天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 47–60.doi: 10.11764/j.issn.1672-1926.2019.08.005

• 天然气地球化学 • 上一篇    下一篇

塔里木盆地柯坪露头剖面中上奥陶统烃源岩地球化学特征与海相油源对比

马安来1(),李慧莉1,李杰豪2,高晓鹏1,王凡3,姚尧1,冯帆1   

  1. 1.中国石化石油勘探开发研究院,北京 100083
    2.中国地质大学(北京),北京 100083
    3.中国石油大学(北京),北京 102249
  • 收稿日期:2019-07-05 修回日期:2019-08-17 出版日期:2020-01-10 发布日期:2020-01-09
  • 作者简介:马安来(1969-),男,安徽淮南人,副教授,博士,主要从事油气地球化学与成藏机理研究. E-mail: maal.syky@sinopec.com.
  • 基金资助:
    国家自然科学基金项目(41772153);中国石油化工股份有限公司科技部项目(P16090)

The geochemical characteristics of Middle-Upper Ordovician source rocks in Keping outcrops profiles and marine oil-source correlation, Tarim Basin, NW China

An-lai MA1(),Hui-li LI1,Jie-hao LI2,Xiao-peng GAO1,Fan WANG3,Yao YAO1,Fan FENG1   

  1. 1.Petroleum Exploration & Production Research Institute, Sinopec, Beijing 100083, China
    2.China University of Geoscience (Beijing), Beijing 100083, China
    3.China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2019-07-05 Revised:2019-08-17 Online:2020-01-10 Published:2020-01-09
  • Supported by:
    National Science Foundation of China(41772153);Sinopec Ministry of Science and Technology(P16069)

摘要:

采用有机地球化学扫描分析方法,对塔里木盆地柯坪地区6条剖面上发育的中上奥陶统烃源岩进行了细致分析。大湾沟剖面、喀马提坎剖面、通古斯布隆剖面中上奥陶统萨尔干组烃源岩较为发育,泥页岩有机碳含量大多大于1.0%;上奥陶统印干组烃源岩仅在大湾沟剖面发育。结合肖尔布拉克剖面、苏盖特布拉克剖面、于提西剖面下寒武统玉尔吐斯组烃源岩地球化学分析,发现柯坪地区玉尔吐斯组、萨尔干组、印干组在分子地球化学参数上显示出相似性,呈现以C23三环萜烷为主峰、伽马蜡烷和C28甾烷含量较高的特征,烃源岩生物标志物面貌趋同与烃源岩较高成熟度有关。而海相原油中C28甾烷含量大多小于25%,与柯坪地区寒武系—奥陶系烃源岩具有较大的差异性。在组分碳同位素组成上,下寒武统玉尔吐斯组烃源岩均显示比中上奥陶统烃源岩值偏低的特点,特别是玉尔吐斯组干酪根碳同位素值,偏低超过5‰。中上奥陶统萨尔干组和印干组烃源岩组分碳同位素之间差异并不十分显著。在排除油气藏的TSR作用前提下,烃源岩干酪根碳同位素可以作为潜在的油源对比指标。

关键词: 中上奥陶统, 萨尔干组, 印干组, 分子标志物, 碳同位素, 油源对比, 柯坪地区

Abstract:

The Middle-Upper Ordovician source rocks developed in six outcrop profiles in Keping area, Tarim Basin, NW China were analyzed using organic geochemical scanning method. Source rocks of Middle-Upper Ordovician Salgan Formation developed in Dawangou, Kamatikan and Tonggusibulong outcrop profiles, with most TOC value greater than 1.0%. Whereas source rocks of the Upper Ordovician Yingan Formation only developed in the Dawangou outcrop profile. Combined with the analysis results of Lower Cambrian Yuertusi Formation developed in Xiaoerbulake, Sugaitebulake and West Yuti outcrops profiles, the source rocks of Yuertusi Formation, Salgan Formation and Yingan Foramtion showed similar molecular geochemical characteristics, with lower Pr/Ph value, C23 greater than C21 tricyclic terpane, higher gamacerane and higher C28 steranes content. The similarity in molecular compounds of Cambrian to Ordovician source rocks in Keping area may be a result of the high maturity. In the relative content of C27-C29 steranes, the most marine oils with C28 sterane lower than 25% showed great difference with that of the source rocks of Cambrian to Ordovician source rocks in Keping area. In the fraction carbon isotopes, the source rocks of the Lower Cambrian Yuertusi Formation have lower carbon isotopes, compared with that of the Middle-Upper source rocks. Especially in kerogen carbon isotopes, Lower Cambrian Yuertusi Formation is 5‰ lower than that of Middle-Upper Ordocivian source rocks. Overall,the carbon isotopic fractionation of saturate, bitumen, aromatic fraction, non-hydrocarbon fraction, asphaltenes and kerogen is small in source rocks from Middle-Upper Ordovican Salgan and Yingan Formation in Keping area. The carbon isotopes of kerogen of source rocks can be used as a parameter for oil-source correlation excluding the TSR of the oil reservoirs.

Key words: Middle-Upper Ordovician, Salgan Formation, Yingan Formation, Molecular marker, Carbon isotope, Oil-source correlation, Keping area

中图分类号: 

  • TE122.1+13

图1

塔里木盆地柯坪地区中上奥陶统烃源岩剖面位置(a) 塔里木盆地构造分区 (b)中上奥陶统剖面位置"

图2

大湾沟剖面中上奥陶统萨尔干组岩石有机碳、热解数据"

图3

喀马提坎剖面中上奥陶统萨尔干组岩石有机碳、热解数据"

表1

柯坪地区萨尔干组岩石有机质丰度"

剖面厚度/m岩性样品数TOC/%Pg/%Tmax/℃IH/(mg/gTOC)
大湾沟14.6页岩、泥岩28(0.04~3.62)/1.83(0.02~6.72)/2.94(444~518)/460(1~181)/116
灰岩、泥灰岩13(0.01~1.20)/0.15(0.03~2.74)/0.33(384~515)/461(63~221)/118
喀马提坎15.6页岩、泥岩15(0.19~3.43)/1.40(0.08~2.28)/0.66(442~476)/454(16~62)/37
灰岩、泥灰岩5(0.01~0.48)/0.15(0.03~0.28)/0.10(439~469)/453(41~154)/91
通古斯布隆10.6页岩、泥岩11(0.69~2.85)/1.66(0.23~1.08)/0.64(438~445)/441(11~59)/39
灰岩10(0.01~0.05)/0.02(0.01~0.04)/0.02(449~475)/463(32~156)/81
阿恰西一沟7.5灰岩16(0.01~0.02)/0.02(0.00~0.03)/0.02(445~500)/465(0~322)/83

图4

大湾沟剖面上奥陶统印干组岩石有机碳、热解数据"

表2

柯坪地区上奥陶统印干组烃源岩有机质丰度"

剖面厚度/m岩性样品数TOC/%Pg/%Tmax/℃IH/(mg/gTOC)
大湾沟29页岩、泥岩16(0.44~1.29)/0.67(0.41~1.54)/1.02(443~455)/450(50~133)/93
灰岩、泥灰岩9(0.14~0.54)/0.31(0.03~0.91)/0.37(339~455)/438(10~100)/60

羊吉坎

(阿恰西二沟)

169页岩、泥岩13(0.07~0.34)/0.22(0.03~0.15)/0.09(465~500)/489(15~41)/28
灰岩、泥灰岩12(0.02~0.24)/0.12(0.01~0.10)/0.04(434~504)/479(8~56)/28
阿恰西五沟14.7页岩、泥岩19(0.14~0.38)/0.27(0.02~0.06)/0.04(480~544)/503(9~20)/13
灰岩3(0.05~0.09)/0.06(0.02~0.07)/0.05(489~513)/503(22~99)/66

图5

柯坪露头剖面寒武系—奥陶系烃源岩饱和烃色谱、萜烷和甾烷质量色谱"

图6

柯坪地区露头剖面寒武系—奥陶系烃源岩中Pr/nC17、Ph/nC18之间的关系"

图7

柯坪地区露头剖面寒武系—奥陶系烃源岩C21/C23三环萜烷值与C24四环/C26三环萜烷值之间的关系"

图8

柯坪地区露头剖面寒武系—奥陶系烃源岩C21/C23三环萜烷比值与G/C30藿烷值之间的关系"

图9

柯坪地区露头剖面寒武系—奥陶系烃源岩C27—C29规则甾烷组成三角图"

图10

柯坪地区露头剖面寒武系—奥陶系烃源岩二苯并噻吩/菲比值(DBT/P)—姥姣烷/植烷值(Pr/Ph)关系(图版据文献[30])图中:Zone 1A:海相碳酸盐岩区;Zone 1B:海相碳酸盐岩、灰泥岩、富硫湖湘;Zone 2:湖相超盐环境;Zone 3:海相页岩和其他湖相;Zone 4:河流/三角洲相页岩和煤"

图11

塔里木盆地不同层位烃源岩氯仿沥青“A”、组分及干酪根碳同位素分布曲线"

1 郝继鹏. 塔里木盆地柯坪地区下古生界碳酸盐岩生储油特征及油源对比[J]. 新疆石油地质, 1988,9(4):14-21.
HAO J P. Oil generating and conserving characteristics and source correlation of the Lower Paleozoic carbonates in the area of Keping Tarim Basin[J]. Xinjiang Petroleum Geology, 1988, 9(4):14-21.
2 张水昌, 梁狄刚, 张宝民, 等. 塔里木盆地海相油气的生成[M]. 北京: 石油工业出版社, 2004.
ZHANG S C, LIANG D G, ZHANG B M, et al. The Generation of Marine Oil and Gas in the Tarim Basin[M]. Beijing: Petroleum Industry Press, 2004.
3 张水昌, 张宝民, 边立曾, 等. 中国海相烃源岩发育控制因素[J].地学前缘, 2005, 12(3): 39-48.
ZHANG S C, ZHANG B M, BIAN L Z, et al. Development constraints of marine source rocks in China[J]. Earth Science Frontiers, 2005, 12(3): 39-48.
4 张水昌, 王飞宇, 张保民, 等. 塔里木盆地中上奥陶统油源层地球化学研究[J]. 石油学报, 2000, 21(6): 23-28.
ZHANG S C, WANG F Y, ZHANG B M, et al. Middle-Upper Ordovician source rock geochemistry of the Tarim Basin[J]. Acta Petrolei Sinica, 2000, 21(6): 23-28.
5 张水昌, 梁狄刚, 黎茂稳, 等. 分子化石与塔里木盆地油源对比[J]. 科学通报, 2002,47(s1): 16-21.
ZHANG S C, LIANG D G, LI M W, et al. Molecular fossils and oil-source rock correlation in Tarim Basin, NW China[J]. Chinese Science Bulletin, 2002, 47(s1): 20-27.
6 马安来, 金之钧, 张水昌, 等. 塔里木盆地寒武—奥陶系烃源岩的分子地球化学特征[J]. 地球化学, 2006, 35(6): 593-601.
MA A L, JIN Z J, ZHANG S C, et al. Molecular geochemical characteristics of Cambrian-Ordovician source rocks in Tarim Basin, NW China[J]. Geochimica, 2006, 35(6): 593-601.
7 王庆涛, 江林香, 刘奇宝, 等. 柯坪剖面中上奥陶统烃源岩的催化加氢裂解产物特征及其地质意义[J]. 地球化学, 2012, 41(5): 415-424.
WANG Q T, JIANG L X, LIU Q B, et al. Catalytic hydropyrolysis for kerogens of middle and Upper Ordovician source rocks in Keping section, Tarim Basin, Northwestern China[J]. Geochimica, 2012, 41(5): 415-424.
8 王庆涛, 卢鸿, 高黎惠, 等. 高成熟萨尔干页岩热模拟产气的地球化学特征[J]. 煤炭学报,2013, 38(5): 754-759.
WANG Q T, LU H, GAO L H, et al. Geochemical characterization of thermogenic gas during the simulation experiments of the mature Salgan shale[J]. Journal of China Coal Society, 2013, 38(5): 754-759.
9 王飞宇, 杜治利, 张宝民, 等. 柯坪剖面中上奥陶统萨尔干组黑色页岩地球化学特征[J]. 新疆石油地质, 2008, 29(6): 687-689.
WANG F Y, DU Z L, ZHANG B M, et al. Geochemistry of Salgan black shales of Middle-Upper Ordovician in Keping outcrop, Tarim Basin[J]. Xinjiang Petroleum Geology, 2008, 29(6): 687-689.
10 高志勇, 张水昌, 刘烨, 等. 新疆柯坪大湾沟剖面中-上奥陶统烃源岩高频海平面变化与有机质的关系[J]. 石油学报, 2012, 33(2): 232-240.
GAO Z Y, ZHANG S C, LIU Y, et al. Relationship between high-frequency sea-level changes and organic matter of Middle-Upper Ordovician marine source rocks from the Dawangou section in the Keping area, Xinjiang[J]. Acta Petrolei Sinica, 2012,33(2): 232-240.
11 廖晓, 王震亮, 余朱宇, 等. 塔里木盆地柯坪地区奥陶系高丰度海相烃源岩成因探讨[J]. 地质科技情报, 2018, 37(2): 59-64.
LIAO X, WANG Z L, YU Z Y, et al. Genesis of Ordovician marine source rocks of high organic abundance in Keping region, Tarim Basin[J]. Geological Science and Technology Information, 2018, 37(2): 59-64.
12 张水昌, 高志勇, 李建军, 等. 塔里木盆地寒武系—奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发,2012, 39(3):285-294.
ZHANG S C, GAO Z Y, LI J J, et al. Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin[J]. Petroleum Exploration & Development, 2012, 39(3): 285-294.
13 高志勇, 张水昌, 李建军, 等. 塔里木盆地西部中上奥陶统萨尔干页岩与印干页岩的空间展布与沉积环境[J]. 古地理学报, 2010, 12(5): 599-608.
GAO Z Y, ZHANG S C, LI J J, et al. Distribution and sedimentary environments of Salgan and Yingan shales of the Middle-Upper Ordovician in western Tarim Basin[J]. Journal of Paleogeography, 2010, 12(5): 599-608.
14 CAI C F, LI K K, MA A L, et al. Distinguishing Cambrian from upper Ordovician source rocks: Evidence from sulfur isotopes and biomarkers in the Tarim Basin[J]. Organic Geochemistry, 2009, 40: 755-768.
15 CAI C F, ZHANG C M, WORDEN R H, et al. Application of sulfur and carbon isotopes to oil-source rock correlation: A case study from the Tazhong area, Tarim Basin, China[J]. Organic Geochemistry, 2015,83-84:140-152.
16 潘文庆, 陈永权, 熊益学, 等. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 2015, 26(7): 1224-1232.
PAN W Q, CHEN Y Q, XIONG Y X, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1224-1232.
17 朱光有, 陈斐然, 陈志勇, 等. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 2016, 27(1): 8-21.
ZHU G Y, CHEN F R, CHEN Z Y, et al. Discovery and basic characteristics of high-quality source rocks found in the Yuertusi Formation of the Cambrian in Tarim Basin, China[J]. Natural Gas Geoscience, 2016, 27(1):8-21.
18 ZHU G Y, CHEN F R, WANG M, et al. Discovery of the Lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China[J]. AAPG Bulletin, 2018, 102(10): 2123-2151.
19 周志毅. 塔里木盆地各纪地层[M]. 北京:科学出版社, 2001:1-335.
ZHOU Z Y. Stratigraphy of the Tarim Basin[M]. Beijing: Science Press, 2001:1-335.
20 范善发, 周中毅. 塔里木盆地古地温与油气[M].北京:科学出版社, 1990.
FAN S F, ZHOU Z Y. The Paleo-geotemperature and Petroleum in The Tarim Basin[M]. Beijing: Science Press, 1990.
21 陈旭. 论笔石的深度分带[J]. 古生物学报, 1990,29(5):507-526.
CHEN X. Graptolite depth zonation[J]. Acta Paleontologica Sinice,1990, 29(5):507-526.
22 杨宗玉, 罗平, 刘波, 等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组两套黑色岩系的差异与成因[J]. 岩石学报, 2017, 33(6):1893-1918.
YANG Z Y, LUO P, LIU B, et al. The difference and sedimentation of two black rock series from Yurtus Formation during the earliest Cambrian in the Aksu area of Tarim Basin, Northwest China[J]. Acta Petrologica Sinica, 2017, 33(6):1893-1918.
23 杨福林, 王铁冠, 李美俊. 塔里木盆地台盆区寒武系烃源岩地球化学特征[J]. 天然气地球科学, 2016, 27(5): 861-872.
YANG F L, WANG T G, LI M J. Geochemical study of Cambrian source rocks in the cratonic area of Tarim Basin, NW China[J]. Natural Gas Geoscience, 2016, 27(5): 861-872.
24 杨福林, 云露, 王铁冠, 等. 塔里木盆地寒武系源岩地化特征及与典型海相原油对比[J].石油与天然气地质, 2017, 38(5): 851-861.
YANG F L, YUN L, WANG T G, et al. Geochemical characteristics of the Cambrian source rocks in the Tarim Basin and oil-source correlation with typical marine crude oil[J]. Oil & Gas Geology, 2017, 38(5):851-861.
25 包建平, 斯春松, 蒋兴超, 等. 黔北坳陷小草坝古油藏储层沥青来源与成因研究[J]. 地球化学, 2016, 45(3):315-328.
BAO J P, SI C S, JIANG X C, et al. Study on origin and source of solid bitumen from Xiaocaoba Paleo-reservoir in the northern Guizhou Depression[J]. Geochimica, 2016, 45(3): 315-328.
26 梁狄刚, 郭彤楼, 陈建平, 等. 中国南方海相生烃成藏研究的若干新进展(二): 南方四套区域性海相烃源岩的地球化学特征[J]. 海相油气地质, 2009, 14(1): 1-15.
LIANG D G, GUOT L, CHEN J P, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (part 2): Geochemical characteristics of four suits of regional marine source rocks, south China[J]. Marine Origin Petroleum Geology, 2009, 14(1): 1-15.
27 GEORGE S C. Effect of igneous intrusion on the organic geochemistry of a siltstone and an oil shale horizon in the Midland Valley of Scotland[J]. Organic Geochemistry, 1992, 18(5):705-723.
28 PETERS K E, WALTERS C C, MOLDOWAN J M. The Biomarker Guide (Volume 2): Biomarkers and Isotopes in Petroleum Exploration and Earth History[M]. Cambridge, United Kingdom:Cambridge University Press, 2005.
29 CONNAN J, CASON A M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels[J]. Geochimica et Cosmochimica Acta, 1980, 44: 1-23.
30 HUGHES W B, HOLBA A G, DZOU I P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks[J]. Geochimica et Cosmochimica Acta, 1995, 59(17): 3581-3598.
31 GROSJEAN E, LOVE G D, STALVIES C, et al. Origin of petroleum in the Neoproterozoic-Cambrian South Oman Salt Basin[J]. Organic Geochemistry, 2009, 40:87-110.
32 KELLEY A E, LOVE G D, ZUMBERGE J E, et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia[J]. Organic Geochemistry, 2011, 42: 640-654.
33 马安来, 金之钧, 王毅. 塔里木盆地台盆区海相油源对比存在的问题及进一步工作方向[J]. 石油与天然气地质, 2006, 27(3): 356-362.
MA A L, JIN Z J, WANG Y. Problems of oil-source correlation for marine reservoirs in Paleozoic craton area in Tarim Basin and future direction of research[J]. Oil & Gas Geology, 2006, 27(3): 356-362.
34 包建平, 朱翠山, 王志峰. 塔里木盆地寒武系—下奥陶统烃源岩的端元油[J]. 石油勘探与开发, 2018, 45(6): 1103-1114.
BAO J P, ZHU C S, WANG Z F. Typical end-member oil derived from lower Ordovician-Cambrian source rocks in the Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2018, 45(6): 1103-1114.
35 DZOU L I P, NONLE R A, SENFTLE J T. Maturation effects on absolute biomarker concentration in a suite of coals and associated vitrinite concentrates[J].Organic Geochemistry,1995, 23(7):681-697.
36 朱扬明, 顾圣啸, 李颖, 等. 四川盆地龙潭组高热演化烃源岩有机质生源及沉积环境探讨[J]. 地球化学, 2012, 41(1): 35-44
ZHU Y M, GU S X, LI Y, et al. Biological organic source and depositional environment of over-mature source rocks of Longtan Formation in Sichuan Basin[J]. Geochimica, 2012, 41(1): 41(1): 35-44.
37 梁狄刚, 陈建平. 中国南方高、过成熟区海相油源对比问题[J]. 石油勘探与开发, 2005, 32(2):8-14.
LIANG D G, CHEN J P. Oil source correlations for high and over matured marine source rocks in South China[J]. Petroleum Exploration & Development, 2005, 32(2): 8-14.
38 ZHANG S C, SU J, WANG X M, et al. Geochemical of Paleozoic marine petroleum from Tarim Basin, NW China: Part 3. Thermal cracking of liquid hydrocarbons and gas washing as the major mechanisms for deep gas condensate accumulations[J]. Organic Geochemistry, 2011, 42:1394-1410.
39 HUANG H P, ZHANG S C, SU J. Paleozoic oil-source correlation in the Tarim Basin, NW China: A review[J]. Organic Geochemistry, 2016, 94: 32-46.
40 CLAYPOOL G E, MANCINI E A. Geochemical relationships of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, Southwestern Alabama[J]. AAPG Bulletin, 1989, 73(7):904-924.
41 王昭明, 谢会文, 陈永权, 等. 塔里木盆地中深1井寒武系岩下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 2014, 19(2): 1-13.
WANG Z M, XIE H W, CHEN Y Q, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13.
42 ZHU G Y, HUANG H P, WANG H T. Geochemical significance of discovery in Cambrian reservoirs at well ZS1 of the Tarim Basin,Northwest China[J].Energy & Fuels,2015, 29: 1332-1344.
43 张纪智, 王招明, 杨海军, 等. 塔里木盆地中深地区寒武系岩下白云岩油气来源及差异聚集[J]. 石油勘探与开发, 2017, 44(1): 40-47.
ZHANG J Z, WANG Z M, YANG H J, et al. Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen area, Tarim Basin, NW China[J].Petroleum Exploration & Development,2017,44(1):40-47.
44 LI S M, AMRANI A, PANG X Q, et al. Origin and quantitative source assessment of deep oils in the Tazhong Uplift, Tarim Basin[J]. Organic Geochemistry, 2015, 78:1-22.
45 宋到福, 王铁冠, 李美俊. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识[J]. 中国科学:地球科学, 2016, 46(1): 107-117.
SONG D F, WANG T G, LI M J. Geochemistry and possible origin of the hydrocarbons from Wells Zhongshen1 and Zhongshen 1C, Tazhong Uplift[J]. Science China Earth Science, 2016, 46(1):107-117.
46 马安来, 金之钧, 朱翠山, 等. 塔里木盆地中深1C井原油高聚硫代金刚烷及金刚烷硫醇的检出及意义[J]. 中国科学: 地球科学, 2018, 48(10):1312-1323.
MA A L, JIN Z J, ZHU C S, et al. Detection and significance of higher thiadiamondoids and diamondoidthiols in oil from the Zhongshen 1C Well of the Tarim Basin, NW China[J]. Science China Earth Science, 2018, 61(10):1440-1450.
47 CAI C F, XIAO Q L, FANG C C, et al. The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin, NW China[J]. Organic Geochemistry, 2016, 101: 49-62
48 ANDRUSEVICH V E, ENGEL M H, ZUMBERGE J E. Secular, episodic changes in stable carbon isotope composition of crude oils[J]. Chemical Geology, 1998, 152:59-72.
49 朱心健, 陈践发, 伍建军, 等. 塔里木盆地台盆区古生界原油碳同位素组成及油源探讨[J]. 石油勘探与开发, 2017, 44(6): 997-1004.
ZHU X J, CHEN J F, WU J J, et al. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China[J]. Petroleum Exploration & Development, 2017, 44(6): 997-1004.
[1] 牛强, 张焕旭, 朱地, 徐志尧, 仰云峰, 丁安徐, 高和群, 张立生. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 2020, 31(9): 1294-1305.
[2] 梁刚, 甘军, 游君君, 李兴, 雷明珠. 琼东南盆地低熟煤型气地球化学特征及勘探前景[J]. 天然气地球科学, 2020, 31(7): 895-903.
[3] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[4] 何春民, 甘军, 梁刚, 李兴, 王星, 田辉. 压力对III型有机质生成烃类气体及甲烷碳同位素的影响[J]. 天然气地球科学, 2020, 31(7): 931-938.
[5] 赛彦明, 田辉, 李杰, 刘银山, 张彬, 刘俊杰. 含油气系统Re⁃Os定年及Re⁃Os元素和同位素体系研究新进展[J]. 天然气地球科学, 2020, 31(7): 939-951.
[6] 刘超威, 郭旭光, 王泽胜, 朱伶俐, 张蓉, 陈洪. 准噶尔盆地阜康凹陷东斜坡侏罗系头屯河组油气成藏期次[J]. 天然气地球科学, 2020, 31(7): 962-969.
[7] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[8] 李婷婷, 朱光有, 赵坤, 王鹏举. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721-734.
[9] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[10] 胡维强, 李洋冰, 陈鑫, 马立涛, 刘成, 黄英, 乔方, 王朵, 刘再振. 鄂尔多斯盆地临兴地区上古生界天然气成因及来源[J]. 天然气地球科学, 2020, 31(1): 26-36.
[11] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
[12] 李二庭, 靳军, 曹剑, 马万云, 米巨磊, 任江玲. 准噶尔盆地新光地区佳木河组天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(9): 1362-1369.
[13] 龚德瑜, 张越迁, 郭文建, 宋志华, 卢山, 吴卫安. 次生生物甲烷与生物降解作用的判识——以准噶尔盆地腹部陆梁油气田为例[J]. 天然气地球科学, 2019, 30(7): 1006-1017.
[14] 胡自龙, 卞保力, 刘海磊, 赵龙, 卢山, 王绍清. 准噶尔盆地大井地区天然气成因、来源与成藏过程[J]. 天然气地球科学, 2019, 30(6): 850-859.
[15] 倪云燕, 廖凤蓉, 姚立邈, 高金亮, 张蒂嘉. 川中地区须家河组天然气氢同位素特征及其对水体咸化的指示意义[J]. 天然气地球科学, 2019, 30(6): 880-896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[8] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[9] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[10] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .