天然气地球科学 ›› 2019, Vol. 30 ›› Issue (11): 1579–1589.doi: 10.11764/j.issn.1672-1926.2019.08.001

• 天然气地质学 • 上一篇    下一篇

塔里木盆地英买力地区白垩系舒善河组相对湖平面变化

夏辉1(),林畅松2(),刘永福3,李浩2,孙琦3,赵海涛3,苏洲3   

  1. 1. 中国地质大学(北京)能源学院,北京 100083
    2. 中国地质大学(北京)海洋学院,北京 100083
    3. 中国石油塔里木油田分公司勘探开发研究院,新疆 库尔勒;841000
  • 收稿日期:2019-05-20 修回日期:2019-08-12 出版日期:2019-11-10 发布日期:2019-12-03
  • 通讯作者: 林畅松 E-mail:xiahui3006@163.com;Lincs@cugb.edu.cn
  • 作者简介:夏辉(1991-),男,陕西咸阳人,博士研究生,主要从事沉积学与盆地分析研究. E-mail:xiahui3006@163.com.
  • 基金资助:
    国家自然科学基金重点项目“塔里木盆地古生代关键变革期的古构造;古地理演变及油气聚集效应”(41130422);国家科技重大专项“大型地层油气藏形成主控因素与有利区带评价”(2017ZX05001-001)

A research on relative lacustrine level changes of Cretaceous Shushanhe Formation in the Yingmaili area of Tarim Basin

Hui Xia1(),Chang-song Lin2(),Yong-fu Liu3,Hao Li2,Qi Sun3,Hai-tao Zhao3,Zhou Su3   

  1. 1. School of Energy Resource,China University of Geosciences(Beijing),Beijing 100083,China
    2. School of Ocean Sciences,China University of Geosciences(Beijing),Beijing 100083,China
    3. Research Institute of Exploration and Development,PetroChina Tarim Oilfield Branch Company,PetroChina, Korla 841000,China
  • Received:2019-05-20 Revised:2019-08-12 Online:2019-11-10 Published:2019-12-03
  • Contact: Chang-song Lin E-mail:xiahui3006@163.com;Lincs@cugb.edu.cn

摘要:

塔里木盆地英买力地区下白垩统舒善河组是岩性油气藏勘探的有利层位。然而,该区发育的浅水三角洲与滩坝沉积常相互交织叠加、难以区分,相对湖平面变化研究有助于确定该区沉积相类型及揭示其分布规律。依据高分辨率层序地层学理论,利用岩心、录井、测井等资料,通过结合定性层序划分与定量测井小波变换分析,对塔北隆起英买力地区白垩系舒善河组进行层序地层划分,定量划分出4个长期、8个中期、13个短期及84个超短期层序。基于超短期旋回的Fischer图解分析表明,舒善河组相对湖平面整体上为一次大规模湖侵到湖退,且在沉积中期湖平面缓慢上升至最大规模。舒善河组内部划分的4个长期旋回的湖平面分别对应一次完整的湖侵到湖退的变化过程。通过与前人的研究成果对比可以看出,取得的相对湖平面升降曲线与前人成果的整体趋势较吻合,其内部更精细的多次小规模湖平面变化可作为该区后续地质研究的理论基础。

关键词: 小波分析, Fischer图解, 湖平面变化, 舒善河组, 英买力地区, 塔里木盆地

Abstract:

Lower Cretaceous Shushanhe Formation in the Yingmaili area of Tarim Basin is a favorable exploration formation for lithologic hydrocarbon reservoir. However, the shallow water deltas and beach bars deposits in this area were superimposed, so it is difficult to distinguish them. The quantitative analysis of relative lacustrine level changes is helpful to determine sedimentary facies type and reveal their distribution rules. According to the sequence stratigraphy theory, the sequence division of Cretaceous Shushanhe Formation in Yingmaili area of Tabei Uplift was done by using the data of core, drilling and logging, combined with qualitative sequence division and quantitative logging wavelet transform analysis. This formation can be quantitatively divided into 4 long-term sequence cycles, 8 middle-term sequence cycles, 13 short-term sequence cycles and 84 super short-term sequence cycles. The Fischer plots with 84 super short-term sequence cycles indicate the law that the relative lacustrine level changes were integrally from a long time lacustrine transgressive to a long time lacustrine regression and rose the largest during the middle deposition period of Shushanhe Formation. The four long-term cycles of Shushanhe Formation have undergone a complete lacustrine transgressive and lacustrine regression. Compared with previous results, we find that relative lacustrine curve on overall trend in this research was quite in accordance with previous results. Several subtle small-scale relative lacustrine level changes of Shushanhe Formation can be used as a theoretical basis for follow-up geological research in this area.

Key words: Wavelet analysis, Fischer plots, Relative lacustrine level changes, Shushanhe Formation, Yingmaili area, Tarim Basin

中图分类号: 

  • TE121.3

图1

塔北隆起构造单元划分及研究区位置"

图2

英买力地区舒善河组高分辨率层序地层划分"

图3

测井曲线原始信号与降噪信号对比"

图4

YM4井测井信号小波变换"

图5

英买力地区YM2井舒善河组小波分析及高分辨率层序划分方案"

表1

英买力地区YM2井舒善河组超短期层序划分及厚度偏移累计统计"

编号顶深/m底深/m厚度偏移累积/m编号顶深/m底深/m厚度偏移累积/m编号顶深/m底深/m厚度偏移累积/m
14 490.284 494.084.824294 412.514 414.424.852574 334.814 337.884.810
24 487.484 490.284.847304 410.304 412.514.285584 330.874 334.815.973
34 483.964 487.485.591314 408.674 410.303.139594 327.754 330.876.317
44 480.464 483.966.314324 405.484 408.673.552604 324.794 327.756.500
54 478.314 480.465.688334 402.564 405.483.696614 322.534 324.795.984
64 476.714 478.314.511344 399.834 402.563.649624 320.134 322.535.607
74 473.584 476.714.865354 396.834 399.833.873634 316.674 320.136.291
84 471.184 473.584.488364 394.194 396.833.736644 314.614 316.675.574
94 468.554 471.184.342374 391.564 394.193.590654 311.704 314.615.708
104 466.414 468.553.705384 388.624 391.563.753664 309.504 311.705.131
114 464.444 466.412.899394 385.334 388.624.267674 307.724 309.504.135
124 462.524 464.442.042404 381.354 385.335.470684 304.824 307.724.258
134 460.444 462.521.346414 377.564 381.356.484694 301.734 304.824.572
144 457.404 460.441.609424 374.814 377.566.457704 298.984 301.734.545
154 454.254 457.401.983434 372.654 374.815.841714 296.154 298.984.599
164 452.524 454.250.936444 370.454 372.655.264724 293.624 296.154.352
174 450.484 452.520.200454 366.854 370.456.088734 290.774 293.624.426
184 447.444 450.480.463464 362.854 366.857.311744 288.194 290.774.229
194 442.634 447.442.497474 359.544 362.857.845754 284.534 288.195.113
204 438.674 442.633.680484 357.524 359.547.088764 282.664 284.534.206
214 434.964 438.674.614494 355.544 357.526.292774 279.824 282.664.270
224 431.864 434.964.937504 352.674 355.546.385784 276.674 279.824.643
234 428.674 431.865.351514 349.774 352.676.509794 274.394 276.674.147
244 425.694 428.675.554524 347.514 349.775.992804 272.374 274.393.390
254 423.354 425.695.118534 345.524 347.515.206814 270.764 272.372.224
264 420.544 423.355.151544 343.524 345.524.429824 267.814 270.762.397
274 417.674 420.545.245554 340.814 343.524.363834 265.174 267.812.261
284 414.424 417.675.718564 337.884 340.814.516844 260.854 265.173.804

图6

英买力地区YM2井舒善河组Fischer图解分析"

图7

英买力地区YM2井舒善河组Fischer图解综合柱状图对比分析"

图8

英买力地区白垩系舒善河组沉积相剖面"

1 KangYuzhu. The resource potential and exploration for oil and gas in the Tarim Basin[J]. Petroleum Science Bulletin, 2018, 3(4): 369-375.
康玉柱. 塔里木盆地油气资源潜力及勘探方向[J]. 石油科学通报, 2018, 3(4): 369-375.
2 WuGuanghui, LiQiming, XiaoZhongyao, et al. The evolution characteristics of palaeo uplifts in Tarim Basin and its exploration directions for oil and gas[J].Geotectonica et Metallogenia, 2009, 33 (1):124-130.
邬光辉,李启明,肖中尧,等.塔里木盆地古隆起演化特征及油气勘探[J].大地构造与成矿学,2009, 33(1):124-130.
3 HuangShaoying, YangWenjing, LuYuhong, et al. Geological conditions,resource potential and exploration direction of natural gas in Tarim Basin[J]. Natural Gas Geoscience, 2018, 29(10):1497-1505.
黄少英, 杨文静, 卢玉红, 等.塔里木盆地天然气地质条件、资源潜力及勘探方向[J].天然气地球科学, 2018, 29(10): 1497-1505.
4 LiuJun,WangPengcheng,ChenJun, et al. Identification of the Cretaceous sandbody pinchout line in the south slope of Kuqa Depression,China,via seismic sedimentology[J]. Geophysical Prospecting for Petroleum, 2018, 57(5): 788-794.
刘军,王鹏程,陈军,等. 地震沉积学技术在库车坳陷南斜坡白垩系砂体尖灭线识别中的应用[J]. 石油物探, 2018, 57(5): 788-794.
5 ZhangRonghu, ZouWeihong, ChenGe, et al. Characteristics and hydrocarbon exploration significance of the huge Lower Cretaceous lacustrines and bar in the northern Tarim Basin[J]. Acta Petrolei Sinica,2018,39(8):845-857.
张荣虎, 邹伟宏, 陈戈, 等.塔里木盆地北部下白垩统大型湖相砂坝特征及油气勘探意义[J].石油学报,2018,39(8):845-857.
6 JiaJinhua. Sedimentary characteristics and palaeogeography of the Early Cretaceous in Tarim Basin[J]. Journal of Palaeogeography, 2009, 11(2):167-176.
贾进华. 塔里木盆地早白垩世沉积相特征与古地理[J].古地理学报, 2009, 11(2):167-176.
7 CaiXiyao, ZhangZhili, LiYue, et al. Cretaceous lacustrine strata in the Caohu Sag, Tarim Basin, NW China[J]. Journal of Stratigraphy, 2014, 38 (2):220-226.
蔡习尧, 张智礼, 李越,等. 塔里木盆地草湖凹陷白垩纪湖相地层[J].地层学杂志, 2014, 38 (2):220-226.
8 WanChao, LiShuangying, WangSong, et al. Study of the Jurassic-Cretaceous paleoclimate of the Tarim Basin[J]. Geology of Anhui, 2010, 20(1):25-29.
万超,李双应,王松,等. 塔里木盆地侏罗—白垩纪古气候研究[J].安徽地质, 2010, 20(1):25-29.
9 LiuYong,WangZhenyu,MaQing. Characteristics and types of sedimentary facies of Cretaceous in Yinmaili area[J]. Xinjiang Petroleum Geology,2007,28(1):20-24.
刘勇,王振宇,马青. 英买力地区白垩系沉积特征及沉积相类型[J]. 新疆石油地质,2007,28(1):20-24.
10 XiaHui, LinChangsong, LiuYongfu, et al. Beach-bar sedimentation characterization of the Kapushaliang group in the western north-Tarim Uplift[J]. Special Oil and Gas Reservoirs, 2018, 25(6):1-5.
夏辉, 林畅松, 刘永福, 等. 塔北隆起西部卡普沙良群滩坝沉积特征[J]. 特种油气藏, 2018, 25(6):1-5.
11 XuGuifen,LinChangsong,LiuYongfu,et al. Evolution of palaeo-uplift and its controlling on sedimentation of Kapushaliang group of Early Cretaceous in western Tabei Uplift[J]. Earth Science, 2016,41(4):619-632.
徐桂芬,林畅松,刘永福,等. 塔北西部早白垩世卡普沙良群沉积期古隆起演化及其对沉积的控制作用[J]. 地球科学, 2016,41(4):619-632.
12 XiaHui, LinChangsong, LiuYongfu, et al. Sedimentary feature analysis of braided river deltas and meandering river deltas:A case study of Kapushaliang group in western Tabei Uplift[J]. Journal of Northeast Petroleum University, 2018, 42(3):65-74.
夏辉, 林畅松, 刘永福, 等. 辫状河三角洲与曲流河三角洲沉积特征分析——以塔北隆起西部卡普沙良群为例[J]. 东北石油大学学报, 2018, 42(3):65-74.
13 LouZhanghua, LuQingmei, CaiXiyuan, et al. Influence of lake level fluctuation on sandbody shapes at shallow-water delta front[J].Acta Sedimentologica Sinica,1998,16(4): 27-31.
楼章华, 卢庆梅, 蔡希源, 等. 湖平面升降对浅水三角洲前缘砂体形态的影响[J]. 沉积学报, 1998, 16(4): 27-31.
14 ZengCan,YinTaiju,SongYakai. Experimental on numerical simulation of the impact of lake level plane fluctuation on shallow water delta[J]. Earth Science, 2017,42(11):2095-2104.
曾灿,尹太举,宋亚开. 湖平面升降对浅水三角洲影响的沉积数值模拟实验[J]. 地球科学, 2017,42(11):2095-2104.
15 FanGuozhang, JinZhijun, LiuGuochen, et al. Identification and significance of the high-frequency waves in Tarim Basin[J]. Acta Sedimentologica Sinica, 2001, 19(2): 245-248.
范国章, 金之钧, 刘国臣, 等.塔里木盆地高频波识别及其意义[J]. 沉积学报, 2001, 19(2): 245-248.
16 ZhangRongxi. Deposition and Stratigraphic Sequence Development and Evolution of Cretaceous of the Southwestern Tabei Uplift and Potential Reservior Prediction[D]. Beijing: China University of Geosciences, 2013: 47-70.
张荣茜. 塔北隆起西南部白垩系沉积层序演化及有利储层相带预测[D]. 北京:中国地质大学, 2013: 47-70.
17 LiuYongfu, ZhaoJianhua, FanQiuhai, et al. Study on the sequence stratigraphy and depositional systems of the Kapushaliang group of Cretaceous in the central Tabei Uplift[J]. Acta Sedimentologica Sinica,2014,32(6):1113-1122.
刘永福,赵建华,范秋海,等. 塔北隆起中部白垩系卡普沙良群层序地层格架及沉积体系研究[J]. 沉积学报,2014,32(6):1113-1122.
18 LinChangsong, WangQinghua, XiaoJianxin, et al. Depositional sequence architecture and filling response model of the Cretaceous in the Kuqa Depression,the Tarim Basin[J]. Science in China:Series D, 2004, 34(supplement1):74-82.
林畅松,王清华,肖建新,等. 库车坳陷白垩纪沉积层序构成及充填响应模式[J].中国科学:D辑,2004,34(增刊1):74-82.
19 HuXiaoxian, FanTailiang, GaoZhiqian, et al. Fischer plot and its response to the changes of the Early Ordovician sea in the Bachu area,Tarim Basin[J]. Geological Science and Technology Information, 2018, 37(1):88-95.
胡晓贤, 樊太亮, 高志前,等. Fischer图解及其在塔里木盆地巴楚地区早奥陶世海平面变化中的响应[J]. 地质科技情报, 2018, 37(1):88-95.
20 JiaDongli, TianJingchun, LinXiaobing, et al. Milankovitch cycles in the Silurian Kepingtage Formation in Shuntuoguole area,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(4): 749-758.
贾东力, 田景春, 林小兵,等. 塔里木盆地顺托果勒地区志留系柯坪塔格组米兰科维奇旋回沉积记录[J]. 石油与天然气地质, 2018, 39(4): 749-758.
21 GuJiayu, ZhangXingyang. Progress in continental sequence stratigraphy and its application in petroleum exploration and development[J]. Oil & Gas Geology, 2004, 25(5): 484-490.
顾家裕,张兴阳. 陆相层序地层学进展与在油气勘探开发中的应用[J]. 石油与天然气地质, 2004, 25(5): 484⁃490.
22 ZhangTan, ZhangChangmin, QuJianhua,et al. A research on relative lacustrine level changes of the Lower Triassic Baikouquan Formation in Mahu Sag of Junggar Basin[J]. Acta Sedimentologica Sinica, 2018, 36(4): 684-694.
张坦, 张昌民, 瞿建华,等. 准噶尔盆地玛湖凹陷百口泉组相对湖平面升降规律研究[J].沉积学报,2018, 36(4): 684-694.
23 LinXiaoxian, HouZhongjian. A semiquantitative analytical method for base level changes of high resolution sequence and its application to study of member 4 of Lower Cretaceous Quantou Formation in Songliao Basin[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2014, 41(2):157-170.
林孝先, 侯中健. 高分辨率层序基准面变化(半)定量分析方法及其在松辽盆地泉四段的应用[J]. 成都理工大学学报:自然科学版, 2014, 41(2):157-170.
24 LiChen, FanTailiang, XieWeiwei. Application of wavelet transform combining with Fischer plot to identify long term base-level:Taking the X formation of a certain oilfield in east China for example[J]. Progress in Geophysics, 2016, 31(5):2116-2123.
李晨, 樊太亮, 谢伟伟. 应用小波变换结合Fischer图解识别长期基准面旋回——以中国东部某油田X油层为例[J]. 地球物理学进展, 2016, 31(5):2116-2123.
25 LiYuejun,YangHaijun,ZhangGuangya,et al. Redivision of the tectonic units of Tabei rise in Tarim Basin,NW China[J]. Acta Petrologica Sinica,2012,28(8):2466-2478.
李曰俊,杨海军,张光亚,等. 重新划分塔里木盆地塔北隆起的次级构造单元[J]. 岩石学报,2012,28(8):2466-2478.
26 AnHaiting, LiHaiyin, WangJianzhong, et al. Tectonic evolution and its controlling on oil and gas accumulation in the northern Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1):142-147.
安海亭, 李海银, 王建忠, 等. 塔北地区构造和演化特征及其对油气成藏的控制[J]. 大地构造与成矿学, 2009, 33(1):142-147.
27 ZhangNingning, HeDengfa, SunFangyuan, et al.Formation mechanism and structural model of Yingmai 2 anticline in Tabei Uplift, Tarim Basin[J]. Chinese Journal of Geology, 2013, 48(1): 133-148.
张宁宁, 何登发, 孙方源, 等. 塔里木盆地塔北隆起英买2号背斜的成因机制与构造模型[J]. 地质科学, 2013, 48(1): 133-148.
28 DengHongwen. A new school of thought in sequence stratigraphic studies in U.S.: High-resolution sequence stratigraphy[J]. Oil & Gas Geology,1995, 16(2): 89-97.
邓宏文. 美国层序地层研究中的新学派:高分辨率层序地层学[J]. 石油与天然气地质, 1995, 16(2):89-97.
29 ZhengRongcai, PengJun, WuChaorong. Grade division of base-level cycles of terrigenous basin and its implication[J]. Acta Sedimentologica Sinica, 2001, 19(2): 249-255.
郑荣才, 彭军, 吴朝容. 陆相盆地基准面旋回的级次划分和研究意义[J].沉积学报, 2001, 19(2):249-255.
30 LinChangsong, LiuJingyan, LiuLijun, et al. High resolution sequence stratigraphy analysis: Construction of chronostratigraphic sequence framework on facies and reservoir scale[J]. Geoscience,2002,16(3):276-281.
林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.
31 DengHongwen. Discussion on problems of applying high resolution sequence stratigraphy[J]. Journal of Palaeogeography, 2009, 11(5): 471⁃480.
邓宏文. 高分辨率层序地层学应用中的问题探析[J]. 古地理学报,2009,11(5):471⁃480.
32 ZhaoWei, JiangZaixing, QiuLongwei, et al. Geological concept, method and application of sequence unit identification through wavelet analysis[J]. Oil & Gas Geology, 2010, 31(4):436-441.
赵伟, 姜在兴, 邱隆伟, 等. 小波分析划分层序单元的地质学理论基础、方法与应用[J]. 石油与天然气地质, 2010, 31(4):436-441.
33 ZhaoWei, QiuLongwei, JiangZaixing, et al. Application of wavelet analysis in high-resolution sequence unit division[J]. Journal of China University of Petroleum, 2009, 33(2): 18-22.
赵伟, 邱隆伟, 姜在兴, 等. 小波分析在高精度层序单元划分中的应用[J].中国石油大学学报:自然科学版, 2009, 33(2):18-22.
34 YuJifeng, LiZengxue. Wavelet transform of logging data and its geological significance[J]. Journal of China University of Mining &Technology, 2003,32(3): 336-339.
余继峰, 李增学. 测井数据小波变换及其地质意义[J]. 中国矿业大学学报, 2003,32(3): 336-339.
35 FangWenjing, FanYiren, LiXia, et al. Parasequence automatical partition based on wavelet transform of logging data[J]. Journal of Jilin University:Earth Science Edition, 2007, 37(4): 833-836.
房文静, 范宜仁, 李霞, 等. 基于测井数据小波变换的准层序自动划分[J]. 吉林大学学报:地球科学版, 2007, 37(4):833-836.
36 YuYu, LinLiangbiao, LanBinhuan, et al. Sequence stratigraphic division and recognition based on wavelet analysis: Example from the Upper Permian Longtan Formation in eastern Sichuan Basin[J].Northwestern Geology,2018,51(4):43-52.
余瑜,林良彪,蓝彬桓,等.基于小波分析的层序地层划分及识别——以川东地区上二叠统龙潭组为例[J].西北地质,2018,51(4):43-52.
37 LiXiangbo, GuoYanru, LiuHuaqing, et al. The application of wavelet analysis in sequence stratigraphic subdivision of the Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2006, 17(6): 779-782.
李相博, 郭彦如, 刘化清, 等. 浅谈小波分析在鄂尔多斯盆地延长组层序地层划分中的应用[J]. 天然气地球科学, 2006, 17(6):779-782.
38 ZhaoJunlong, TanChenqian, LiNa, et al. Application of wavelet analysis in high resolution sequence analysis[J]. Journal of Earth Sciences and Environment, 2007,29(1):90-94.
赵军龙, 谭成仟, 李娜, 等. 小波分析在高分辨率层序地层研究中的应用[J]. 地球科学与环境学报, 2007,29(1):90-94.
39 FischerA G.The Lofer cyclothems of the alpine Triassic[J]. Kansas Geological Survey Bulletin, 1964, 169(1): 107-149.
40 ReadJ F, GoldhammerR K. Use of Fischer plots to define third-order sea-level curves in Ordovician peritidal cyclic carbonates, appalachians[J]. Geology, 1988, 16(10): 895-899.
41 HuShouquan, ChenGuoneng. Fischer diagram and its computer simulation of sedimentary response: A case study on the Upper Member of Eh3 in Biyang fault-depression[J].Oil & Gas Geology, 1999, 20(1): 70-75.
胡受权, 陈国能. Fischer 图解及其沉积响应的计算机模拟——以泌阳断陷下第三系核三上段为例[J]. 石油与天然气地质,1999, 20(1):70-75.
42 LiangDingyong, YiHaisheng, QiuYubo, et al. Analysis of high-frequency sedimentary cycle superposition type in Quantou Formation in Dongling area of Songliao Basin[J]. Acta Sedimentologica Sinica, 2014, 32(2): 198-204.
梁定勇, 伊海生, 邱余波,等. 松辽盆地东岭地区泉头组高频沉积旋回的叠加型式分析[J]. 沉积学报, 2014, 32(2): 198-204.
43 FengBin, LiHua, HeYoubin, et al. Characteristics of Milankovitch Cycles in deep water contourites: A case study of Upper Ordovician Zhaolaoyu Formationin Fuping area of Shaanxi, China[J]. Journal of Earth Sciences and Environment,2019,41(1):69-82.
冯斌,李华,何幼斌,等.深水等深流沉积中记录的米兰科维奇特性——以陕西富平地区上奥陶统赵老峪组为例[J].地球科学与环境学报,2019,41(1):69-82.
44 YanDetian, WangHua, WangJiahao, et al. Analysis of the Cretaceous sequence stratigraphic pattern and controlling factors in Kuqa foreland basin[J]. Acta Sedimentologica Sinica,2006,24(6):841-848.
严德天, 王华, 王家豪, 等. 库车前陆盆地白垩系层序地层样式及控制因素分析[J]. 沉积学报, 2006, 24(6) :841-848.
45 DingXiaozhong, LinChangsong, LiuJingyan, et al. The sequence stratigraphic response to the basin-orogene coupling process of Cretaceous-Neogene in Tarim Basin, China[J]. Earth Science Frontiers, 2011, 18(4): 144-157.
丁孝忠, 林畅松, 刘景彦,等. 塔里木盆地白垩纪—新近纪盆山耦合过程的层序地层响应[J].地学前缘,2011,18(4):144-157.
46 WangGaiyun, WangYingmin, ZhangLei, et al. Sequence stratigraphy and sedimentary model of Kapushaliang group of Cretaceousin Shaya Uplift, Tarim Basin[J]. Journal of Shandong University of Science and Technology:Natural Science, 2011, 30(5):59-65.
王改云,王英民,张雷,等. 沙雅隆起白垩系卡普沙良群层序地层与沉积模式[J].山东科技大学学报:自然科学版,2011,30(5):59-65.
[1] 张荣虎, 杨海军, 魏红兴, 余朝丰, 杨钊, 伍劲. 塔里木盆地库车坳陷北部构造带中东段中下侏罗统砂体特征及油气勘探意义[J]. 天然气地球科学, 2019, 30(9): 1243-1252.
[2] 刘金华, 郭瑞, 马洪涛, 夏步余, 先伟, 蒋阿明, 葛政俊. 塔里木盆地塔河地区东部阿克库勒组阿四段条带状砂体成因再认识[J]. 天然气地球科学, 2019, 30(9): 1253-1262.
[3] 戴金星, 洪峰, 倪云燕, 廖凤蓉. 塔里木盆地英吉苏凹陷煤成气前景良好[J]. 天然气地球科学, 2019, 30(6): 771-782.
[4] 贾爱林, 唐海发, 韩永新, 吕志凯, 刘群明, 张永忠, 孙贺东, 黄伟岗, 王泽龙. 塔里木盆地库车坳陷深层大气田气水分布与开发对策[J]. 天然气地球科学, 2019, 30(6): 908-918.
[5] 闫磊,朱光有,陈永权,韩长伟,杨敏,杜德道,朱文平. 塔里木盆地下寒武统烃源岩分布[J]. 天然气地球科学, 2019, 30(11): 1569-1578.
[6] 陈永权, 严威, 韩长伟, 闫磊, 冉启贵, 亢茜, 何皓, 马源. 塔里木盆地寒武纪/前寒武纪构造—沉积转换及其勘探意义[J]. 天然气地球科学, 2019, 30(1): 39-50.
[7] 张荣虎, 王珂, 王俊鹏, 孙雄伟, 李君, 杨学君, 周露. 塔里木盆地库车坳陷克深构造带克深8区块裂缝性低孔砂岩储层地质模型[J]. 天然气地球科学, 2018, 29(9): 1264-1273.
[8] 王清龙, 林畅松, 李浩, 韩剑发, 孙彦达, 何海全. 塔里木盆地西北缘中下奥陶统碳酸盐岩沉积微相特征及演化[J]. 天然气地球科学, 2018, 29(9): 1274-1288.
[9] 朱光有, 曹颖辉, 闫磊, 杨海军, 孙崇浩, 张志遥, 李婷婷, 陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[10] 周波, 曹颖辉, 齐井顺, 黄世伟, 刘策, 贾进华, 陈秀艳. 塔里木盆地古城地区下奥陶统储层发育机制[J]. 天然气地球科学, 2018, 29(6): 773-783.
[11] 王珊, 曹颖辉, 杜德道, 王石, 李洪辉, 董洪奎, 严威, 白莹. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素[J]. 天然气地球科学, 2018, 29(6): 784-795.
[12] 曹颖辉, 李洪辉, 闫磊, 王洪江, 张君龙, 杨敏, 赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
[13] 闫磊, 李洪辉, 曹颖辉, 杨敏, 赵一民. 塔里木盆地满西地区寒武系台缘带演化及其分段特征[J]. 天然气地球科学, 2018, 29(6): 807-816.
[14] 杨敏, 赵一民, 闫磊, 李洪辉, 张欣欣, 徐振平, 罗浩渝. 塔里木盆地东秋里塔格构造带构造特征及其油气地质意义[J]. 天然气地球科学, 2018, 29(6): 826-833.
[15] 陈斐然, 张义杰, 朱光有, 张宝收, 卢玉红, 张志遥. 塔里木盆地台盆区深层天然气地球化学特征及成藏演化[J]. 天然气地球科学, 2018, 29(6): 880-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[2] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[3] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[4] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[5] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[6] 廖成君. VSP技术在锦612复杂断块油藏开发部署研究中的应用[J]. 天然气地球科学, 2005, 16(1): 117 -122 .
[7] 马立祥. 岩石物理流动单元的概念及其研究现状[J]. 天然气地球科学, 2000, 11(2): 30 -36 .
[8] 杜乐天;. 地球的5个气圈与中地壳天然气开发[J]. 天然气地球科学, 2006, 17(1): 25 -30 .
[9] 周世新;邹红亮;解启来;贾星亮;. 沉积盆地油气形成过程中有机-无机相互作用[J]. 天然气地球科学, 2006, 17(1): 42 -47 .
[10] 曹华;龚晶晶;汪贵锋;. 超压的成因及其与油气成藏的关系[J]. 天然气地球科学, 2006, 17(3): 422 -425 .