天然气地球科学 ›› 2019, Vol. 30 ›› Issue (11): 1639–1645.doi: 10.11764/j.issn.1672-1926.2019.04.016

• 天然气开发 • 上一篇    下一篇

基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法

罗红文(),李海涛,蒋贝贝,李颖,卢宇   

  1. 西南石油大学油气藏地质及开发工程国家重点实验室, 四川 成都 610500
  • 收稿日期:2018-12-04 修回日期:2019-04-23 出版日期:2019-11-10 发布日期:2019-12-03
  • 作者简介:罗红文(1990-),男,重庆人,博士研究生,主要从事气藏温度动态模拟及生产动态分析研究.E?mail:rojielhw@163.com.
  • 基金资助:
    国家科技重大专项“水平井完井综合评价及抗高温防气窜水泥浆关键技术”(2016ZX05021-005-009HZ);“水平井产气剖面评价与深度酸化研究”(2016ZX05017005-006)

A novel method to interpret production profiles of fractured horizontal well in low-permeability gas reservoir by inversing DTS data

Hong-wen Luo(),Hai-tao Li,Bei-bei Jiang,Ying Li,Yu Lu   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • Received:2018-12-04 Revised:2019-04-23 Online:2019-11-10 Published:2019-12-03

摘要:

分布式温度测试(DTS)正逐渐被用于压裂水平井井下生产状况监测,但基于DTS数据定量解释低渗气藏压裂水平井产出剖面仍是一个巨大难题。基于Levenberg Marquart算法建立了一套DTS数据反演解释模型,并提出了反演目标参数的初始赋值方法,最终形成了一套基于DTS数据的低渗气藏压裂水平井产出剖面解释方法,实现了基于DTS数据定量解释裂缝参数和产出剖面。采用建立的反演方法,对一口模拟实例井的DTS数据进行了反演解释。结果表明:温度剖面反演结果与“测试值”吻合度较高,产出剖面反演结果与“测试值”也基本一致,验证了该产出剖面解释方法的准确性和可行性。研究成果为低渗气藏压裂水平井产出剖面定量解释和裂缝参数诊断提供了一种实用而精确的新方法。

关键词: 产出剖面解释, DTS, 压裂水平井, Levenberg Marquart算法, 反演, 低渗气藏

Abstract:

Distributed temperature sensing (DTS) is gradually being used to monitor downhole conditions of fractured horizontal wells. However, it’s still a great technical problem to interpret the production profiles of a fractured horizontal well in low-permeability gas reservoir from DTS data. In this study, based on Levenberg Marquart algorithm, an inversion model has been developed to translate DTS data to production profiles. And an initial assignment method of inversed parameters is proposed. Finally, a comprehensive inversion method to interpret the production profiles of a fractured horizontal well in low-permeability gas reservoir from DTS data has been proposed. It achieves quantitative interpretation of fracture parameters and production profile based on DTS data. Using the developed interpretation approach, the DTS data of a simulated case has been translated. It has been found that the inversed temperature profiles match with the “measured data” well, and the inversed production profiles are basically in agreement with the measured production profiles as well. The inversion results validate the accuracy and feasibility of the newly proposed inversion approach to interpret production profiles. The research results provide a practical and accurate approach to interpret production profiles and diagnosis fracture parameters quantitatively of a fractured horizontal well in low-permeability gas reservoir.

Key words: Interpreting production profiles, DTS, Fractured horizontal well, Levenberg Marquart algorithm, Inversion, Low-permeability gas reservoir

中图分类号: 

  • TE32+1

图1

压裂水平井产出剖面反演解释流程"

表1

模拟实例井基本参数"

储层参数气体物性参数(地面)
储层长度/m1 000气体密度/(kg/m30.9
储层宽度/m500气体黏度/cP0.025
储层厚度/m20体积系数/(m3/m30.004
储层顶深/m2 500气体热容/[J/(kg·K)]2 550
孔隙度/%8气体热导率/[J/(m·s·K)]0.000 26
水平渗透率/(×10-3μm2)0.1热膨胀系数/(10-4/ K)10
垂向渗透率/(×10-3μm2)0.01压缩系数/MPa-10.026
地面温度/K293
地温梯度/(K/m)0.02
储层温度/K343
地层压力/MPa30
井筒参数储层岩石热学参数
水平段长度/m650岩石密度/(kg/m3)2 380
井筒直径/m0.22岩石热容/[J/(kg·K)]845
套管外径/m0.14总导热系数/[J/(m·s·K)]3.46
套管内径/m0.12
井壁粗糙度/m0.001 5

套管导热系数/

[J/(m·s·K)]

12

水泥环导热系数/

[J/(m·s·K)]

6.9

表2

水平井井各级裂缝参数"

裂缝参数裂缝1裂缝2裂缝3裂缝4裂缝5裂缝6
裂缝半长/m180120200100150200
裂缝宽度/m0.0050.0040.0040.0050.0060.004
裂缝高度/m202020202020
裂缝导流能力/(×10-3 μm2·cm)151215182015

图2

模拟实例井井筒温度剖面"

图3

模拟实例井各级裂缝流入流量和各级裂缝处温降"

表3

模拟实例井产出剖面反演解释结果"

裂缝1裂缝2裂缝3裂缝4裂缝5裂缝6
测试温度/K341.381 3341.401 4341.385 3341.412 0341.402 3341.394 2
T/K0.036 20.026 50.037 20.016 90.025 00.031 8
反演温度/K341.375 4341.400 4341.389 3341.412 0341.399 3341.395 9
裂缝半长真实值/m180120200100150200
裂缝半长反演值/m180.357 4120.975 6198.462 998.589 3152.528 6200.891 5
裂缝流入量测试值/(×104 m3/d)1.343 30.900 31.508 50.764 41.154 81.555 9
裂缝流入量反演值/(×104 m3/d)1.343 50.901 81.499 50.720 91.206 31.555 1
裂缝流入量初始值/(×104 m3/d)1.509 21.101 51.548 40.703 41.039 51.325 2

图4

模拟实例井产出剖面反演解释结果"

1 ZhuShiyan. Theoretical Study on the Interpretation of Inflow Profile Based on the Distributed Optical Fiber Temperature Sensing[D].Chengdu:Southwest Petroleum University, 2016.
朱世琰. 基于分布式光纤温度测试的水平井产出剖面解释理论研究[D].成都:西南石油大学, 2016.
2 YoshidaN. Modeling and Interpretation of Downhole Temperature in a Horizontal Well with Multiple Fractures[D].Texas: A & M University, 2016.
3 CaiJunjun. Study on Prediction and Interpretation Model of Wellbore Temperature for A Horizontal Well[D]. Chengdu: Southwest Petroleum University, 2016.
蔡珺君.水平井井筒温度预测及解释模型研究[D].成都:西南石油大学,2016.
4 UguetoG A, HuckabeePT, MolenaarMM. Challenging Assumptions About Fracture Stimulation Placement Effectiveness Using Fiber Optic Distributed Sensing Diagnostics: Diversion, Stage Isolation and Overflushing[C].The Woodlands,SPE 173348,2015.
5 SookprasongP A, GillC C, HurtRS. Lessons Learned from DAS and DTS in Multicluster Multistage Horizontal Well Fracturing: Interpretation of Hydraulic Fracture Initiation and Propagation through Diagnostics[C].Bangkok,SPE 170512,2014.
6 SookprasongP A, HurtR S, GillC C. Downhole Monitoring of Multicluster, Multistage Horizontal Well Fracturing with Fiber Optic Distributed Acoustic Sensing (DAS) and Distributed Temperature Sensing (DTS)[C].Kuala Lumpur,IPTC 17972,2014.
7 GustavoA U C, HuckabeeP T, MolenaarM M, et al. Perforation Cluster Efficiency of Cemented Plug and Perf Limited Entry Completions; Insights from Fiber Optics Diagnostics[C].The Woodlands,SPE 179124,2016.
8 YoshiokaK, ZhuD, HillA D, et al. Prediction of temperature changes caused by water or gas entry into a horizontal well[J]. SPE Production & Operations, 2007,22(4):425-433.
9 LiZ, ZhuD. Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for waterdrive reservoir[J]. SPE Production & Operations, 2010,25(3):296-304.
10 YoshiokaK, ZhuD, HillAD. A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells[J]. SPE Production & Operations, 2009,24(4):510-521.
11 LuoH, LiH, LiY, et al. Investigation of temperature behavior for multi-fractured horizontal well in low-permeability gas reservoir[J].International Journal of Heat and Mass Transfer, 2018,127:375-395.
12 HuangH, HuangY, YangG. Neural network system identification based on levenberg-marquardt algorithm[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2003,(2):6-8.
13 LiH, ZouM, WangZ, et al. Board-grade circuit fault quick diagnosis in radar based on L-M algorithm[J]. Journal of Test and Measurement Technology, 2004,18(4):364-368.
14 WangJ, QinW. BP neural network classifier based on Levenberg-Marquardt algorithm[J]. Geomatics and Information Science of Wuhan University, 2005,30(10):928-931.
[1] 苏洲, 刘永福, 韩剑发, 杨淑雯, 刘博, 赖鹏, 彭鹏, 张慧芳, 易珍丽. 相控约束下的超深薄层砂体预测技术在塔北隆起玉东区块中的应用[J]. 天然气地球科学, 2020, 31(2): 295-306.
[2] 邓勇, 刘仕友, 李洋森, 付琛, 沈利霞. 莺歌海盆地东方区纵横波速度变化对AVO类型的影响[J]. 天然气地球科学, 2019, 30(9): 1378-1385.
[3] 苏亦晴, 陈天胜, 尹艳树, 王立鑫, 赵学思, 胡迅. 多点地质统计反演技术[J]. 天然气地球科学, 2019, 30(9): 1386-1392.
[4] 刘玲, 沃玉进, 孙炜, 陈霞, 徐美娥, 刘力辉. 龙门山前侏罗系沙溪庙组致密砂岩储层叠前地震预测[J]. 天然气地球科学, 2019, 30(7): 1072-1082.
[5] 位云生, 贾爱林, 郭智, 孟德伟, 王国亭. 致密砂岩气藏多段压裂水平井优化部署[J]. 天然气地球科学, 2019, 30(6): 919-924.
[6] 罗红文, 李海涛, 刘会斌, 孙涛, 卢宇, 李颖. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399.
[7] 陈建勋, 杨胜来, 邹成, 梅青燕, 周源, 孙丽婷. 川中须家河组低渗有水气藏渗流特征及其影响因素[J]. 天然气地球科学, 2019, 30(3): 400-406.
[8] 邓宇, 曾庆才, 陈胜, 管全中, 郭晓龙, 贺佩. 四川盆地威远地区五峰组—龙马溪组页岩TOC含量地震定量预测方法及应用[J]. 天然气地球科学, 2019, 30(3): 414-422.
[9] 高博乐, 金吉能, 鄢杰, 黎洋, 赵丹, 王建一. 四川盆地东部卧龙河地区中二叠统茅口组白云岩岩石物理特征及分布预测[J]. 天然气地球科学, 2019, 30(2): 168-175.
[10] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[11] 张芨强, 雷霄, 张乔良, 薛国庆, 汤明光. 低渗透气藏产水压裂水平井产能评价[J]. 天然气地球科学, 2019, 30(12): 1701-1708.
[12] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[13] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[14] 曾凡辉, 王小魏, 郭建春, 郑继刚, 李亚州, 向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[15] 吕志凯, 贾爱林, 唐海发, 刘群明, 王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 旷理雄,郭建华,王英明,冯永宏,李广才 . 柴窝堡凹陷达坂城次凹油气成藏条件及勘探方向[J]. 天然气地球科学, 2005, 16(1): 20 -24 .
[4] 邵荣;叶加仁;陈章玉;. 流体包裹体在断陷盆地含油气系统研究中的应用概述[J]. 天然气地球科学, 2000, 11(6): 11 -14 .
[5] 何家雄;李明兴;陈伟煌;. 莺歌海盆地热流体上侵活动与天然气运聚富集关系探讨[J]. 天然气地球科学, 2000, 11(6): 29 -43 .
[6] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[7] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[8] Al-Arouri K;Mckirdy D;Boreham C(澳大利亚);孙庆峰(译). 用油源对比方法识别澳大利亚南塔鲁姆凹陷的石油系统[J]. 天然气地球科学, 2000, 11(4-5): 57 -67 .
[9] 马立祥;. 断层封闭性研究在烃类聚集系统分析中的意义[J]. 天然气地球科学, 2000, 11(3): 1 -8 .
[10] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .