天然气地球科学 ›› 2019, Vol. 30 ›› Issue (11): 1608–1618.doi: 10.11764/j.issn.1672-1926.2019.03.002

• 天然气地质学 • 上一篇    下一篇

上扬子区龙马溪组页岩中黄铁矿成因

韩盛博1,2(),李伍2()   

  1. 1. 中国矿业大学资源与地球科学学院,江苏 徐州 221116
    2. 煤层气资源与成藏过程教育部重点实验室,江苏 徐州 221008
  • 收稿日期:2019-01-14 修回日期:2019-03-07 出版日期:2019-11-10 发布日期:2019-12-03
  • 通讯作者: 李伍 E-mail:TS18010112P31@cumt.edu.cn;liwu@cumt.edu.cn
  • 作者简介:韩盛博(1994?),男,黑龙江哈尔滨人,硕士研究生,主要从事油气地质研究. E-mail:TS18010112P31@cumt.edu.cn.
  • 基金资助:
    国家科技重大专项“五峰组—龙马溪组页岩气高产区形成条件及模式”(2017ZX05035001-002)

Study on the genesis of pyrite in the Longmaxi Formation shale in the Upper Yangtze area

Sheng-bo Han1,2(),Wu Li2()   

  1. 1. School of Resources and Earth Science,China University of Mine and Technology,Xuzhou 221116,China
    2. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,the Ministry of Education,China University of Mine and Technology,Xuzhou 221008,China
  • Received:2019-01-14 Revised:2019-03-07 Online:2019-11-10 Published:2019-12-03
  • Contact: Wu Li E-mail:TS18010112P31@cumt.edu.cn;liwu@cumt.edu.cn

摘要:

黄铁矿作为页岩的特征矿物,其结构特征具有重要意义,构成草莓状黄铁矿集合体的微晶在生长过程中受限于周围环境,可将其作为评判沉积环境水体环境的指标。因此,草莓状黄铁矿结构对还原古海洋沉积水体相有着重要意义。以扬子地区龙马溪组页岩中黄铁矿样品为基础,基于氩离子抛光—扫描电镜成像技术,对图像中草莓状黄铁矿集合体粒径,微晶粒径进行测量。结合龙马溪组页岩中有机质含量、硫含量数据,对黄铁矿成因和形成环境方面指示意义进行综合分析,得出以下结论:①研究区草莓状黄铁矿平均粒径、最大粒径(MFD)和集合体平均粒径与微晶平均粒径比值三者均偏小,分析沉积环境为闭塞硫化还原环境,草莓状黄铁矿微晶粒径对沉积环境的氧化还原状态具有指征意义。②草莓状黄铁矿形成于同生—准同生阶段;简单成因自行晶状黄铁矿形成于同沉积时期,复杂成因黄铁矿形成于成岩时期。③龙马溪组页岩中孔隙类型发育,黄铁矿周围伴有大量晶间有机质孔和铸模孔,黄铁矿有助于改善储层孔隙。深水陆棚相页岩中黄铁矿与有机质关系密切,对页岩气成藏开发有积极影响。

关键词: 页岩气储能, 黄铁矿, 微晶, 沉积环境, 页岩

Abstract:

As a characteristic mineral of shale, pyrite is of great significance. The microcrystalline of strawberry pyrite aggregates is limited to the surrounding environment during the growth process, so it can be used as an indicator to evaluate the sedimentary environment. Therefore, strawberry pyrite is important to restitute palaeo-marine sedimentary water facies. Based on argon ion polishing- scanning electron microscopy imaging of pyrite samples in the shale of Longmaxi Formation in the Upper Yangtze region, the particle size and micrograin size of the strawberry pyrite in the image are measured. Combined with the organic matter content and sulfur content in the Longmaxi Formation shale, a comprehensive analysis of the genesis and formation environment of pyrite is carried out, and the following conclusions are drawn: (1) The average particle size, maximum particle size (MFD) of the strawberry-like pyrite and the ratio of the average particle size of the aggregate to the average particle size of the microcrystals were both small in the study area, and the sedimentary environment is occluded and reduced. The crystallite size of the strawberry pyrite has an indication of the redox state of the sedimentary environment significance. (2) Strawberry-like pyrite is formed in the syngenetic-quasi-probiotic stage; the simple cause of self-crystallized pyrite is formed in the same sedimentary period, and the complex origin pyrite is formed in the diagenetic period. (3) The pore type in the Longmaxi Formation shale is developed. There are a large number of intercrystalline organic pores and mold pores around the pyrite. The pyrite content helps to improve the reservoir pores. Pyrite in deep-water continental shelf shale is closely related to organic matter and has a positive impact on shale gas accumulation and development.

Key words: Shale gas storage capacity, Pyrite, Microcrystalline, Sedimentary environment, Shale

中图分类号: 

  • TE122.2+1

图1

研究区构造纲要(据文献[11,12,13]修改)"

图2

研究区部分地层柱状图(据文献[16]修改)"

图3

Image J测量粒径流程"

表1

上扬子区志留系龙马溪组页岩中草莓状黄铁矿集合体粒径统计"

样品采集地样品编号统计数量/个平均粒径/μm中值粒径/μm最大粒径/μm标准偏差
川南宜宾CNYB243.513.307.251.62
四川珙县SCGX75.255.116.671.40
云南昭通YNZT234.453.0912.013.07
重庆南川CQNC563.193.106.020.88

图4

上扬子区志留系龙马溪组页岩中草莓状黄铁矿集合体粒径统计"

表2

上扬子区志留系龙马溪组页岩中草莓状黄铁矿粒径分析(部分数据引自文献[23])"

样品采集地样品编号草莓状黄铁矿粒径/μm草莓状黄铁矿平均粒径(D)/μm微晶黄铁矿平均粒径(d)/μmD/d
川南宜宾CNYB1.64~7.253.510.3310.72
四川珙县SCGX2.86~6.675.250.3316.15
云南昭通YNZT1.56~12.044.450.518.71
重庆南川CQNC1.59~6.023.190.565.73
湘鄂西地区[23]2.5~64.080.4010.20
湘鄂西地区[23]1.25~83.650.507.30

图5

JY41井中龙马溪组段S和TOC垂向变化"

图6

页岩中发育的孔隙类型(a) 有机质孔; (b) 铸模孔; (c) 矿物溶孔; (d) 絮凝成因孔; (e) 微裂缝; (f) 黏土矿间孔; (g)、(h)、(i)黄铁矿晶间有机质孔"

图7

上扬子区龙马溪组草莓状黄铁矿平均粒径—标准偏差二元图(部分数据引自文献[7,9])"

图8

上扬子区龙马溪组下部沉积格局[33]"

图9

黄铁矿由草莓状向立方体结构转变"

1 ZhuHua, YangGuang, YuanBaoguo, et al. Geological conditions resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10): 1475-1485.
朱华,杨光,苑保国,等.四川盆地常规天然气地质条件、资源潜力及勘探方向[J].天然气地球科学,2018,29(10):1475-1485.
2 ZhengMin, LiJianzhong, WuXiaozhi, et al. China’s conventional and unconventional natural gas resource potential key exploration fields and direction[J].Natural Gas Geoscience, 2018, 29(10): 1383-1397.
郑民,李建忠,吴晓智,等.我国常规与非常规天然气资源潜力、重点领域与勘探方向[J].天然气地球科学,2018,29(10):1383-1397.
3 ZouCaineng, DongDazhong, YangHua, et al. Conditions of shale gas accumulation and planning practices in China[J]. Natural Gas Industry, 2011, 31(12):26-39,125.
邹才能,董大忠,杨桦,等.中国页岩气形成条件及勘探实践[J].天然气工业,2011,31(12):26-39,125.
4 CuiJingwei, ZhuRukai, WuSongtao, et al. The effect of pyrite on the accumulation of organic matter, hydrocarbon generation and expulsion, and accumulation of oil in shale[J]. Geological Review, 2013, 59(supplement 1):783-784.
崔景伟,朱如凯,吴松涛,等.黄铁矿在页岩有机质富集、生排烃与页岩油聚集中的作用[J].地质论评,2013,59(增刊1):783-784.
5 NieHaikuan, ZhangJinchuan. Study on the shale gas accumulation conditions and gas content calculation:Taking the Lower Paleozoic in Sichuan Basin and its periphery as an example[J]. Acta Geological Sinica, 2012, 86(2):349-361.
聂海宽,张金川.页岩气聚集条件及含气量计算——以四川盆地及其周缘下古生界为例[J].地质学报,2012,86(2):349-361.
6 CaoTaotao, DengMo, SongZhiguang, et al. Study on the effect of pyrite on the accumulation of shale oil and gas[J]. Natural Gas Geoscience, 2018, 29(3): 404-414.
曹涛涛,邓模,宋之光,等.黄铁矿对页岩油气富集成藏影响研究[J].天然气地球科学,2018,29(3):404-414.
7 WilkinR T,BarnesH L, BrantleyS L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20):3897-3912.
8 ChangHuajin, ChuXuelei. Pyrite framboids and palaeo ocean redox condition reconstruction[J]. Advances in Earth Science, 2011, 26(5): 475-481.
常华进,储雪蕾.草莓状黄铁矿与古海洋环境恢复[J].地球科学进展,2011,26(5):475-481.
9 ZhouC, JiangS Y. Palaeoceanographic redox environments for the Lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2009, 271(3):279-286.
10 ZhangYong. The Geological Setting of Lower Paleozoic Gas-Shale Sequences in the Southern Yangtze Block and the Structural Analyses of the Testing Regions[D]. Nanjing: Nanjing Universuty, 2012.
张勇.扬子地块南部下古生界页岩气地质背景及勘探试验区构造分析[D].南京: 南京大学,2012.
11 FangJunhua, ZhuYanming, WeiWei, et al. Basic geologic analysis of shale gas accumulation in the Longmaxi Formation in Shunan region[J]. Special Oil and Gas Reservoirs, 2010, 17(6):46-49.
方俊华,朱炎铭,魏伟,等.蜀南地区龙马溪组页岩气成藏基础分析[J].特种油气藏,2010,17(6):46-49.
12 YuanJianxin. The regional structural mechanics of southern Sichuan and its significance in oil and gas exploration[J]. Journal of Chongqing University of Science and Technology: Natural Science Edition, 1996(1):1-4.
袁建新.川南构造力学分区及其在油气勘探中的意义[J].重庆科技学院学报:自然科学版,1996(1):1-4.
13 FuXiaodong, QinJianzhong, Tenger. Evaluation on excellent marine hydrocarbon source layers in southeast area of the Sichuan Basin:An example from Well D-1[J]. Petroleum Geology and Experiment, 2008, 30(6):621-628.
付小东,秦建中,腾格尔.四川盆地东南部海相层系优质烃源层评价——以丁山1井为例[J].石油实验地质,2008,30(6):621-628.
14 WangTong, YangKeming, XiongLiang, et al. Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs[J]. Acta Petrolei Sinica, 2015, 36(8):915-925.
王同,杨克明,熊亮,等.川南地区五峰组—龙马溪组页岩层序地层及其对储层的控制[J].石油学报,2015,36(8):915-925.
15 ChenBo, PiDingcheng. Silurian Longmaxi shale gas potential analysis in middle & upper Yangtze Region[J]. China Petroleum Exploration, 2009, 14(3): 15-19, 1.
陈波,皮定成.中上扬子地区志留系龙马溪组页岩气资源潜力评价[J].中国石油勘探,2009,14(3):15-19, 1.
16 LiuYang. Geochemical Genesis Model and Its Applications of Natural Gas in High-over Matured Shale[D]. Beijing: China University of Geosciences, 2017.
刘飏.高—过成熟页岩中天然气地球化学成因模式与应用[D].北京:中国地质大学,2017.
17 GaoDelu. Twenty five years of rapid development of scanning electron microscope[J]. Modern Scientific Instrument,1990(2):1-4.
高德禄.扫描电子显微镜飞速发展的25年[J].现代科学仪器,1990(2):1-4.
18 ZhaoYan, ZhengJiaoyu, GuoPeng, et al. Applications of the ImageJ software in analysis of solid grains in a debris flow gully[J]. Journal of Lanzhou University: Natural Sciences, 2015, 51(6):877-881.
赵岩,郑娇玉,郭鹏,等.ImageJ软件在泥石流固体颗粒分析中的应用[J].兰州大学学报:自然科学版,2015,51(6):877-881.
19 SongYudan.ImageJ Used in Mineral First Crash Detection[D]. Taiyuan: Taiyuan University of Technology,2008.
宋玉丹.ImageJ在矿物初碎检测中的应用[D].太原: 太原理工大学,2008.
20 SongYudan, QinZhiyu, RongXingfu. Approach to detect image edge and prospect by ImageJ[J]. Mechanical Management and Development, 2009, 23(S1):180-181.
宋玉丹,秦志钰,容幸福.用ImageJ提取图像边缘的方法及展望[J].机械管理开发,2009,23(S1):180-181.
21 YangXueying, GongYiming. Pyrite Framboid:Indicator of Environments and life[J].Earth Science,2011,36(4):643-658.
杨雪英,龚一鸣.莓状黄铁矿:环境与生命的示踪计[J].地球科学,2011,36(4):643-658.
22 XuZuxin, HanShumin, WangQichao. Characteristics of pyrite and its hydrocarbon significance of shale reservoir of Doushantuo Formation in middle Yangtze area[J]. Lithologic Reservoirs,2015,27(2):31-37.
徐祖新,韩淑敏,王启超.中扬子地区陡山沱组页岩储层中黄铁矿特征及其油气意义[J].岩性油气藏,2015,27(2):31-37.
23 LiuZiyi, ZhangJinchuan, LiuYang, et al. The particle size characteristics of pyrite in western Hunan and Hubei areas' Wufeng-Longmaxi Formation shale[J]. Science Technology and Engineering, 2016, 16(26):34-41.
刘子驿,张金川,刘飏,等. 湘鄂西地区五峰组—龙马溪组泥页岩黄铁矿粒径特征[J].科学技术与工程,2016,16(26):34-41.
24 WuChenjun, ZhangMingfeng, MaWanyun, et al. Organic matter characteristic and sedimentary environment of the Lower Cambrian Niutitang shale in southeastern Chongqing[J]. Natural Gas Geoscience, 2014, 25(8): 1267-1274.
吴陈君,张明峰,马万云,等.渝东南牛蹄塘组页岩有机质特征及沉积环境研究[J].天然气地球科学,2014,25(8):1267-1274.
25 ChenShangbin, ZhuYanming, WangHongyan, et al. Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan Basin[J]. Journal of China Coal Society, 2012, 37(3):438-444.
陈尚斌,朱炎铭,王红岩,等. 川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
26 SlattR M, O’BrienN R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12):2017-2030.
27 LoucksR G, ReedR M, RuppelS C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrockpores[J]. AAPG Bulletin, 2012, 96(6):1071-1098.
28 WangPengfei, JiangZhenxue, LvPeng, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J]. Natural Gas Geoscience, 2018, 29(7): 997-1008.
王朋飞,姜振学,吕鹏,等.重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J].天然气地球科学,2018,29(7):997-1008.
29 LiuZhongbao, GaoBo, HuZongquan, et al. Reservoir characteristics and pores formation and evolution of high maturated organic rich shale: A case study of Lower Cambrian Jiumenchong Formation, southern Guizhou area[J]. Acta Petrolei Sinica, 2017, 38(12):1381-1389.
刘忠宝,高波,胡宗全,等.高演化富有机质页岩储层特征及孔隙形成演化——以黔南地区下寒武统九门冲组为例[J].石油学报.2017,38(12):1381-1389.
30 WuYanyan, CaoHaihong, DingAnxu,et al. Pore characteristics of a shale gas reservoir and its effect on gas content[J]. Petroleum Geology & Experiment, 2015, 37(2): 231-236.
吴艳艳,曹海虹,丁安徐,等.页岩气储层孔隙特征差异及其对含气量影响[J].石油实验地质,2015,37(2):231-236.
31 ZhangJinglian, ZhangPingzhong. A discussion of pyrite catalysis on the hydrocarbon generation process[J] Advances in Earth Science, 1996,11(3): 282-287.
张景廉,张平中.黄铁矿对有机质成烃的催化作用讨论[J].地球科学进展,1996,11(3):282-287.
32 SunShasha, RuiYun, DongDazhong, et al. Paleogeographic evolution of the Late Ordovician-Early Silurian in upper and middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology, 2018, 39(6): 1087-1106.
孙莎莎,芮昀,董大忠,等.中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J].石油与天然气地质,2018,39(6):1087-1106.
33 LiuWei, YuQian, YanJianfei, et al. Characteristics of organic rich mudstone reservoirs in the Silurian Longmaxi Formation in upper Yangtze region[J]. Oil & Gas Geology, 2012, 33(3): 346-352.
刘伟,余谦,闫剑飞,等.上扬子地区志留系龙马溪组富有机质泥岩储层特征[J].石油与天然气地质.2012,33(3):346-352.
34 LiuDameng, YangQi. Occurrence and geological genesis of pyrites in Late Paleozoic coals in North China[J]. Geochimica, 1999(4):340-350.
刘大锰,杨起.华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J].地球化学,1999(4):340-350.
35 TangYuegang, RenDeyi, The genesis of pyrites in coal[J]. Geological Review, 1996, 42(1):64-70.
唐跃刚,任德贻.煤中黄铁矿的成因研究[J].地质论评,1996,42(1):64-70.
36 HuangYong, ZhangXiaolong, XiongTao, et al. Profiling of relationship between shale organic matter enrichment mechanism and gas-bearing property: A case study of Well qq No. 1[J]. Coal Geology of China, 2017, 29(12): 5-11.
黄勇,张小龙,熊涛,等.页岩有机质富集机理与含气性关系剖析——以黔浅1井为例[J].中国煤炭地质,2017,29(12):5-11.
37 LiangFeng, ZhuYanming, MaChao, et al. Sedimentary distribution and reservoir characteristics of shale gas reservoir of Niutitang Formation in northwestern Hunan[J]. Journal of China Coal Society, 2015, 40(12): 2884-2892.
梁峰,朱炎铭,马超,等.湘西北地区牛蹄塘组页岩气储层沉积展布及储集特征[J].煤炭学报,2015,40(12):2884-2892.
38 ZhangQin, LiuHonglin, BaiWenhua, et al. Shale gas content and its main controlling factors in Longmaxi shales in southeastern Chongqing[J]. Natural Gas Industry, 2013, 33(5): 35-39.
张琴,刘洪林,拜文华,等.渝东南地区龙马溪组页岩含气量及其主控因素分析[J].天然气工业,2013,33(5):35-39.
39 ZhangChenchen, WangYuman, DongDazhong, et al. Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of “sweet spot layers” in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(9): 51-60.
张晨晨,王玉满,董大忠,等.四川盆地五峰组—龙马溪组页岩脆性评价与“甜点层”预测[J].天然气工业,2016,36(9):51-60.
40 YouLijun, KangYili, ChenQiang, et al. Prospect of shale gas recovery enhancement by oxidation-indued rock burst[J]. Natural Gas Industry, 2017, 37(5): 53-61.
游利军,康毅力,陈强,等.氧化爆裂提高页岩气采收率的前景[J].天然气工业,2017,37(5):53-61.
[1] 邱振, 邹才能, 王红岩, 董大忠, 卢斌, 陈振宏, 刘德勋, 李贵中, 刘翰林, 何江林, 魏琳. 中国南方五峰组—龙马溪组页岩气差异富集特征与控制因素[J]. 天然气地球科学, 2020, 31(2): 163-175.
[2] 李书琴, 印森林, 高阳, 张方, 李映艳, 彭寿昌. 准噶尔盆地吉木萨尔凹陷芦草沟组混合细粒岩沉积微相[J]. 天然气地球科学, 2020, 31(2): 235-249.
[3] 李二庭, 向宝力, 刘向军, 周妮, 潘长春, 迪丽达尔·肉孜null, 米巨磊. 准噶尔盆地吉木萨尔凹陷芦草沟组页岩油偏稠成因分析[J]. 天然气地球科学, 2020, 31(2): 250-257.
[4] 张静非, 赵继展, 陈冬冬, 李树刚, 林海飞. 鄂尔多斯盆地彬长矿区含H2S煤层沉积环境特征及成因分析[J]. 天然气地球科学, 2020, 31(1): 100-109.
[5] 钟秋, 傅雪海, 张苗, 张庆辉, 程维平. 沁水煤田石炭系—二叠系煤系地层页岩气开发潜力评价[J]. 天然气地球科学, 2020, 31(1): 110-121.
[6] 张磊夫, 董大忠, 孙莎莎, 于荣泽, 李林, 林士尧, 欧阳小虎, 施振生, 武瑾, 昌燕, 马超, 李宁. 三维地质建模在页岩气甜点定量表征中的应用[J]. 天然气地球科学, 2019, 30(9): 1332-1340.
[7] 徐加祥, 杨立峰, 丁云宏, 刘哲, 高睿, 王臻. 基于四参数随机生长模型的页岩储层应力敏感分析[J]. 天然气地球科学, 2019, 30(9): 1341-1348.
[8] 张梦琪, 邹才能, 关平, 董大忠, 孙莎莎, 施振生, 李志欣, 冯子齐, 李拉毛才旦. 四川盆地深层页岩储层孔喉特征[J]. 天然气地球科学, 2019, 30(9): 1349-1361.
[9] 马风华, 潘进礼, 马瑞赟, 张勇, 马小娟. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学, 2019, 30(9): 1370-1377.
[10] 王岚, 曾雯婷, 夏晓敏, 周海燕, 毕赫, 商斐, 周学先. 松辽盆地齐家—古龙凹陷青山口组黑色页岩岩相类型与沉积环境[J]. 天然气地球科学, 2019, 30(8): 1125-1133.
[11] 郭旭光, 何文军, 杨森, 王江涛, 冯右伦, 贾希玉, 邹阳, 王霞田, 黄立良. 准噶尔盆地页岩油“甜点区”评价与关键技术应用——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179.
[12] 陈旋, 刘小琦, 王雪纯, 马强, 刘俊田, 龚鑫, 杨小东, 石江峰, 白国娟. 三塘湖盆地芦草沟组页岩油储层形成机理及分布特征[J]. 天然气地球科学, 2019, 30(8): 1180-1189.
[13] 刘海涛, 胡素云, 李建忠, 王居峰, 王群一 , 姜文亚, 江涛, 赵长毅 , 张春明, 吴丰成. 渤海湾断陷湖盆页岩油富集控制因素及勘探潜力[J]. 天然气地球科学, 2019, 30(8): 1190-1198.
[14] 黄东, 杨光, 杨智, 杨天泉, 白蓉, 李育聪, 戴鸿鸣. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学, 2019, 30(8): 1212-1221.
[15] 王科, 李海涛, 李留杰, 张庆, 补成中, 王志强. 3种常用页岩气井经验递减方法——以四川盆地威远区块为例[J]. 天然气地球科学, 2019, 30(7): 946-954.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] 任以发. 微量烃分析在井中化探录井中的应用[J]. 天然气地球科学, 2005, 16(1): 88 -92 .
[3] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[4] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[5] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[6] 张延敏, . 1996~1999年世界天然气产量[J]. 天然气地球科学, 2000, 11(3): 44 -45 .
[7] 付广;王剑秦. 地壳抬升对油气藏保存条件的影响[J]. 天然气地球科学, 2000, 11(2): 18 -23 .
[8] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[9] . 西部天然气资源全面大开发在即[J]. 天然气地球科学, 2000, 11(1): 27 .
[10] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .