天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 73–83.doi: 10.11764/j.issn.1672-1926.2019.07.014

• 天然气地球化学 • 上一篇    下一篇

有限空间温压共控热模拟油气产物地球化学特征

赵晗1,2,3(),马中良1,4,5(),郑伦举4,5,谭静强1,2,3,李群1,2,3,王张虎1,2,3,宁传祥4,5   

  1. 1.中南大学地球科学与信息物理学院,湖南 长沙 410083
    2.有色金属成矿预测与地质环境监测教育部重点实验室(中南大学),湖南 长沙 410083
    3.有色资源与地质灾害探查湖南省重点实验室,湖南 长沙 410083
    4.中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所,江苏 无锡 214126
    5.页岩油气富集机理与有效开发国家重点实验室,江苏 无锡 214126
  • 收稿日期:2019-06-09 修回日期:2019-07-08 出版日期:2020-01-10 发布日期:2020-01-09
  • 通讯作者: 马中良 E-mail:1065547633@qq.com;mazl.syky@sinopec.com
  • 作者简介:赵晗(1994?),男,陕西富平人,硕士研究生,主要从事非常规油气地质研究.E-mail:1065547633@qq.com.
  • 基金资助:
    国家科技重大专项(2017ZX05036002-004);国家自然科学基金(41872151);中南大学创新驱动计划(502501005);中南大学中央高校基本科研业务费专项资金(502221901)

Geochemical characteristics of hydrocarbon products under thermal simulation of temperature and pressure co-control in finite space

Han ZHAO1,2,3(),Zhong-liang MA1,4,5(),Lun-ju ZHENG4,5,Jing-qiang TAN1,2,3,Qun LI1,2,3,Zhang-hu WANG1,2,3,Chuan-xiang NING4,5   

  1. 1.School of Geosciences and Info?Physics, Central South University, Changsha 410083, China
    2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring Ministry of Education, School of Geoscience and Infophysics, Central South University, Changsha 410083, China
    3.Hunan Key Laboratory of Nonferrous Resources and Geological Hazards Exploration, Changsha 410083, China
    4.Wuxi Research Institute of Petroleum Geology, Sinopec, Wuxi 214126, China
    5.State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi 214126, China
  • Received:2019-06-09 Revised:2019-07-08 Online:2020-01-10 Published:2020-01-09
  • Contact: Zhong-liang MA E-mail:1065547633@qq.com;mazl.syky@sinopec.com
  • Supported by:
    China National Science & Technology Major Project(2017ZX05036002-004);National Natural Science Foundation of China(41872151);Innovation-driven Project of Central South University(502501005);Fundamental Research Funds for the Central Universities of Central South University(502221901)

摘要:

生烃反应是烃源岩在有限的地层孔隙空间内受温度、上覆地层静岩压力、地层孔隙流体压力等多种因素相互作用的过程,而热模拟实验是正演研究有机质生烃反应的常见手段。但较多的热模拟实验受仪器装置的限制,仅考虑了温度的作用,与实际地质演化存在较大差异。选取泌阳凹陷泌215井古近系核桃园组泥岩样品,分别进行了有限空间温压共控和温控热模拟实验,通过族组分、同位素、GC、GC?MS等方法分析了2种模拟实验条件下的油气产物。结果表明:①有限空间温压共控热模拟残留油饱和烃可以保存至较高的演化阶段;②相同模拟温度下,有限空间温压共控热模拟残留油的饱和烃参数Pr/Ph值、Pr/C17值大于温控热模拟实验,饱和烃生物标志物参数值C29 20S/(20S+20R)、C29 ββ/(αα+ββ)等小于温控热模拟实验;③有限空间温压共控热模拟的烃类气体δ13C值大于温控模拟实验。上述现象主要是由于有限空间温压共控热模拟实验中高压孔隙流体的存在延缓了热成熟和原油裂解反应过程。因此,在开展热模拟实验研究时应考虑研究区是否发育超压、地层水等因素,其直接关系着热模拟实验结果的地质适用性。

关键词: 有限空间温压共控, 温控, 热模拟, 残留油, 地球化学

Abstract:

Hydrocarbon generation reaction is comprehensively affected by temperature, static pressure, and pore pressure of strata in the limited pore space of the source rocks, and the thermal simulation experiment is a useful method to model hydrocarbon generation of organic matter. However, many thermal simulation experiments are limited by instrumentation, and only consider the effect of temperature, which is obviously different from the actual geological conditions. Here, the Hetaoyuan Formation mudstone of Well B215 in Biyang Depression is selected as samples to conduct simulation experiment of temperature and pressure co-controlling in finite space and that of only temperature-controlled, respectively. The oil and gas products under the two experiments have been analyzed by group composition, isotope, GC, GC-MS. The results indicate that: (1) The saturated hydrocarbons from residual oil can be preserved at a higher evolution stage under the condition of temperature and pressure co-control in finite space; (2) Under the same simulation temperature, the parameters Pr/Ph, Pr/C17 of the residual oil saturated hydrocarbons are higher in temperature and pressure co-control thermal simulation experiment, while the parameters C29 20S/(20S+20R) and C29 ββ/(αα+ββ) etc. of residual oil steroids and terpenoids are smaller than those of temperature-controlled experiment; (3) The value of carbon isotope δ13C of hydrocarbon gas under the thermal simulation of temperature and pressure co-control in finite space is higher than that of temperature-controlled thermal simulation. The above phenomena are mainly caused by the existence of high-pressure pore fluid, which delays the process of thermal maturation and crude oil cracking under the simulation experiment of temperature and pressure co-control in finite space. Therefore, the potential overpressure and formation water in the study area should be considered when conducting thermal simulation experiment, since it directly affects the geological applicability of the simulation results.

Key words: Temperature and pressure co-control in finite space, Temperature-controlled, Thermal simulation, residual oil, Geochemistry

中图分类号: 

  • TE122.1+13

表1

2种不同热模拟方式下的实验样品基础地球化学数据"

热模拟方式

埋深

/m

RO

/%

Tmax

/℃

TOC

/%

氯仿沥青“A”

/%

S2

/(mg/g)

IH

/(mg/g)

IO

/(mg/g)

有限空间温压共控热模拟1 523.00.384442.640.073 915.8360014
温控热模拟1 532.50.384453.220.041 922.3068413

表2

2种不同热模拟方式的实验边界条件[16]"

序号埋深/m温度/℃有限空间温压共控热模拟温控热模拟
静岩压力/MPa最低地层流体压力/MPa最高地层流体压力/MPa

Ro

/%

加水量/mL实际体系压力/MPa

RO

/%

11 50027534.5015.0022.500.356.04.100.34
21 70030039.1017.0025.500.416.06.600.39
32 00032546.0020.0030.000.536.09.800.48
42 26135052.0022.6133.920.816.011.400.92
52 40036055.2024.0036.000.986.014.201.01
62 50037057.5025.0037.501.426.015.101.45
72 80038064.4028.0042.001.676.015.901.61
83 00040069.0030.0045.002.066.018.302.04
94 00042592.0040.0060.002.406.022.202.61
105 000450115.0050.0075.002.766.023.103.10
116 500500149.5065.0097.503.186.034.703.38

图1

2种不同热模拟方式示意"

图2

2种不同模拟方式残留油和排出油产率特征"

图3

2种不同热模拟方式残留油族组分演化特征"

图4

2种不同热模拟方式残留油饱和烃参数演化特征"

图5

2种不同热模拟方式残留油甾萜烷系列化合物参数对比"

图6

2种不同热模拟方式残留油族组分碳同位素演化特征"

图7

2种热模拟方式气态烃类碳同位素组成与模拟温度的变化关系"

1 TISSOT B P, WELTE D H. Petroleum Formation and Occurrence[M]. New York: Springer-Verlag,1984: 699.
2 BURNHAM A K, BRAUN R L, SAMOUN A M. Further comparison of methods for measuring kerogen pyrolysis rates and fitting kinetic parameters[J]. Organic Geochemistry,1988, 13(4-6): 0-845.
3 CONNAN J. Time-temperature relation in oil genesis[J]. AAPG Bulletin,1976, 58 (12): 2516-2521.
4 李志明, 郑伦举, 马中良,等. 烃源岩有限空间油气生排模拟及其意义[J]. 石油实验地质, 2011, 33(5): 447-451.
LI Z M, ZHENG L J, MA Z L, et al. Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J]. Petroleum Geolgogy & Experiment, 2011, 33(5): 447-451.
5 关德范, 徐旭辉, 李志明, 等. 烃源岩有限空间生排烃基础研究新进展[J]. 石油实验地质, 2011, 33(5): 441-446.
GUAN D F, XU X H, Li Z M, et al. New progress in basic studies of hydrocarbon generation and expulsion of source rock in finite space[J]. Petroleum Geology & Experiment, 2011, 33(5): 441-446.
6 郑伦举, 秦建中, 何生,等. 地层孔隙热压生排烃模拟实验初步研究[J]. 石油实验地质, 2009, 31(3): 296-302.
ZHENG L J, QIN J Z, HE S, et al. Preliminary study of formation porosity thermocompression simulation experiment of hydrocarbon generation and expulsion[J]. Petroleum Geology & Experiment, 2009, 31(3): 296-302.
7 郑伦举, 何生, 秦建中, 等. 近临界特性的地层水及其对烃源岩生排烃过程的影响[J]. 地球科学:中国地质大学学报, 2011, 36(1): 83-92.
ZHENG L U, HE S, QIN J Z, et al. Formation water of near-critical properties and its effects on the processes of hydrocarbon generation and expulsion[J]. Earth Science:Journal of China University of Geosciences, 2011, 36(1): 83-92.
8 米敬奎, 张水昌, 王晓梅. 不同类型生烃模拟实验方法对比与关键技术[J]. 石油实验地质, 2009, 31(4): 409-414.
MI J K, ZHANG S C, WANG X M. Comparison of different hydrocarbon generation simulation approaches and key technique[J]. Petroleum Geology & Experiment, 2009, 31(4): 409-414.
9 王民, 卢双舫, 王东良, 等. 不同热模拟实验煤热解产物特征及动力学分析[J]. 石油学报, 2011, 32(5):806-814.
WANG M, LU S F, WANG D L, et al. Characteristics and kinetic of coal pyrolysates with different thermal simulation apparatuses[J]. Acta Petrolei Sinica, 2011, 32(5):806-814.
10 彭威龙, 胡国艺, 刘全有,等. 热模拟实验研究现状及值得关注的几个问题[J]. 天然气地球科学, 2018, 29(9):40-51.
PENG W L, HU G Y, LIU Q Y, et al. Research status on thermal simulation experiment and several issues for concerns[J]. Natural Gas Geoscience, 2018, 29(9):40-51.
11 刘全有, 刘文汇, 宋岩,等. 塔里木盆地煤岩显微组分热模拟实验中液态烃特征研究[J]. 天然气地球科学, 2004, 15(3):297-301.
LIU Q Y, LIU W H, SONG Y, et al. Characteristics of liquid hydrocarbon for Tarim coal and its macerals in thermal pyrolysis experiments[J]. Natural Gas Geoscience, 2004, 15(3):297-301.
12 刘全有, 刘文汇, 孟仟祥. 塔里木盆地煤岩在不同介质条件下热模拟实验中烷烃系列有机地球化学特征[J]. 天然气地球科学,2006, 17(3): 313-318.
LIU Q Y, LIU W H, MENG Q X. Organic geochemistry of nalkanes from Tarim coal with different materials in pyrolysis under closed system[J]. Natural Gas Geoscience, 2006, 17(3): 313-318.
13 刘全有, 刘文汇, 孟仟祥. 热模拟实验中煤岩及显微组分饱和烃甾烷系列化合物有机地球化学特征[J]. 天然气地球科学, 2007, 18(2): 249-253.
LIU Q Y, LIU W H, MENG Q X. Geochemical characteristics of steranes in saturated hydrocarbons from coal and exinite in pyrolysis under closed systems[J]. Natural Gas Geoscience, 2007, 18(2): 249-253.
14 孙涛,段毅.煤系有机质生成烃类中甾烷系列化合物地球化学特征——以高温封闭体系下热模拟实验为例[J]. 天然气地球科学,2011, 22(6): 1082-1087.
SUN T, DUAN Y. Geochemical characteristics of steranes of coal generated hydrocarbons: A case of high temperature and fined simulated experiment[J]. Natural Gas Geoscience,2011, 22(6): 1082-1087.
15 孙丽娜, 张中宁, 吴远东,等. 生物标志化合物热成熟度参数演化规律及意义——以Ⅲ型烃源岩HTHP生排烃热模拟液态烃产物为例[J]. 石油与天然气地质, 2015, 36(4):573-580.
SUN L N, ZHANG Z N, Wu Y D, et al. Evolution patterns and their significances of biomarker maturity parameters:A case study on liquid hydrocarbons from type III source rock under HTHP hydrous pyrolysis[J]. Oil & Gas Geology, 2015, 36(4):573-580.
16 马中良, 郑伦举, 李志明. 烃源岩有限空间温压共控生排烃模拟实验研究[J]. 沉积学报, 2012, 30(5):955-963.
MA Z L, ZHENG L J, LI Z M. The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J]. Acta Sedimentologica Sinica, 2012, 30(5):955-963.
17 魏琴. 煤温压热模拟实验中排出物及残留物的地球化学表征[D]. 北京:中国地质大学,2018.
WEI Q. Geochemical Characterization of Hydrocarbon Generation and Expulsion From Thermal and Pressure Simulation of Coal[D]. Beijing :China University of Geosciences, 2018.
18 余晓露, 马中良, 郑伦举, 等. 不同热模拟方式下烃源岩干酪根演化特征红外光谱分析[J]. 石油实验地质, 2017, 39(1):134-140.
YU X L, MA Z L, ZHENG L J, et al. FTIR analyses of source rock kerogen from different hydrous pyrolysis experiments[J].Petroleum Geology & Experiment,2017,39(1):134-140.
19 HAVEN H L TEN, DE LEEUW J W, RULLKÖTTER J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149):641-643.
20 CHEN Z H, ZHANG S C, ZHA M. Geochemical evolution during the cracking of crude oil into gas under different pressure systems[J]. Science China Earth Sciences, 2014, 57(3):480-490.
21 HAO F, LI S T, DONG W L, et al. Abnormal organic-matter maturation in the Yinggehai Basin, South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems[J]. Journal of Petroleum Geology, 2010, 21(4):427-444.
22 刘光祥. 塔里木盆地S74井稠油热模拟实验研究(一)——模拟产物地球化学特征[J]. 石油实验地质, 2008, 30(2):179-185.
LIU G X. Thermal simulation study of crude oil from Well S74 in the Tarim Basin(Ⅰ):Geochemical characteristics of the simulation products[J]. Petroleum Geology & Experiment, 2008, 30(2):179-185.
23 蒋文龙. 西加盆地烃源岩自然演化与热模拟地球化学特征对比研究[D]. 北京:中国地质大学, 2016.
JIANG W L. Comparative Study on the Source Rock Geochemical Characteristics of Natural Evolution and Yhermal Simulation in Western Canada Sedimentary Basin[D]. Beijing :China University of Geosciences, 2016.
24 PRICE L C, MACKO S A, ENGEL M H, et al. Thermal stability of hydrocarbons in nature; limits, evidence, characteristics, and possible controls[J]. Geochimica et Cosmochimica Acta, 1993, 57(14):3261-3280.
25 张中宁, 刘文汇, 王作栋,等. 塔北隆起深层海相油藏中原油及族组分碳同位素组成的纵向分布特征及其地质意义[J]. 沉积学报, 2008, 26(4):709-714.
ZHANG Z N, LIU W H, WANG Z D, et al. Vertical distribution characteristics and its geological Significance for carbon isotopic composition of oils and its group components of deep marine oil reservoirs in Tabei Uplift Tarim Basin[J]. Acta Se-dimentologica Sinica, 2008, 26(4):709-714.
26 刘虎, 廖泽文, 张海祖, 等.干酪根及其演化产物中稳定碳同位素的倒转分布—研究进展及对塔里木盆地海相油气藏研究的启发[J]. 矿物岩石地球化学通报, 2013, 32(4): 497-502.
LIU H, LIAO Z W, ZHANG H Z, et al. Review of the study on stable carbon isotope reversal between kerogen and its evolution products: Implication for the research of the marine oil reservoirs in the Tarim Basin, NW China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(4): 497-502.
27 张文正. 有机质碳同位素的成熟分馏作用及地质意义[J]. 石油实验地质, 1989, 11(2):177-184.
ZHANG W Z. Fractionation of carbon isotopes of organic matter and its geological significence[J]. Petroleum Geology & Experiment, 1989, 11(2):177-184.
28 刘文汇, 王杰, 腾格尔,等. 南方海相不同类型烃源生烃模拟气态烃碳同位素变化规律及成因判识指标[J]. 中国科学:地球科学, 2012,42(7):973-982.
LIU W H, WANG J, TENG G E, et al. Stable carbon isotopes of gaseous alkanes as genetic indicators inferred from laboratory pyrolysis experiments of various marine hydrocarbon source materials from southern China[J]. Science China: Earth Science, 2012,42(7):973-982.
29 戴金星, 夏新宇, 秦胜飞, 等. 中国有机烷烃气碳同位素系列倒转的成因[J]. 石油与天然气地质, 2003, 24(1):1-6.
DAI J X, XIA X Y, QIN S F, et al. Causation of partly reversed orders of δ13C in biogenic alkane gas in China[J]. Oil & Gas Geology, 2003, 24(1):1-6.
30 戴金星. 天然气中烷烃气碳同位素研究的意义[J]. 天然气工业, 2011, 31(12):1-6.
DAI J X. Significance of the study on carbon isotopes of alkane gases[J]. Natural Gas Industry, 2011, 31(12):1-6.
[1] 吴小奇, 陈迎宾, 翟常博, 周小进, 刘文汇, 杨俊, 宋晓波. 四川盆地中三叠统雷口坡组天然气来源及勘探方向[J]. 天然气地球科学, 2020, 31(9): 1204-1215.
[2] 郭萍. 渤海湾盆地冀中坳陷上古生界煤系烃源岩地球化学特征与生烃演化[J]. 天然气地球科学, 2020, 31(9): 1306-1315.
[3] 王碧维, 徐新德, 吴杨瑜, 游君君, 雷明珠. 珠江口盆地西部文昌凹陷油气来源与成藏特征[J]. 天然气地球科学, 2020, 31(7): 980-992.
[4] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[5] 郑剑锋, 黄理力, 袁文芳, 朱永进, 乔占峰. 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 2020, 31(5): 698-709.
[6] 王珊, 曹颖辉, 张亚金, 杜德道, 徐兆辉, 杨敏, 赵一民. 塔里木盆地古城地区奥陶系鹰三段硅质岩地球化学特征及成因[J]. 天然气地球科学, 2020, 31(5): 710-720.
[7] 谢增业, 杨春龙, 董才源, 戴鑫, 张璐, 国建英, 郭泽清, 李志生, 李谨, 齐雪宁. 四川盆地中泥盆统和中二叠统天然气地球化学特征及成因[J]. 天然气地球科学, 2020, 31(4): 447-461.
[8] 朱明, 梁则亮, 马健, 庞志超, 王俊, 焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[9] 张殿伟, 何治亮, 李甘璐. 四川盆地奥陶系油气地球化学特征及成藏模式[J]. 天然气地球科学, 2020, 31(3): 428-435.
[10] 刘海磊, 李卉, 向辉, 王学勇, 杜社宽. 准噶尔盆地东南缘阜康断裂带及其周缘原油地球化学特征和成因[J]. 天然气地球科学, 2020, 31(2): 258-267.
[11] 王森, 张明震, 李爱静, 张静, 杜圳, 杜宝霞, 吉利民, 张献文. 潮水盆地和民和盆地中侏罗统青土井组煤系烃源岩有机地球化学特征及其意义[J]. 天然气地球科学, 2020, 31(2): 282-294.
[12] 郭志扬,刘华,程斌,杨贵丽,徐昊清,张芷晴. 渤海湾盆地济阳坳陷埕岛—桩西潜山油气特征与来源[J]. 天然气地球科学, 2020, 31(10): 1437-1452.
[13] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[14] 胡维强, 李洋冰, 陈鑫, 马立涛, 刘成, 黄英, 乔方, 王朵, 刘再振. 鄂尔多斯盆地临兴地区上古生界天然气成因及来源[J]. 天然气地球科学, 2020, 31(1): 26-36.
[15] 张迈, 刘成林, 田继先, 庞皓, 曾旭, 孔骅, 杨赛. 柴达木盆地西部地区原油地球化学特征及油源对比[J]. 天然气地球科学, 2020, 31(1): 61-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 赵生才;. 香山科学会议第268次学术讨论会“中国煤层气资源及产业化”召开[J]. 天然气地球科学, 0, (): 6 .
[8] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[9] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[10] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .