天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 100–109.doi: 10.11764/j.issn.1672-1926.2019.08.003

• 非常规天然气 • 上一篇    下一篇

鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析

张静非1(),赵继展1,陈冬冬1,李树刚2,林海飞2   

  1. 1.中煤科工集团西安研究院有限公司,陕西 西安 710077
    2.西安科技大学安全科学与工程学院,陕西 西安 710054
  • 收稿日期:2019-07-09 修回日期:2019-08-06 出版日期:2020-01-10 发布日期:2020-01-09
  • 作者简介:张静非(1993-),男,甘肃陇南人,实习研究员,硕士,主要从事矿井瓦斯与硫化氢灾害防治研究.E-mail:782356383@qq.com.
  • 基金资助:
    国家自然科学基金科学仪器基础研究专项(51327007);国家自然科学基金(编号(51504189);中煤科工集团西安研究院有限公司科技创新基金资助项目(编号(2017XAYZD06);2018XAYMS08)联合资助

Sedimentary environment characteristics and genesis of H2S-bearing coal seam in Binchang mining area, Ordos Basin

Jing-fei ZHANG1(),Ji-zhan ZHAO1,Dong-dong CHEN1,Shu-gang LI2,Hai-fei LIN2   

  1. 1.Xi’an Research Institute of China Coal Technology and Engineering Group Corporation, Xi’an 710077,China
    2.School of Safety Engineering,Xi’an University of Science and Technology,Xi’an 710054,China
  • Received:2019-07-09 Revised:2019-08-06 Online:2020-01-10 Published:2020-01-09
  • Supported by:
    51674192;2018XAYZD10;the Fundamental Research of Scientific Instrument of the National Natural Science Foundation of China(51327007);The National Natural Science Foundation of China(51504189);The Science and Technology Innovation Fund Projects of Xi’an Research Institute of China Coal Technology and Engineering Group Corporation(2017XAYZD06)

摘要:

为了探讨含H2S煤层沉积环境特征,以彬长矿区小庄矿延安组4#煤层为研究对象,借助X?射线衍射仪、液晶库伦定硫仪、X?射线荧光光谱仪、等离子体质谱分析仪、稳定同位素质谱仪等实验仪器,从煤层显微组分、矿物组分、煤体孔隙及吸附特征、古盐度、沉积环境氧化还原性、水动力学表征指数、同位素特征及煤层热演化史等方面,对该区域煤层沉积环境特征进行了研究,并明确了煤层H2S的成因类型。研究结果表明:①研究区地质构造简单,井田中心带的南玉子向斜对H2S的富集有一定影响,且煤层顶底板岩性以泥岩为主,透气透水性差,对H2S富集起到封堵作用;②4#煤层富含有机质(植物化石)、碳酸盐矿物,地层古盐度Sr/Ba值较小(<0.5),沉积环境表征(U/Th值、Cu/Zn值以及还原性指数K)为厌氧—弱还原性,以上条件为该区域煤层H2S的生成提供了原料和环境基础;③煤层黄铁矿δ34S值(-9‰~-0.6‰)偏负、甲烷δ13C1值偏低(<-55‰),煤层热演化温度(96~113 °C)低于120 °C,综合得到研究区成因类型以生物硫酸盐还原成因(BSR)为主。

关键词: 含H2S煤层, 沉积环境, 成因类型, 富集, 生物硫酸盐还原作用

Abstract:

In order to study the sedimentary environment characteristics of H2S-bearing coal seam, taking 4# coal seam of Yan’an Formation in Xiaozhuang mine, Bingchang mining area as a research object. With the help of X-ray diffractometer, liquid crystal coulomb sulfur analyzer, X-ray fluorescence spectrometer, plasma mass spectrometry, stable isotope mass spetrometer and other experimental instruments, the sedimentary environment characteristics of the study area were studied, and the genesis type of H2S was defined, in the aspect of the coal maceral, mineral composition, salinity, oxidation reduction and water dynamic characterization of index, the sedimentary environment isotope and thermal evolution history of coal seam. The research results show that: (1) the geological structure of the study area is simple, and the Nanyuzi syncline in the central belt of the wellfield has a certain impact on the enrichment of H2S. In addition, the lithology of the top and bottom of the reservoir is dominated by mudstone with poor permeability and water permeability, which plays a plugging role in the enrichment of H2S. (2) No.4 coal seam is rich in organic matter (plant fossils) and carbonate minerals. The paleosalinity index Sr/Ba value of the strata is small (<0.5). (3) The δ34S value of coal pyrite is negative (from -9‰ to -0.6‰), while the methane δ13C1 value is negative (<-55‰),the thermal evolution of coal seam temperature (96 ℃ to 113 ℃) below 120 ℃, therefore, the study area is dominated by biological sulfate reduction (BSR).

Key words: H2S-bearing ccoal seam, Sedimentary environment, Genesis type, Enrichment, Biological sulfate reduction

中图分类号: 

  • TE121.3

图1

彬长矿区地质构造与延安组柱状图"

表1

4#煤的煤岩及煤质特征测试结果"

样品编号H2S浓度/10-6煤灰成分/%显微组分/%镜质体最大反射率/%

全硫

St,ad/%

形态硫/%
Fe2O3SiO2Al2O3MgOCaO镜质组含量惰质组含量壳质组含量Ss,adSp,adSo,ad
XZ-165.3239.1730.392.1316.6737.246.18.40.6390.880.030.620.23
XZ-245.0736.5228.871.0916.439.543.88.30.6440.460.020.290.15
XZ-33.56.1245.7722.670.9716.2939.445.77.90.6420.410.030.260.12
XZ-436.3447.1620.692.5412.937.145.68.50.6920.370.020.240.11
XZ-527.3351.4319.813.111.8840.543.28.20.6960.330.030.220.08
XZ-616.4549.1719.972.811.9940.241.59.30.7050.320.020.210.1
XZ-70.887.8448.1228.511.5413.3838.842.210.90.7120.280.020.170.09
XZ-80.86.0153.4821.173.0112.3338.644.78.10.7280.210.020.110.08

表2

4#煤层微量元素及同位素测试结果"

编号XZ-1XZ-2XZ-3XZ-4XZ-5XZ-6XZ-7XZ-8
H2S浓度/10-6643.53210.880.8
Sr/%73.283.673.865.578.1272.2783.5268.82
Ba/%610380180131651219174186
U/%1.311.221.611.331.011.721.141.43
Th/%1.641.611.291.320.711.250.841.63
Cu/%51.1243.5450.4245.4144.3356.8640.9755.62
Zn/%150.35136.06458.36162.18164.19406.14186.23292.74
氧元素含量(O)/%13.815.712.612.512.811.211.810.3
氢元素含量(H)/%3.74.64.15.25.24.46.27.2
黄铁矿(δ34S)/‰-6.7-3.2-9-1.2-0.8-0.6-4-5.1
甲烷(δ13C)/‰-80.6-70.1-69.1-73.14-75.3-69.6-71.1-73.1

表3

4#煤层吸附及孔隙特征参数测试分析结果"

编号

H2S浓度

/10-6

吸附常数

孔隙率

(P)/%

BET比表面积/(m2/g)平均孔隙直径/nmBJH孔隙体积/(10-4cm3/g)分形维数(D)

镜质体最

大反射率/%

XZ-16
XZ-24
XZ-33.5
XZ-43
XZ-52
XZ-61
XZ-70.88
XZ-80.8

图2

4#煤层有机显微组分分布特征"

图3

X?射线衍射图谱"

表4

XRD图谱矿物分析"

矿物名称峰值
黄铁矿28.56°(中等峰)、33.16°(弱峰)等
石膏矿物14.67°(弱峰)、54.77°(弱峰)等
石英21.11°(强峰)、26.70°(强峰)、46.11°(弱峰)等
方解石48.11°(弱峰)

图4

样品形态硫分布特征"

图5

4#煤层沉积环境古盐度分布"

表5

煤层沉积环境氧化还原特征参数"

序号

灰成分指数(AI)

U/Th值

Cu/Zn值

还原性指数(K)

XZ-10.3470.80.348.5
XZ-20.3450.760.327.1
XZ-30.3421.250.116.8
XZ-40.3211.010.286.4
XZ-50.3131.420.275.7
XZ-60.3071.380.144.7
XZ-70.2971.360.223.4
XZ-80.2860.880.193.1

表6

4#煤层水动力学特征参数"

序号

酸碱指数(AAI

盐度指数(SI

滞留指数(RI

XZ-13.7000.2510.070
XZ-23.7390.2480.067
XZ-33.9650.2310.076
XZ-44.3940.2080.081
XZ-54.7560.1910.089
XZ-64.6750.1960.081
XZ-75.1360.1770.089
XZ-84.8660.1900.069

图6

水动力学指数三维标示图"

图7

4#煤层热演化特征"

1 焦春林,傅雪海,葛燕燕,等.我国煤矿瓦斯中H2S异常矿井的分布特征[J].黑龙江科技大学学报,2013,23(4):375-377.
JIAO C L, FU X H, GE Y Y, et al. Distribution characteristics of H2S anomaly area of coal mine gas in China[J]. Journal of Heilongjiang Institute of Science & Technology,2013,23(4): 375-377.
2 邵凯,李来新,王东东,等.鄂尔多斯盆地彬长矿区沉积体系及控气作用[J].中国煤层气,2016,13(2):12-15.
SHAO K, LI L X, WANG D D, et al. Coal-bearing depositional system and CBM controlling role in Binchang mining area of Ordos Basin[J]. China Coal Bed Methane, 2016,13(2):12-15.
3 孙斌,孙粉锦,田文广,等.鄂尔多斯盆地乌审旗地区煤层气富集主控因素及其勘探方向[J].天然气工业,2011,31(2):34-38.
SUN B, SUN F J, TIAN W G, et al. Controlling factors of coalbed methane enrichment in the Wushenqi area, Ordos Basin[J].Natural Gas Industry,2011,31(2):34-38.
4 邓燕,王强,程绪彬,等.阿姆河右岸区块碳酸盐岩气藏H2S成因与分布规律[J].天然气工业,2011,31(4):21-23.
DENG Y, WANG Q, CHENG X B, et al. Origin and distribution law of H2S in carbonate gas reservoirs in the right bank block of Amu Darya River[J].Natural Gas Industry,2011,31(4):21-23.
5 张友,王清斌,吴小红,等.渤海海域渤中凹陷西南环硫化氢特征及成因机制研究[J].石油地质与工程,2016,30(3):140-143.
ZHANG Y, WANG Q B, WU X H, et al. Characteristics and genetic mechanism of hydrogen sulfide in southwest ring of Bozhong sag in Bohai Sea[J]. Petroleum Geology and Engineering,2016,30(3):140-143.
6 李云波,姜波.淮北宿临矿区构造煤中硫的分布规律及赋存机制[J].煤炭学报,2015,40(2):412-421.
LI Y B, JIANG B. Sulfur distribution and occurrence pattern in tectonically deformed coal from Sulin coalfield, Anhui Province[J]. Journal of China Coal Society,2015,40(2):412-421.
7 张杰芳,桑树勋,王文峰,等.黔西南糯东勘探区煤中硫赋存特征及成因机理[J].煤炭科学技术,2014,42(2):101-105.
ZHANG J F SANG S X, WANG W F, et al. Occurrence characteristics and genetic mechanism of sulfur in coal in Nuodong exporlation area of southwest Guizhou Province[J]. Coal Science and Technology,2014,42(2):101-105.
8 杨曙光,田继军.准噶尔盆地东部地区煤层气储层特征[J].中国煤层气,2011,8(2):20-23.
YANG S G, TIAN J J. Characteristics of CBM reservoir in eastern part of Zhunge′er Basin[J]. China Coalbed Methane,2011, 8(2):20-23.
9 傅雪海,王文峰,岳建华,等.枣庄八一矿瓦斯中H2S气体异常成因分析[J].煤炭学报,2006,31(2):206-210.
FU X H,WANG W F,YUE J H,et al. Genesis analyses of H2S gas abnormity in gas of Bayi coal mine in Zaozhuang[J].Journal of China Coal Society,2006,31(2):206-210.
10 汤达祯,杨起,周春光,等.华北晚古生代成煤沼泽微环境与煤中硫的成因关系研究[J].中国科学:地球科学,2000,30(6):584-591.
TANG D Z, YANG Q, ZHOU C G, et al. Genetic relationship between the Late Paleozoic coal-forming swamp microenvironment and sulfur in coal in north China[J]. Chinese Science: Earth Science,2000,30(6):584-591.
11 罗陨飞,李文华,姜英,等.中国煤中硫的分布特征研究[J].煤炭转化,2005,28(3):14-18.
LUO Y F, LI W H, JIANG Y, et al. Distribution of sulfur in coals of China[J]. Coal Conversion,2005,28(3):14-18.
12 张佳为,马家亮,高政,等.彬长矿区胡家河煤矿煤岩特征及古地理环境研究[J].煤炭科学技术, 2018,46(10):214-220.
ZHANG J W, MA J L, GAO Z, et al. Study on petrological characteristics and paleo-geographic environment in Hujiahe coal mine of Binchang coalfield[J]. Coal Science and Technology, 2008, 46(10):214-220.
13 王胜建,高为,郭天旭,等.黔北林华井田煤质参数特征及其成煤沉积环境意义[J].煤炭科学技术,2017,45(10):162-168.
WANG S J, GAO W, GUO T X, et al. Coal quality parameters features and coal formation sedimentary environment significance of Linhua minefield in north Guizhou[J]. Coal Science and Technology,2017,45(10):162-168.
14 李碧,徐阳东,汤立方.织纳煤田红梅煤矿煤中硫分特征及其成煤环境研究[J].煤炭科学技术,2018,46(5):202-209.
LI B, XU Y D, TANG L F. Study on sulfur characteristics and coal paleoenvironment in Hongmei mine of Zhina coalfield[J]. Coal Science and Technology, 2018, 46(5):202-209.
15 叶黎明,齐天俊,彭海燕.鄂尔多斯盆地东部山西组海相沉积环境分析[J].沉积学报, 2008,26(2):202-210.
YE L M, QI T J, PENG H Y. Depositional environment analysis of Shanxi Formation in eastern Ordos Basin[J]. Acta Sedimentologica Sinica,2008,26(2):202-210.
16 许璟,蒲仁海,杨林,等.塔里木盆地石炭系泥岩沉积时的古盐度分析[J].沉积学报,2010,28(3):509-517.
XU J, PU R H, YANG L, et al. The palaeosalinity analysis of carboniferous mudstone, Tarim Basin[J].Acta Sedimentologica Sinica,2010, 28(3):509-517.
17 王双,杨瑞东. 贵阳花溪燕楼剖面下三叠统大冶组地球化学特征与沉积环境分析[J].古地理学报,2018,20(2):285-298.
WANG S, Yang R D. Analysis of geochemistry features and sedimentary environment of the Lower Triassic Daye Formation in Yanlou section of Huaxi, Guiyang[J]. Journal of Palaeogeography, 2018, 20(2):285-298.
18 郭艳琴,余芳,李洋,等.鄂尔多斯盆地东部石盒子组盒8沉积环境的地球化学表征[J].地质科学,2016,51(3):872-890.
GUO Y Q, YU F, LI Y, et al. Geochemical characteristics of sedimentary environment of He 8 member of Shihezi Formation in eastern Ordos Basin[J]. Chinese Journal of Geology, 2016, 51(3):872-890.
19 姜冬冬,陈萍,唐修义,等.淮南煤田8煤层中黄铁矿的特征研究及成因分析[J].中国煤炭地质,2009,21(1):22-26.
JIANG D D, CHEN P, TANG X Y, et al. Characteristic study and geological genesis analysis of pyrite in No.8 coal in Huainan coalfield[J]. Coal Geology of China, 2009, 21(1):22-26.
20 王利波,李军,赵京涛,等.辽东湾中部晚第四纪沉积物物源与沉积环境:来自碎屑矿物和自生黄铁矿的证据[J].海洋地质与第四纪地质,2016,36(2):39-48.
WANG L B, LI J, ZHAO J T, et al. Late Quaternary sediment provenance and palaeoenvironment in Liaodong bay, Bohai Sea: Evidence from detrital minerals and authigenic pyrite[J]. Marine Geology & Quaternary Geology, 2016,36(2):39-48.
21 孙四清,李贵红,安鸿涛.我国煤层甲烷碳同位素分布特征与瓦斯成因类型划分探讨[J].中国煤炭地质,2012,24(2):15-17.
SUN S Q, LI G H, AN H T. A discussion on coal seam methane carbon isotope distribution features and gas genetic classification in China[J]. China Coal Geology, 2012, 24(2):15-17.
22 邓奇根,刘明举,崔学锋,等.准噶尔盆地东南缘煤矿硫化氢气体成因研究[J].地学前缘,2017,24(5):395-401.
DENG Q G, LIU M J, CUI X F, et al. A study of hydrogen sulfide genesis in coal mine of southeastern margin of Junggar Basin[J]. Earth Science Frontiers, 2017, 24(5):395-401.
23 鲍园,韦重韬,王超勇.不同成因类型煤型气地球化学特征及其判识意义[J].地球科学,2013,38(5):1037-1046.
BAO Y, WEI C T, WANG C Y. Geochemical characteristics and identification significance of coal type gas in various geneses[J]. Earth Science, 2013, 38(5):1037-1046.
24 BAKER C E, PAWLEWICZ M J. Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods[J]//Vitrinite Reflectance as a Maturity Parameter; Application and Limitations, American Chemical Society,1994,36(4):216-229.
25 王玮,周祖翼,于鹏.镜质体反射率与最高温度及其温度变化率的关系——几种镜质体反射率计算模型的比较[J].地球物理学报, 2005,48(6):1375-1383.
WANG W, ZHOU Z Y, YU P. Relations between vitrinite reflectance, peak temperature and its neighboring temperature variation rate: A comparison of methods[J]. Chinese Journal of Geophysics, 2005, 48(6):1375-1383.
26 刘明举,李国旗, Mitri HANI,等.煤矿硫化氢气体成因类型探讨[J].煤炭学报, 2011,36(6):978-983.
LIU M J,LI G Q,Mitri HANI,et al. Genesis modes discussion of H2S gas in coal mines[J]. Journal of China Coal Society,2011,36(6):978-983.
[1] 张昭丰, 王良军, 张立强, 黎承银. 川东南回龙场地区小河坝组砂岩元素特征及古环境意义[J]. 天然气地球科学, 2020, 31(9): 1239-1249.
[2] 牛强, 张焕旭, 朱地, 徐志尧, 仰云峰, 丁安徐, 高和群, 张立生. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 2020, 31(9): 1294-1305.
[3] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[4] 游君君, 杨希冰, 雷明珠, 梁刚, 汪紫菱. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学, 2020, 31(7): 904-914.
[5] 周国晓, 魏国齐, 胡国艺, 武赛军, 田亚杰, 董才源. 四川盆地早寒武世裂陷槽西部页岩发育背景与有机质富集[J]. 天然气地球科学, 2020, 31(4): 498-506.
[6] 田光荣, 白亚东, 裴明利, 李红哲, 孙秀建, 马峰. 柴达木盆地阿尔金山前东段输导体系及其控藏作用[J]. 天然气地球科学, 2020, 31(3): 348-357.
[7] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[8] 庞正炼, 陶士振, 张景建, 张琴, 袁苗, 吴因业, 张天舒, 杨晓萍, 范建玮, 孙菲菲. 四川盆地侏罗系大安寨段致密油多尺度差异化富集及主控因素[J]. 天然气地球科学, 2019, 30(9): 1301-1311.
[9] 胡素云, 陶士振, 闫伟鹏, 门广田, 唐振兴, 薛建勤, 贾希玉, 陈旋, 江涛, 黄东, 梁晓伟. 中国陆相致密油富集规律及勘探开发关键技术研究进展[J]. 天然气地球科学, 2019, 30(8): 1083-1093.
[10] 唐振兴, 赵家宏, 王天煦. 松辽盆地南部致密油“甜点区(段)”评价与关键技术应用[J]. 天然气地球科学, 2019, 30(8): 1114-1124.
[11] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[12] 赵正望, 唐大海, 王小娟, 陈双玲. 致密砂岩气藏天然气富集高产主控因素探讨——以四川盆地须家河组为例[J]. 天然气地球科学, 2019, 30(7): 963-972.
[13] 赵长毅, 李永新, 王居峰, 刘海涛, 邓焱, 赵博雅. 渤海湾盆地天然气成因类型与勘探潜力分析[J]. 天然气地球科学, 2019, 30(6): 783-789.
[14] 胡东风. 四川盆地东南缘向斜构造五峰组—龙马溪组常压页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(5): 605-615.
[15] 钟洪洋, 张道勇, 肖明国, 徐耀辉, . 洞庭盆地第四系极浅层天然气成因类型及地质意义[J]. 天然气地球科学, 2019, 30(3): 361-369.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[5] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[6] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[7] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .
[8] 杜乐天. 国外天然气地球科学研究成果介绍与分析-----以索科洛夫的著作为主线[J]. 天然气地球科学, 2007, 18(1): 1 -18 .
[9] 孔庆芬,王可仁. 鄂尔多斯盆地西缘奥陶系烃源岩热模拟试验研究[J]. 天然气地球科学, 2006, 17(2): 187 -191 .
[10] 刘全有;刘文汇;Krooss B M;王万春;戴金星;. 天然气中氮的地球化学研究进展[J]. 天然气地球科学, 2006, 17(1): 119 -124 .