天然气地球科学 ›› 2019, Vol. 30 ›› Issue (10): 1439–1450.doi: 10.11764/j.issn.1672-1926.2019.06.006

• 天然气地质学 • 上一篇    下一篇

鄂尔多斯盆地致密砂岩储层孔喉分布特征及其差异化成因

王伟1(),朱玉双2(),余彩丽3,赵乐3,陈大友4   

  1. 1. 榆林学院化学与化工学院,陕西 榆林 719000
    2. 西北大学地质学系,陕西 西安 710069
    3. 长庆油田分公司第一采油厂,陕西 延安 716099
    4. 兰州城市学院,培黎石油工程学院, 甘肃 兰州 730070
  • 收稿日期:2019-03-20 修回日期:2019-06-27 出版日期:2019-10-10 发布日期:2019-11-06
  • 通讯作者: 朱玉双 E-mail:283465227@qq.com.;yshzhu@nwu.edu.cn.
  • 作者简介:王伟(1988-),男,陕西西安人,讲师,博士,主要从事油气田开发地质研究. E-mail:283465227@qq.com.
  • 基金资助:
    榆林学院博士科研启动基金(18GK22);陕西省科技资源开发共享平台项目(2019PT-18)

Pore size distribution of tight sandstone reservoir and their differential origin in Ordos Basin

Wei Wang1(),Yu-shuang Zhu2(),Cai-li Yu3,Le Zhao3,Da-you Chen4   

  1. 1. School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
    2. Department of Geology, Northwest University, Xi’an 710069, China
    3. Oil Production Plant No. 1 of Changqing Oilfield Company, PetroChina, Yan’an 716099, China
    4. Bailie School of Petroleum Engineering, Lanzhou City University, Lanzhou 730070, China
  • Received:2019-03-20 Revised:2019-06-27 Online:2019-10-10 Published:2019-11-06
  • Contact: Yu-shuang Zhu E-mail:283465227@qq.com.;yshzhu@nwu.edu.cn.

摘要:

致密砂岩中广泛发育的微纳米级孔喉体系是致密砂岩储层与常规砂岩储层的本质区别,也是影响致密油藏渗流特征及开发效果的主要因素。利用铸体薄片、扫描电镜、恒速压汞等方法,对鄂尔多斯盆地姬塬地区长6段、长7段储层的孔喉类型及分布特征进行了分析对比,并对其差异性成因进行了探讨。结果表明:长6段储层孔隙类型以剩余粒间孔为主,喉道多为压实成因,孔隙较喉道发育。长7段储层孔隙类型以长石溶孔为主,喉道多为溶蚀成因,喉道较孔隙发育。2个层位孔隙半径分布范围及平均值相近,长6段储层喉道半径分布范围及平均值明显大于长7段储层,其物性好于长7段储层。长6段储层为三角洲沉积,埋深较浅,较高的绿泥石膜含量和较低的压实强度使其较好地保持了原始沉积孔隙空间,而溶蚀作用又进一步扩大了孔隙空间。长7段储层为湖泊沉积,埋深较大,压实作用和胶结作用强烈,原始沉积孔隙空间被大量挤压,后期虽发生强烈的溶蚀作用,但溶蚀成因喉道连通性和渗流能力明显低于压实成因喉道,溶蚀作用虽能增大储集空间,但无法显著提高渗流能力。因此,连续沉积的长6段、长7段储层渗透率存在显著差异。

关键词: 鄂尔多斯盆地, 致密储层, 微观孔隙结构, 恒速压汞, 溶蚀作用

Abstract:

The micro-nano pore throat system widely developed in tight sandstone is the essential difference between tight sandstone reservoir and conventional sandstone reservoir, and is also the main factor affecting the seepage characteristics and development effect of tight sandstone reservoir. This thesis analyzed the pore-throat types and distributions of Chang6 and Chang7 reservoirs in Jiyuan area of Ordos Basin, and discussed the original causes of them by cast section, SEM, and constant-rate mercury injection. The results showed that: The pore type of Chang6 reservoir is predominantly residual intergranular pores, and the throats are mostly compacted, the pore of Chang6 is more developed than throat. The pore type of Chang7 reservoir is mainly feldspar solution pores, and the throat is mostly dissolution, the throat of Chang7 is more developed than pore. The pore radius distribution range and average value of Chang6 reservoir are similar to those of Chang7 reservoir. The distribution range and average value of throat radius of Chang6 reservoir are obviously larger than that of Chang7 reservoir, and the physical property of Chang6 reservoir is better than that of Chang7 reservoir. The Chang6 reservoir is located in delta sediments with shallow burial depth. The high chlorite membrane content and low compaction strength of Chang6 reservoir make it better to maintain the original sedimentary pore space, and the dissolution further enlarges the pore space. Chang7 reservoir is located in lacustrine sediments with a large burial depth. The compaction and cementation of Chang7 reservoir are strong, and the original sedimentary pore space is massively compressed. Although dissolution occurs in the later stage strongly, the connectivity and seepage capacity of the throat of dissolution origin are lower than those of compaction origin. Dissolution can increase the reservoir space, but it cannot significantly improve the seepage capacity. Therefore, there is a significant difference in permeability of the two successive layers.

Key words: Ordos Basin, Tight sandstone reservoir, Microscopic pore structure, Constant-rate mercury injection, Dissolution

中图分类号: 

  • TE122.1

图1

研究区地质构造(a)及地层特征(b)(研究区构造位置据文献[29],修改;地层柱状图据文献[30],修改)"

表1

姬塬地区长6段、长7段储层砂岩成分统计"

层位碎屑含量/%填隙物/%统计样数/个
石英长石岩屑
长6段29.4738.5018.6613.33725
长7段28.6834.5419.5615.36227

图2

姬塬地区长6段、长7段储层砂岩成分柱状图"

表2

姬塬地区长6段、长7段储层填隙物成分统计"

层位黏土矿物/%碳酸盐矿物/%硅质/%其他/%
高岭石伊利石绿泥石铁方解石铁白云石
长6段3.001.522.863.750.471.000.73
长7段2.144.041.633.361.890.951.35

图3

姬塬地区长6段、长7段储层填隙物成分柱状图"

表3

姬塬地区长6段、长7段储层孔隙类型统计"

层位不同孔隙类型面孔率/%总面孔率/%

统计井数

/块数

剩余粒间孔长石溶孔岩屑溶孔其他
长6段1.970.920.090.183.17725
长7段0.910.980.080.142.11227

图4

姬塬地区长6段、长7段储层孔隙类型柱状图"

图5

姬塬地区长6段、长7段储层孔隙度与渗透率相关关系"

表4

姬塬地区长6段、长7段储层孔喉特征参数统计(恒速压汞)"

样品编号层位深度/m孔隙度/%渗透率/(×10-3μm2)平均喉道半径/μm平均孔隙半径/μm排驱压力/MPa喉道进汞饱和度/%孔隙进汞饱和度/%总进汞饱和度/%
JY6-1长62 23014.60.150.78126.610.5533.1939.8873.07
JY6-2长62 34914.60.320.96127.120.4423.8237.3261.14
JY6-3长62 2899.60.431.49127.790.1737.3749.2486.61
长6段平均2 28912.90.301.08127.170.3931.4642.1573.61
JY7-1长72 58010.20.150.36151.471.4418.8026.3345.13
JY7-2长72 4069.10.120.14148.980.5520.3216.0836.40
JY7-3长72 4168.90.100.31150.061.8925.6430.6356.27
JY7-4长72 5179.60.060.56130.250.8732.0145.7277.73
JY7-5长72 4239.80.130.61131.680.7735.7549.6685.41
长7段平均2 4689.50.110.40142.491.1026.5033.6860.19

图6

姬塬地区长6段、长7段储层孔隙半径分布"

图7

不同成因喉道特征"

图8

姬塬地区长6段、长7储层喉道半径分布"

图9

长6段储层孔喉分布"

图10

长7段储层孔喉分布"

图11

姬塬地区长6段、长7段储层微观孔隙结构"

图12

不同成因喉道与孔隙连通示意"

图13

JY7-3喉道分形特征"

图14

JY7-3样品恒速压汞进汞曲线"

1 ZouCaineng, TaoShizhen, YangZhi, et al. New advance in unconventional petroleum exploration and research in China bulletin of mineralogy[J].Petroleum and Geochemistry, 2012, 31(4): 312-322.
邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4): 312-322.
2 ZouCaineng, YangZhi, TaoShizhen,et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26.
邹才能,杨智,陶士振,等.纳米油气与源储共生型油气聚集[J].石油勘探与开发,2012,39(1):13-26.
3 LawB E, CurtisJ B. Introduction to unconventional petroleum systems[J].AAPG Bulletin, 2002, 86(11): 1851-1852.
4 LawB E. Basin-centered gas systems[J]. AAPG Bulletin, 2002, 86(11): 1891-1919.
5 ShaumugumG. Deep-water processes and facies models: Implications for sandstone petroleum reservoirs[M].Amsterdam: Elsevier, 2006:244-255.
6 MillerB A, PaneitzJ M, YakeleyS, et al. Unlocking Tight Oil: Selective Multistage Fracturing in the Bakken Shale[R]. SPE116105.SPE Annual Technical Conference and Exhibition,2008,23(1):1-6.
7 GaiborJ, HochuliJ P A, WinklerW, et al. Hydrocarbon source potential of the Santiago Formation, Oriente Basin, SE of Ecuador[J]. Journal of South American Earth Sciences, 2008, 25(2):145-156.
8 HoustonM C, MccallisterM A, JanyJ D, et al. Next generation multi-stage completion technology and risk sharing accelerates development of the Bakken Play[J].SPE135584. SPE Annual Technical Conference and Exhibition,2010,25(1):1-11.
9 CurtisM E, CardottB J, SongdergeldC H, et al. Development of organic porosity in the Woodford shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103(23): 26-31.
10 GangH. Natural fractures in unconventional reservoir rocks: Identification, characterization, and its impact to engineering design[J]. American Anthropologist, 2011, 81(2): 387-388.
11 SlattR M, O'BrienN R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
12 LinSenhu, ZouCaineng, YuanXuanjun, et al. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30.
林森虎,邹才能,袁选俊,等.美国致密油开发现状及启示[J].岩性油气藏,2011,23(4):25-30.
13 YanH, LiS, LiuX. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1):1-11.
14 FengShengbin, NiuXiaobin, LiuFei, et al. Characteristics of Chang7 tight oil reservoir space in Ordos Basin and its significance[J]. Journal of Central South University:Science and Technology, 2013,12(11):4574-4580.
冯胜斌,牛小兵,刘飞,等.鄂尔多斯盆地长7致密油储层储集空间特征及其意义[J].中南大学学报:自然科学版,2013,12(11):4574-4580.
15 GuoQ, NaW, ChenN, et al. An assessment of tight oil resource in 7th oil reservoirs of Yanchang Formation,Ordos Basin[J]. Acta Petrolei Sinica, 2017, 38(6): 658-665.
16 ChenPuli, WangShuo, Wangdan, et al. Comparing the constant-speed mercury injection technique with the conventional mercury injection technique[J]. Xinjiang Geology, 2013, 31(supplement): 139-141.
陈蒲礼,王烁,王丹,等.恒速压汞法与常规压汞法优越性比较[J].新疆地质,2013,31(增刊):139-141.
17 LiS, DongM, LuoP. A crossflow model for an interacting capillary bundle: Development and application for waterflooding in tight oil reservoirs[J]. Chemical Engineering Science, 2017, 164:133-147.
18 WangX, ShengJ J. Effect of low-velocity non-Darcy flow on well production performance in shale and tight oil reservoirs[J]. Fuel, 2017, 190:41-46.
19 DiwuP, LiuT, YouZ, et al. Effect of low velocity non-Darcy flow on pressure response in shale and tight oil reservoirs[J]. Fuel, 2018, 216:398-406.
20 WuW, JingD, ZhaoJ, et al. Accumulation conditions and models of tight oil reservoirs in Chang-7 of Huaqing area,the Ordos Basin[J]. Oil & Gas Geology, 2016, 37(6):874-881.
21 YueM, LeungJ Y, DehghanpourH. Numerical investigation of limitations and assumptions of analytical transient flow models in tight oil reservoirs[J]. Journal of Natural Gas Science & Engineering, 2016, 30:471-486.
22 HeShunli, JiaoChunyan, WangJianguo, et al. Discussion on the differences between constant-speed mercury injection and conventional mercury injection technique[J]. Fault-Block oil & gas Field, 2011,18(2):235-237.
何顺利,焦春艳,王建国,等.恒速压汞与常规压汞的异同[J].断块油气藏,2011,18(2):235-237.
23 GaoH, LiT, YangL. Quantitative determination of pore and throat parameters in tight oil reservoir using constant rate mercury intrusion technique[J]. Journal of Petroleum Exploration & Production Technology, 2016, 6(2):1-10.
24 WangWei, NiuXiaobin, LiangXiaowei, et al. Characteristic of movable fluid for tight sandstone reservoir in Ordos Basin: A case of Chang7 oil of Yanchang Formation in Jiyuan area[J].Geological Science and Technology Information, 2017, 36(1): 183-187.
王伟,牛小兵,梁晓伟,等.鄂尔多斯盆地致密砂岩储层可动流体特征——以姬塬地区延长组长7段油层组为例[J].地质科技情报,2017,36(1):183-187.
25 ChenFei, HuGuangyi, SunLichun, et al. Sedimentary characteristic and the significance of petroleum exploration of sandy debris flow of Yanchang Formation of the Upper Triassin, Fuxian area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2012, 30(6): 1042-1052.
陈飞,胡光义,孙立春,等.鄂尔多斯盆地富县地区上三叠统延长组砂质碎屑流沉积特征及其油气勘探意义[J].沉积学报,2012,30(6):1042-1052.
26 BaiYubin, ZhaoJingzhou, FangChaoqiang, et al. Forming mechanism of quasi-continuous tight sandstone reservoir of Chang 6 oil-bearing formation, Ordos Basin[J].Petroleum Geology & Experiment, 2013,35(1):65-71.
白玉彬,赵靖舟,方朝强,等.鄂尔多斯盆地长6油层组准连续型致密砂岩油藏形成机理[J].石油实验地质,2013,35(1):65-71.
27 BaiYubin, ZhaoJingzhou, ZhaoZilong, et al. Accumulation conditions and characteristic of the Chang 7 tight oil reservoir of the Yanchang Formation in Zhidan area, Ordos Basin[J]. Oil & Gas Geology, 2013,35(5):631-639.
白玉彬,赵靖舟,赵子龙,等.鄂尔多斯盆地志丹地区延长组长7致密油成藏条件与成藏特征[J].石油与天然气地质,2013,35(5):631-639.
28 FanHongche, HuangZhilong, GaoGang, et al. Study on the distribution regularity of oil-water and main controlling factors in Hujianshan area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1): 151-157.
范泓澈,黄志龙,高岗,等.鄂尔多斯盆地胡尖山地区长6段油水分布规律及主控因素分析[J].沉积学报,2011,29(1):151-157.
29 YangYongtai, LiWei, MaLong. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: A multicycle cratonic basin in central China[J]. AAPG Bulletin, 2005, 89(2): 255-269.
30 WuHao, ZhangChunlin, JiYouliang, et al. Pore throat characteristics of tight sandstone of Yanchang Formation in eastern Gansu, Ordos Basin[J]. Petroleum Research,2018,3(1): 33-43.
31 WangFeng, ChenRong, TianJingchun, et al. Diagenesis of diagenetic facies of the Chang 4+5 tight sandstone reservoirs in Longdong area, Ordos Basin[J]. Oil & Gas Geology, 2014, 35(2): 199-206.
王峰,陈蓉,田景春,等.鄂尔多斯盆地陇东地区长4+5油层组致密砂岩储层成岩作用及成岩相[J].石油与天然气地质,2014,35(2):199-206.
32 ZhangXingliang, TianJingchun, WangFeng, et al. Diagenetic characteristics and quantitative porosity estimation of tight sandstone reservoir: A case from the 8th member of Permain Xianshihezi Formation in the Gaoqiao region,Ordos Basin[J]. Oil & Gas Geology, 2014, 35(2): 212-217.
张兴良,田景春,王峰,等.致密砂岩储层成岩作用特征与孔隙演化定量评价——以鄂尔多斯盆地高桥地区二叠系下石盒子组盒8段为例[J].石油与天然气地质,2014,35(2):212-217.
33 SunXiujian, YangWei, BaiYadong, et al. Characteristics of the reservoir-caprock assemblage of the basement reservoir in the Qaidam Basin, China[J]. Natural Gas Geoscience, 2019,30(2): 228-236.
孙秀建, 杨巍, 白亚东, 等. 柴达木盆地基岩油气藏储盖特征及组合方式[J]. 天然气地球科学, 2019,30(2): 228-236.
34 XuZheng, Fuqiang, HuiXiao, et al. Division and distribution of flow units of Chang631 reservoir in Huaqing area, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(12):71-80.
徐铮, 傅强, 惠萧, 等. 鄂尔多斯盆地华庆地区长613储层流动单元划分与展布[J]. 天然气地球科学, 2018, 29(12):71-80.
35 MaZunqing, ChenGuojun, YangHaizhang, et al. Effects of large-foraminiferal shells on sandstone reservoir space and physical properties: Case study of the 1st member of Sanya Formation, Songnan Sag, Qiongdongnan Basin[J]. Natural Gas Geoscience, 2019,30(5):712-720.
马遵青,陈国俊,杨海长,等.大型有孔虫壳体对砂岩储集空间及物性的影响——以琼东南盆地松南凹陷三亚组一段为例[J].天然气地球科学,2019,30(5):712-720.
36 SchererM. Parameters influencing porosity in sandstones : A modal for sandstone porosity prediction[J].AAPG Bulletin,1987,71(5):485-491.
37 YaoY, LiuD, TangD, et al. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals[J]. Computers & Geosciences, 2009, 35(6):1159-1166.
[1] 吕文雅, 曾联波, 周思宾, 吉园园, 梁丰, 惠晨, 尉加盛. 鄂尔多斯盆地西南部致密砂岩储层微观裂缝特征及控制因素[J]. 天然气地球科学, 2020, 31(1): 37-46.
[2] 张春林, 李剑, 陈鑫, 吴庆超. 鄂尔多斯盆地东部奥陶系盐下古地貌恢复及其对滩体的控制作用[J]. 天然气地球科学, 2019, 30(9): 1263-1271.
[3] 吴松涛, 林士尧, 晁代君, 翟秀芬, 王晓瑞, 黄秀, 徐加乐. 基于孔隙结构控制的致密砂岩可动流体评价——以鄂尔多斯盆地华庆地区上三叠统长6致密砂岩为例[J]. 天然气地球科学, 2019, 30(8): 1222-1232.
[4] 尤源, 梁晓伟, 冯胜斌, 牛小兵, 淡卫东, 李卫成, 王芳, . 鄂尔多斯盆地长7段致密储层主要黏土矿物特征及其地质意义[J]. 天然气地球科学, 2019, 30(8): 1233-1241.
[5] 崔景伟, 朱如凯, 李森, 齐亚林, 时晓章, 毛治国, . 坳陷湖盆烃源岩发育样式及其对石油聚集的控制——以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2019, 30(7): 982-996.
[6] 李阳, 倪小明, 王延斌, 陶传奇. 鄂尔多斯盆地临兴地区上古生界压力特征及其成因机制[J]. 天然气地球科学, 2019, 30(7): 997-1005.
[7] 吴小奇, 倪春华, 陈迎宾, 朱建辉, 李贶, 曾华盛. 鄂尔多斯盆地定北地区上古生界天然气来源[J]. 天然气地球科学, 2019, 30(6): 819-827.
[8] 吴伟涛, 王一, 赵靖舟, 杨特波, 李军, 黄正良. 鄂尔多斯盆地中部奥陶系马家沟组中组合天然气成藏规律[J]. 天然气地球科学, 2019, 30(6): 828-839.
[9] 张成龙, 陶士振, 白斌, 王倩茹. 基于支持向量机模型的烃源岩有机碳含量预测——以鄂尔多斯盆地为例[J]. 天然气地球科学, 2019, 30(5): 761-768.
[10] 刘晓鹏, 赵会涛, 闫小雄, 贾亚妮, . 克拉通盆地致密气成藏地质特征与勘探目标优选——以鄂尔多斯盆地上古生界为例[J]. 天然气地球科学, 2019, 30(3): 331-343.
[11] 高阳, 王志章, 易士威, 佘源琦, 林世国, 李明鹏, 张春林, . 鄂尔多斯盆地天环地区盒8段致密砂岩岩石矿物特征及其对储层质量的影响[J]. 天然气地球科学, 2019, 30(3): 344-352.
[12] 孔庆芬 , 张文正, 李剑锋, 昝川莉, . 鄂尔多斯盆地奥陶系盐下天然气地球化学特征及成因[J]. 天然气地球科学, 2019, 30(3): 423-432.
[13] 孙兵华, 张廷山, . 鄂尔多斯盆地张家湾地区长7页岩油气储集特征及其影响因素[J]. 天然气地球科学, 2019, 30(2): 274-284.
[14] 陈秀艳, 贾进华, 崔文娟, 张立平, 周波, 申银民, 陈延贵. 塔里木盆地哈拉哈塘地区东河砂岩段成岩作用及对孔渗影响[J]. 天然气地球科学, 2019, 30(1): 51-61.
[15] 张道锋, 姚泾利, 高星, 席明利, 赵会涛, 闫小雄, 付勋勋. 鄂尔多斯盆地奥陶系马五5亚段白云岩储层形成机理与展布规律[J]. 天然气地球科学, 2019, 30(1): 74-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[4] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[5] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[6] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[7] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[8] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[9] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[10] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .