Journal of Northwest University :Natural Science Edition, 2008, 38(6):971-976.
22 王瑞飞,孙卫.鄂尔多斯盆地姬塬油田上三叠统延长组超低渗透砂岩储层微裂缝研究[J]. 地质论评,2009, 55(3): 444-448.
WANG R F, SUN W. A study on micro cracks in ultra-low permeability sandstone reservoir of the Upper Triassic Yanchang Formation in the Ordos Basin[J]. Geological Review, 2009, 55(3):444-448.
23 万永平,李园园,梁晓.基于流体包裹体的储层微裂缝研究——以陕北斜坡上古生界为例[J]. 地质与勘探,2010, 46(4): 711-715.
WAN Y P, LI Y Y, LIANG X. Fractures of reservoirs inferred from fluid inclusions: A case study of the Upper Paleozoic of Northern Shaanxi Slope[J]. Geology and Exploration, 2010, 46(4):711-715.
24 ZENG L B. Microfracturing in the Upper Triassic Sichuan Basin tight-gas sandstones: Tectonic, overpressure, and diagenetic origins[J]. AAPG Bulletin, 2010, 94(12): 1811-1825.
25 臧士宾,崔俊,郑永仙,等.柴达木盆地南翼山油田新近系油砂山组低渗微裂缝储集层特征及成因分析[J]. 古地理学报,2012,14(1): 133-141.
ZANG S B, CUI J, ZHENG Y X, et al. Analysis of characteristics of low-permeable reservoir with microfracture and their origins of the Neogene Youshashan Formation in Nanyishan Oilfield, Qaidam Basin[J]. Journal of Palaeogeography, 2012, 14(1):133-141.
26 LANDER R H, LAUBACH S E. Insights into rates of fracture growth and sealing from a model for quartz cementation in fractured sandstones[J]. GSA Bulletin, 2015, 127(3-4): 516-538.
27 LIU G Y, HUANG C J, ZHOU X G, et al. Quantitative evaluation of fracture development in Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(4): 486-496.
28 ZHU P, LIN C Y, REN H Q, et al. Micro-fracture characteristics of tight sandstone reservoirs and its evaluation by capillary pressure curves: A case study of Permian sandstones in Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 90-97.
29 ZHANG W Z, XIE L Q, YANG W W, et al. Micro fractures and pores in lacustrine shales of the Upper Triassic Yanchang Chang7 member, Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2017, 156: 194-201.
30 TANG S L, TANG D Z, LI S, et al. Fracture system identification of coal reservoir and the productivity differences of CBM wells with different coal structures: A case in the Yanchuannan block, Ordos Basin[J]. Journal of Petroleum Science and Engineering, 2018, 161: 175-189.
31 周文,林家善,张银德,等.镇泾地区曙光油田延长组构造裂缝分布评价[J]. 石油天然气学报,2008, 30(5): 1-4.
ZHOU W, LIN J S, ZHANG Y D, et al. Evaluation on distribution of structural fractures of Yanchang Formation of Shuguang Oilfield of Zhenjing Region[J]. Journal of Oil and Gas Technology, 2008, 30(5):1-4.
32 张娟.镇泾地区长8段裂缝发育特征及其与开发关系[D]. 成都:成都理工大学,2010.
ZHANG J. Development of Fractures of Chang 8 Formation in Zhenjing and Its Relationship with the Exploitation[D]. Chengdu:Chengdu University of Technology,2010.
33 张世懋,丁晓琪,易超.镇泾地区延长组8段致密储层裂缝识别与预测[J]. 测井技术,2011,35(1): 36-40.
ZHANG S M, DING X Q, YI C. Recognition and prediction of tight reservoir fracture in the Chang 8 section in Zhenjing area [J]. Well Logging Technology, 2011, 35(1):36-40.
34 颜冠山,李建明,唐民安.红河油田长8储层裂缝发育特征与油气渗流规律研究[J]. 长江大学学报:自然科学版,2013, 10(11): 16-19.
YAN G S, LI J M, TANG M A. Study on fracture development characteristics and oil and gas seepage law of the eighth member of Yanchang Formation in Honghe Oilfield[J]. Journal of Yangtze University:Natural Science Edition, 2013, 10(11):16-19.
35 王翠丽,周文,李红波,等.镇泾地区延长组多期次裂缝发育特征及分布[J]. 成都理工大学学报:自然科学版,2014, 41(5): 596-603.
WANG C L, ZHOU W, LI H B, et al. Characteristics and distribution of multiphase fractures in Yanchang Fomation of Zhenjing block in Ordos Basin, China[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2014, 41(5):596-603.
36 赵向原,曾联波,刘忠群,等.致密砂岩储层中钙质夹层特征及与天然裂缝分布的关系[J]. 地质论评,2015, 61(1): 163-171.
ZHAO X Y, ZENG L B, LIU Z Q, et al. Characteristics of calcareous interbeds and their impact on distribution of natural fractures in tight sandstone reservoirs[J]. Geologica Review, 2015, 61(1):163-171.
37 LYU W Y, ZENG L B, LIU Z Q, et al. Fracture responses of conventional logs in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China[J]. AAPG Bulletin, 2016, 100(9): 1399-1417.
38 LYU W Y, ZENG L B, ZHOU S B, et al. Natural fractures in tight-oil sandstones: A case study of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. AAPG Bulletin, 2019, 103(10): 2343–2367.
39 何自新.鄂尔多斯盆地构造演化与油气[D]. 北京:石油工业出版社, 2002.
HE Z X. Tectonic Evolution and Oil and Gas in Ordos Basin [D]. Beijing: Petroleum Industry Press,2002.
40 吴松涛,邹才能,朱如凯,等.鄂尔多斯盆地上三叠统长7段泥页岩储集性能[J]. 地球科学: 中国地质大学学报,2015, 40 (11): 1810-1823.
WU S T, ZOU C N, ZHU R K, et al. Reservoir quality characterization of Upper Triassic Chang 7 shale in Ordos Basin[J]. Earth Science:Journal of China University of Geoscience, 2015, 40(11):1810-1823.
41 丁晓琪.鄂尔多斯盆地镇原—泾川地区延长组长8—长6沉积体系、层序地层与储层评价[D].成都:成都理工大学,2006.
DING X Q. Research on Sedimentary System, Sequence Stratigraphy, Reservoir Evaluation for Chang 8-6 oil beds of the Yanchang Formation[D].Chengdu:Chengdu University of Te-chnology, 2006.
42 张迪.鄂尔多斯盆地红河油田长8油层组储层流动单元研究[D]. 武汉:长江大学, 2015.
ZHANG D. Research on the Flow Units of Chang-8 Member of the Yanchang Formation in Honghe Oilfield[D]. Wuhan:Yangtze University, 2015.
43 吉伟平.红河油田HH105井区长8段致密砂岩优质储层预测[D]. 北京:中国石油大学(北京), 2016.
JI W P. Prediction of High Quality Tight Sandstone Reservoir of Chang-8 Member of the Yanchang Formation at HH105 well block in Honghe Oilfield[D]. Beijing: China University of Petroleum (Beijing), 2016.
44 徐梦龙,何治亮,尹伟,等.鄂尔多斯盆地镇泾地区延长组8段致密砂岩储层特征及主控因素[J]. 石油与天然气地质,2015, 36(2): 240-247.
XU M L, HE Z L, YIN W, et al. Characteristics and main controlling factors of tight sandstones reservoirs in the 8th member of the Yanchang Formation in Zhenjing area[J]. Ordos Basin. Oil & Gas Geology, 2015, 36(2):240-247.
45 曾联波,高春宇,漆家福,等.鄂尔多斯盆地陇东地区特低渗透砂岩储层裂缝分布规律及其渗流作用[J]. 中国科学: D辑,2008, 38(S1): 41-47.
ZENG L B, GAO C Y, QI J F, et al. Fracture distribution and its effect on seepage in the ultra low-permeability sandstone reservoirs in Longdong area, Ordos Basin[J]. Science in China:Series D, 2008, 38(S1):41-47.
46 HOWARD J H, HOEKSEMA R C N. Description of natural fracture systems for quantitative use in petroleum geology[J]. AAPG Bulletin, 1990, 74(2):151-162.
47 曾联波.低渗透砂岩储层裂缝的形成与分布[D]. 北京:科学出版社, 2008.
ZENG L B. Formation and Distribution of Fractures in Low-Permeability Sandstone Reservoirs[D]. Beijing:Science Press House, 2008.
48 姚泾利,段毅,徐丽,等.鄂尔多斯盆地陇东地区中生界古地层压力演化与油气运聚[J].天然气地球科学,2014, 25(5):649-656.
YAO J L, DUAN Y, XU L, et al. Pressure evolution and oil-gas migration and accumulation in Mesozoic Palaeo-strata in Longdong area of the Ordos Basin[J]. Natural Gas Geoscience, 2014, 25(5):649-656.
[1] 郭广山, 邢力仁, 李娜, 陈峥嵘. 煤层气井组生产特征及产能差异控制因素[J]. 天然气地球科学, 2020, 31(9): 1334-1342.
[2] 史超群, 张慧芳, 周思宇, 王佐涛, 蒋俊, 章学岐, 左小军, 娄洪, 王振鸿, 陈常超. 塔里木盆地库车坳陷克拉苏构造带—秋里塔格构造带白垩系巴什基奇克组深层、高产储层特征及控制因素[J]. 天然气地球科学, 2020, 31(8): 1126-1138.
[3] 景辅泰, 罗霞, 杨智, 张丽君, 李士祥, 陈勇, 曾云锋. 页岩层系致密储层物性下限——以鄂尔多斯盆地三叠系延长组长7段为例[J]. 天然气地球科学, 2020, 31(6): 835-845.
[4] 郭明强, 周龙刚, 张兵, 潘新志, 王应斌. 致密砂岩气水分布特征——以鄂尔多斯盆地东部临兴地区为例[J]. 天然气地球科学, 2020, 31(6): 855-864.
[5] 于洲, 周进高, 丁振纯, 魏柳斌, 魏源, 吴兴宁, 吴东旭, 王少依, 李维岭. 鄂尔多斯盆地中东部奥陶系马五41a储层特征及成因[J]. 天然气地球科学, 2020, 31(5): 686-697.
[6] 张宸赫, 韩军铮, 纪友亮, 周勇, 苏芮, 王世超, 尹俊霞, 张素华, 唐林, 刘尽贤. 陆相湖盆扇三角洲—滩坝体系砂体展布特征与叠置模式[J]. 天然气地球科学, 2020, 31(4): 518-531.
[7] 梁晓伟,关梓轩,牛小兵,关平,淡卫东,冯胜斌,尤源,周树勋. 鄂尔多斯盆地延长组7段页岩油储层储集性特征[J]. 天然气地球科学, 2020, 31(10): 1489-1500.
[8] 鲍园, 安超, 琚宜文, 尹中山, 熊建龙, 王文愽. 川南煤田古叙矿区DC⁃5井上二叠统龙潭组煤层甲烷吸附性及其主控因素[J]. 天然气地球科学, 2020, 31(1): 93-99.
[9] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[10] 李祖兵, 李剑, 崔俊峰, 邢立平, 吴雪松. 渤海湾盆地北大港潜山中生界碎屑岩储层特征及发育主控因素[J]. 天然气地球科学, 2020, 31(1): 13-25.
[11] 张春林, 李剑, 陈鑫, 吴庆超. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019, 30(9): 1263-1271.
[12] 罗超, 郭建林, 李易隆, 冀光, 窦丽玮, 尹楠鑫, 陈岑. 砂质辫状河隔夹层成因及分布控制因素分析[J]. 天然气地球科学, 2019, 30(9): 1272-1285.
[13] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[14] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[15] 崔景伟, 朱如凯, 李森, 齐亚林, 时晓章, 毛治国, . 坳陷湖盆烃源岩发育样式及其对石油聚集的控制——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2019, 30(7): 982-996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[2] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[3] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[4] 李在光;杨占龙;李琳;郭精义;黄云峰;吴青鹏;李红哲;. 胜北地区油气分布规律[J]. 天然气地球科学, 2006, 17(1): 94 -96 .
[5] 王杰,刘文汇,秦建中,张隽. 中国东部幔源气藏存在的现实性与聚集成藏的规律性[J]. 天然气地球科学, 2007, 18(1): 19 -26 .
[6] 李亮,万晓龙,李志伟,张永强,张振红. 油气成藏模拟实验在白于山油藏开发中的应用[J]. 天然气地球科学, 2006, 17(2): 219 -222 .
[7] 李广之;袁子艳;胡斌;邓天龙;. 利用顶空气技术判别凝析气(油)储层[J]. 天然气地球科学, 2006, 17(3): 309 -312 .
[8] 李凤杰;王多云;. 鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J]. 天然气地球科学, 2006, 17(3): 339 -344 .
[9] 赵孟军;宋岩;柳少波;秦胜飞;洪峰;傅国友;达江;. 中国中西部前陆盆地成藏特征的初步分析[J]. 天然气地球科学, 2006, 17(4): 445 -451 .
[10] 姚亚明;周继军;何明喜;付代国;陈建军;. 对焉耆盆地油气地质条件的认识[J]. 天然气地球科学, 2006, 17(4): 463 -467 .