天然气地球科学 ›› 2020, Vol. 31 ›› Issue (1): 110–121.doi: 10.11764/j.issn.1672-1926.2019.06.008

• 非常规天然气 • 上一篇    下一篇

沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价

钟秋1(),傅雪海1(),张苗1,张庆辉2,程维平3   

  1. 1.中国矿业大学煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221116
    2.山西省煤炭地质勘查研究院,山西 太原 030001
    3.山西省地质矿产研究院,山西 太原 030001
  • 收稿日期:2019-05-22 修回日期:2019-06-28 出版日期:2020-01-10 发布日期:2020-01-09
  • 通讯作者: 傅雪海 E-mail:764669679@qq.com;fuxuehai@163.com
  • 作者简介:钟秋(1996-),女,湖南张家界人,硕士,主要从事非常规天然气研究.E-mail:764669679@qq.com
  • 基金资助:
    中国矿业大学双一流建设自主创新专项(2018ZZCX05)

Development potential of Carboniferous-Permian coal measures shales gas in Qinshui coalfield

Qiu ZHONG1(),Xue-hai FU1(),Miao ZHANG1,Qing-hui ZHANG2,Wei-ping CHENG3   

  1. 1.Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process, Ministry of Education, China School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, China
    2.China Shanxi Provincial Coal Geological Exploration and Research Institute, Taiyuan 030001, China
    3.Shanxi Provincial Research Institute of Geology and Mineral Resources, Taiyuan 030001, China
  • Received:2019-05-22 Revised:2019-06-28 Online:2020-01-10 Published:2020-01-09
  • Contact: Xue-hai FU E-mail:764669679@qq.com;fuxuehai@163.com
  • Supported by:
    Double First Class Construction Independent Innovation Project, China University of Mining and Technology(2018ZZCX05)

摘要:

通过对采集自沁水煤田27口钻孔695块山西组—太原组泥页岩岩心样品开展总有机碳含量(TOC)、岩石热解、有机质成熟度和全岩X?射线衍射等实验,分析了煤系泥页岩的有机地球化学及矿物组成特征。结果表明:海陆交互相煤系泥页岩TOC平均值大于2.0%,中—好等烃源岩主要集中在第Ⅱ层段;泥页岩以III型干酪根为主,热演化程度主要处于过成熟阶段,转化率程度高;沁水煤田泥页岩主要为黏土质泥页岩,矿物组成以高黏土、低硅质矿物为特征,黏土矿物中高岭石富集;基于矿物组成法计算泥页岩脆性指数主要分布在30%~50%之间,平均大于40%,脆性指数Ⅱ>III>Ⅳ>Ⅰ(第I层段为K8—3#煤,第II层段为3#煤—K4灰岩,第III层段为K4灰岩—15#煤,第IV层段为15#煤—铁铝岩段);气测异常层、含气层和气层厚度比例分别为4.78%、33.38%、61.83%,气测显示以气层为主,气测显示级别II>III>IV>I。综合煤系泥页岩厚度、有机质丰度、脆性特征和含气性特征等评价了各层段页岩气的勘探开发潜力有利顺序依次为II>III>IV>I。

关键词: 页岩气, 煤系泥页岩, 有机地球化学, 矿物组成, 海陆交互相, 沁水煤田

Abstract:

The organic geochemistry and mineral composition characteristics of shale in coal measures are analyzed through the experiments of total organic carbon content (TOC), rock pyrolysis, maturity of organic matter and rock X-ray diffraction of 695 shale core samples collected from 27 wells in Qinshui coalfield. The results show that the average TOC value of marine-terrigenous facies shale in coal measures is more than 2.0%, and the middle-good source rocks are mainly concentrated in the second interval. The shale is mainly composed of Type III kerogen, and its thermal evolution is mainly at the over-mature stage with high conversion rate. The shale in Qinshui coalfield is mainly clayey shale. Its mineral composition is characterized by high clay and low silica minerals, and kaolinite is enriched in clay minerals. The rock brittleness index based on mineral composition is mainly distributed between 30% and 50%, with an average of more than 40%, and the brittleness index is II>III>IV>I (The first interval is K8-3# coal, the second interval is 3# coal-K4 limestone, the third interval is K4 limestone-15# coal, and the fourth interval is 15# coal- the Fe-Al-Bearing Rock Members). The ratio of abnormal layer, gas-bearing layer and gas layer thickness is 4.78%, 33.38% and 61.83%, respectively. Gas layer is dominant, and the gas measurement shows the level is II>III>IV>I. Based on the comprehensive analysis of the thickness, organic matter abundance, brittleness and gas-bearing characteristics of shale gas in coal measures, the favorable sequence of the exploration and development potential of shale gas in each interval is II>III>IV>I.

Key words: Shale gas, Shale in coal measures, Organic geochemistry, Mineral composition, Marine-terrigenous facies, Qinshui coalfield

中图分类号: 

  • TE132.2

图1

沁水煤田构造纲要图、煤系综合柱状图及采样钻孔分布图(据参考文献[9,10]修改)(a)构造纲要图 (b)采样钻孔图 (c)综合柱状图"

图2

煤系泥页岩各层段TOC分布频率柱状图"

图3

煤系泥页岩各层段TOC大于2%厚度分布频率柱状图"

图4

泥页岩产烃潜量Pg(S0+S1+S2)分布柱状图"

图5

研究区泥页岩TOC—Pg图"

表1

研究区不同含煤地层泥页岩有机地球化学参数"

参数第Ⅰ层段第Ⅱ层段第Ⅲ层段第Ⅳ层段
TOC/%范围0.17~17.250.14~23.320.12~46.360.22~35
均值2.682.822.953.69
Tmax/范围318.8~578.3347.5~589.2317.5~568.8456.42~590.8
均值517.98509.8487.93525.1
S2/(mg/g)范围0.008 9~2.130.006~5.840.010 5~1.250.025 6~0.83
均值0.520.530.430.37
生油潜量(P)/(mg/g)范围0.015 1~2.180.020 8~5.930.018 3~1.290.034 0~0.85
均值0.530.540.450.40
生烃潜量(Pg)/(mg/g)范围0.121 4~2.180.166 5~5.930.018 3~1.290.035 6~0.85
均值0.530.540.450.43
有效碳(PC)/%范围0.001 4~0.180 90.001 8~0.491 80.001 5~0.106 90.003 0~0.070 9
均值0.044 10.045 10.037 30.033 0
氢指数(IH)/(mg/g)范围0.89~165.080.84~362.120.77~134.035.43~81.34
均值48.3452.0745.2742.55
降解潜率(D)/%范围0.14~16.300.25~43.910.11~13.030.63~7.77
均值4.844.854.193.94

图6

最大热解峰温(Tmax)—氢指数(IH)图版"

图7

煤系泥页岩降解潜率(D)与氢指数(IH)"

图8

煤系泥页岩有机质成熟度分布箱形图"

图9

有机质成熟度与埋深之间的关系"

图10

泥页岩矿物组成三端元岩相图(图版据参考文献[26])"

图11

脆性指数(BI)分布柱状图"

图12

气测各级别单层平均厚度柱状图"

图13

各层段气测各级别厚度占各级别总厚度百分比柱状图"

1 赵靖舟,方朝强,张洁,等.由北美页岩气勘探开发看我国页岩气选区评价[J].西安石油大学学报:自然科学版,2011,26(2):1-7.
ZHAO J Z, FANG C Q, ZHANG J, et al. Evaluation of shale gas selection in China from North American shale gas exploration and development[J]. Journal of Xi′an Petroleum Uni-versity: Natural Science Edition, 2011, 26 (2): 1-7.
2 张跃磊,李大华,郭东鑫.页岩气储层压裂改造技术综述[J].非常规油气,2015,2(1):76-82.
ZHANG Y L, LI D H, GUO D X. Overview of shale gas reservoir fracturing technology[J]. Unconventional Oil and Gas, 2015, 2 (1): 76-82.
3 邹才能,董大忠,王社教,等.中国页岩气形成机理,地质特征及资源潜力[J].石油勘探与开发,2010,37(6):641-653.
ZOU C N, DONG D Z, WANG S J, et al. Formation mechanism, geological characteristics and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37 (6): 641-653.
4 郭少斌,付娟娟,高丹,等.中国海陆交互相页岩气研究现状与展望[J].石油实验地质,2015, 37(5):535-540.
GUO S B, FU J J, GAO D, et al. Research status and prospects of marine-terrigenous transitional facies shale gas in China[J].Petroleum Geology & Experiment,2015,37(5): 535-540.
5 孙则朋,王永莉,魏志福,等.海陆过渡相页岩含气性及气体地球化学特征——以鄂尔多斯盆地山西组页岩为例[J]. 中国矿业大学学报,2016,45(2):301-309.
SUN Z P, WANG Y L, WEI Z F, et al. Gas-bearing and gas geochemical characteristics of marine-terrigenous facies shale: A case study of the Shanxi Formation shale in the Ordos Basin[J]. Journal of China University of Mining & Technology, 2016, 45(2): 301-309.
6 苏育飞.山西省海陆过渡相煤系“三气”共探共采展望[J].中国煤层气,2016,13(6):7-11.
SU Y F. Prospects for co-exploration and co-exploitation of "three gases" in transitional marine and terrestrial coal measures in Shanxi Province[J]. Coalbed methane in China, 2016, 13(6): 7-11.
7 衣骏杰,唐书恒,张松航,等.沁水盆地阳曲区块煤系烃源岩地球化学特征分析[J].煤炭科学技术,2014,42(s1):233-236.
YI J J, TANG S H, ZHANG S H, et al. Analysis of geochemical characteristics of coal-bearing source rocks in Yangqu block, Qinshui Basin[J].Coal Science and Technology, 2014, 42(s1): 233-236.
8 林玉祥,舒永,赵承锦,等. 沁水盆地含煤地层天然气统筹勘探方法及有利区预测[J]. 天然气地球科学,2017,28(5):744-754.
LIN Y X, SHU Y, ZHAO C J, et al. Natural gas exploration methods and favorable area prediction of coal-bearing strata in Qinshui Basin[J]. Natural Gas Geoscience, 2017,28(5): 744-754.
9 秦勇.沁水盆地煤层气构造动力条件耦合控藏效应[J].地质学报, 2008,82(10):1355-1362.
QIN Y. Coupling control effect of coalbed methane structural dynamic conditions in Qinshui Basin[J]. Acta Geologica Sinica, 2008, 82(10): 1355-1362.
10 杨晓东,张苗,魏巍,等. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学,2017,28(3):356-365.
YANG X D, ZHANG M, WEI W, et al. Pore characteristics of the “three gas” reservoirs in the coal block of Guxian block, Qinshui Basin[J]. Natural Gas Geoscience,2017,28(3): 356-365.
11 苏育飞,张庆辉,魏子聪.沁水盆地石炭系—二叠系页岩气资源潜力评价[J].中国煤炭地质,2016,28(4):27-34.
Su Y F, Zhang Q H, Wei Z C. Evaluation of Carboniferous-Permian shale gas resources potential in Qinshui Basin[J].Chinese Coal Geology, 2016, 28(4): 27-34.
12 王阳,朱炎铭,陈尚斌,等. 湘西北下寒武统牛蹄塘组页岩气形成条件分析[J]. 中国矿业大学学报,2013,42(4):586-594.
WANG Y, ZHU Y M, CHEN S B, et al. Analysis of shale gas formation conditions in the Lower Cambrian Niutitang Formation in northwestern Hunan[J]. Journal of China University of Mining & Technology, 2013, 42(4): 586-594.
13 BURNAMAN M D, XIA WW, SHELTON J. Shale gas play screening and evaluation criteria[J]. China Petroleum Exploration, 2009, 14(3): 51-64.
14 CURTIS M E, CARDOTT B J, SONDERGELD C H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(23): 26-31.
15 PETERS K E, CASSA M R. Applied Source Rock Geochemistry[M]. Tulsa Oklahoma: American Association of Petroleum Geologists, 1994, 5(2): 93-120.
16 陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发,1997,24(1):1-5.
CHEN J P, ZHAO C Y, HE Z H. Discussion on evaluation criteria of hydrocarbon generation potential of coal-based organic matter[J].Petroleum Exploration and Development, 1997, 24(1): 1-5.
17 钱宇.准噶尔盆地东部侏罗系烃源岩和天然气地球化学特征及低熟气勘探前景[J].石油学报,2017,38(1):44-54.
QIAN Y. Geochemical characteristics of Jurassic source rocks and natural gas and prospects for low-mature gas exploration in the eastern Junggar Basin and [J].Acta Petrolei Sinica, 2017, 38(1): 44-54.
18 郭继刚,王绪龙,庞雄奇,等. 准噶尔盆地南缘中下侏罗统烃源岩评价及排烃特征[J]. 中国矿业大学学报, 2013,42(4):595-605.
GUO J G, WANG X L, PANG X Q, et al. Evaluation and hydrocarbon expulsion characteristics of Middle and Lower Jurassic source rocks in the southern margin of Junggar Basin[J]. Journal of China University of Mining & Technology, 2013, 42(4): 595-605.
19 杨万里,李永康,高瑞祺, 等.松辽盆地陆相生油母质的类型与演化模式[J].中国科学数学:中国科学, 1981,24(8):1000-1008.
YANG W L, LI Y K, GAO R Q, et al. Types and evolution patterns of terrestrial kerogen in Songliao Basin[J].Chinese Science Mathematics: Chinese Science, 1981, 24(8): 1000-1008.
20 戴鸿鸣,黄东,刘旭宁,等.蜀南西南地区海相烃源岩特征与评价[J].天然气地球科学,2008,19(4):503-508.
DAI H M, HUANG D, LIU X N, et al. Characteristics and evaluation of marine source rocks in southwestern Yunnan[J].Natural Gas Geoscience, 2008, 19(4): 503-508.
21 袁二军,崔彬,冯小伟,等.南祁连盆地东北部木里地区三叠系尕勒得寺组烃源岩评价[J].中国矿业,2013,22(z1):163-167.
YUAN E J, CUI B, FENG X W, et al. Evaluation of source rocks of the Triassic Juerdesi Formation in the Muli area, northeastern Nanqilian Basin[J].China Mining Magazine, 2013, 22(z1): 163-167.
22 中国石油天然气总公司. SY/T 5735—1995陆相烃源岩地球化学评价方法[S].北京: 石油工业出版社, 1995.
China National Petroleum and Natural Gas Corporation. SY/T 5735-1995 Geochemical Evaluation Method for Continental Source Rocks[S]. Beijing: Petroleum Industry Press, 1995.
23 高德燚,胡宝林,刘会虎,等.淮南煤田泥页岩地球化学特征分析及生烃潜力评价[J].煤炭科学技术,2017,45(5):198-204.
GAO D Z, HU B L, LIU H H, et al. Geochemical characteristics and hydrocarbon generation potential evaluation of shale in Huainan coalfield[J].Coal Science and Technology, 2017, 45(5): 198-204.
24 Yang C, Zhang J, Han S, et al. Compositional controls on pore-size distribution by nitrogen adsorption technique in the Lower Permian Shanxi Shales, Ordos Basin[J]. Journal of Natural Gas Science and Engineering, 2016,34: 1369-1381.
25 韩双彪. 渝东南下寒武页岩纳米级孔隙特征及其储气性能[J]. 煤炭学报,2013,38(6):1038-1043.
HAN S B. Nanoscale pore characteristics and gas storage properties of the Lower Cambrian shale in southeastern Guizhou[J]. Journal of China Coal Society, 2013, 38(6): 1038-1043.
26 张晨晨,王玉满,董大忠,等.川南长宁地区五峰组—龙马溪组页岩脆性特征[J].天然气地球科学,2016,27(9):1629-1639.
ZHANG C C, WANG Y M, DONG D Z, et al. Brittleness characteristics of Wufeng Formation-Longmaxi Formation shale in Changning area, southern Sichuan[J].Natural Gas Geoscience, 2016, 27(9): 1629-1639.
27 祝彦贺,陈桂华,梁建设,等. 页岩油气甜点识别的综合评价方法[J]. 中国矿业大学学报,2016,45(2):301-309.
ZHU Y H, CHEN G H, LIANG J S, et al. Comprehensive evaluation method for shale oil and gas dessert identification[J]. Journal of China University of Mining & Technology, 2016, 45(2): 301-309.
28 陈吉,肖贤明. 南方古生界3套富有机质页岩矿物组成与脆性分析[J]. 煤炭学报,2013,38(5):822-826.
CHEN J, XIAO X M. Analysis of mineral composition and brittleness of three sets of organic-rich shale in the Paleozoic of the South China[J]. Journal of China Coal Society, 2013, 38(5): 822-826.
29 秦勇,梁建设,申建,等.沁水盆地南部致密砂岩和页岩的气测显示与气藏类型[J].煤炭学报,2014,39(8):1559-1565.
QIN Y, LIANG J S, SHEN J, et al. Gas measurement and gas reservoir types of tight sandstones and shale in the southern Qinshui Basin[J].Journal of China Coal Society,2014, 39(8):1559-1565.
30 邹才能,陶士振,侯振华,等. 非常规油气地质[M]. 北京:地质出版社,2011.
ZOU C N, TAO S Z, HOU Z H, et al. Unconventional Oil and Gas Geology[M]. Beijing: Geological Publishing House, 2011.
31 《页岩气地质与勘探开发实践丛书》编委会. 中国页岩气地质研究进展[M]. 北京:石油工业出版社, 2011.
Editorial Committee of "Shale Gas Geology and Exploration and Development Practice Series". Progress in China's Shale Gas Geology Research[M]. Beijing: Petroleum Industry Press, 2011.
32 张大伟,李玉喜,张金川. 全国页岩气资源潜力调查评价[M]. 北京:地质出版社,2012.
ZHANG D W, LI Y X, ZHANG J C. National Shale Gas Resource Potential Survey and Evaluation[M]. Beijing: Geological Publishing House, 2012.
33 傅雪海,张苗,张庆辉等. 山西省域石炭—二叠纪煤系泥页岩气储层评价指标体系[J]. 煤炭学报,2018,43(6):1654-1660.
FU X H, ZHANG MIAO, ZHANG Q H, et al. Evaluation index system of Permo-Carboniferous coal-bearing shale gas reservoir in Shanxi Province[J]. Journal of Coal Science, 2018, 43 (6): 1654-1660.
[1] 龙胜祥, 刘娅昭, 许华明, 陈前, 程喆. 四川盆地中国石化探区天然气勘探开发领域与技术攻关方向[J]. 天然气地球科学, 2020, 31(9): 1195-1203.
[2] 李腾飞, 田辉, 肖贤明, 程鹏, 王星, 伍耀文, 吴子瑾. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284.
[3] 陈璐, 胡志明, 熊伟, 端祥刚, 常进. 页岩气扩散实验与数学模型[J]. 天然气地球科学, 2020, 31(9): 1285-1293.
[4] 牛强, 张焕旭, 朱地, 徐志尧, 仰云峰, 丁安徐, 高和群, 张立生. 川东南五峰组—龙马溪组页岩气录井碳同位素特征及其地质意义[J]. 天然气地球科学, 2020, 31(9): 1294-1305.
[5] 魏祥峰, 刘珠江, 王强, 魏富彬, 袁桃. 川东南丁山与焦石坝地区五峰组—龙马溪组页岩气富集条件差异分析与思考[J]. 天然气地球科学, 2020, 31(8): 1041-1051.
[6] 罗胜元, 陈孝红, 岳勇, 李培军, 蔡全升, 杨睿之. 中扬子宜昌地区沉积—构造演化与寒武系页岩气富集规律[J]. 天然气地球科学, 2020, 31(8): 1052-1068.
[7] 邵德勇, 张六六, 张亚军, 张瑜, 罗欢, 乔博, 闫建萍, 张同伟. 中上扬子地区下寒武统富有机质页岩吸水特征及对页岩气勘探的指示意义[J]. 天然气地球科学, 2020, 31(7): 1004-1015.
[8] 席斌斌, 申宝剑, 蒋宏, 杨振恒, 王小林. 天然气藏中CH4—H2O—NaCl体系不混溶包裹体群捕获温压恢复及应用[J]. 天然气地球科学, 2020, 31(7): 923-930.
[9] 戴金星, 董大忠, 倪云燕, 洪峰, 张素荣, 张延玲, 丁麟. 中国页岩气地质和地球化学研究的若干问题[J]. 天然气地球科学, 2020, 31(6): 745-760.
[10] 刘洪林, 王怀厂, 张辉, 赵伟波, 刘燕, 刘德勋, 周尚文. 四川盆地东部小河坝组沥青纳米孔隙网络及其成藏意义[J]. 天然气地球科学, 2020, 31(6): 818-826.
[11] 彭泽阳, 龙胜祥, 张永贵, 卢婷, 王濡岳. 适用于高温高压条件的等温吸附曲线方程[J]. 天然气地球科学, 2020, 31(6): 827-834.
[12] 朱明, 梁则亮, 马健, 庞志超, 王俊, 焦悦. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律[J]. 天然气地球科学, 2020, 31(4): 488-497.
[13] 郑爱维, 梁榜, 舒志国, 张柏桥, 李继庆, 陆亚秋, 刘莉, 舒志恒. 基于大数据PLS法的页岩气产能影响因素分析[J]. 天然气地球科学, 2020, 31(4): 542-551.
[14] 丁麟, 程峰, 于荣泽, 邵昭媛, 刘佳琪, 刘官贺. 北美地区页岩气水平井井距现状及发展趋势[J]. 天然气地球科学, 2020, 31(4): 559-566.
[15] 朱维耀, 王百川, 马东旭, 黄堃, 李兵兵. 水对含微裂缝页岩渗流能力的影响[J]. 天然气地球科学, 2020, 31(3): 317-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[4] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[5] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[6] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[7] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[8] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[9] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[10] 荣宁,吴迪,韩易龙,陈文龙,王陶,张波,叶翔. 双台阶水平井在塔里木盆地超深超薄边际油藏开发中的应用及效果评价[J]. 天然气地球科学, 2006, 17(2): 230 -232 .