天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

渝东北巫溪地区晚奥陶世五峰期元素地球化学特征及其对沉积环境的限制

刘田1,冯明友1,王兴志1,2,陈波3,张良华3,刘小洪1,2,王珏博1   

  1. 1.西南石油大学地球科学与技术学院,四川 成都 610500;
    2.天然气地质四川省重点实验室,四川 成都 610500;
    3.中国石油西南油气田分公司重庆气矿地质研究所,重庆 400000
  • 收稿日期:2018-12-21 修回日期:2019-01-31 出版日期:2019-05-10
  • 通讯作者: 冯明友(1981-),男,四川宜宾人,讲师,博士,主要从事储层地质及非常规油气地质研究. E-mail:fmyswpu@163.com.
  • 作者简介:刘田(1993-),女,陕西靖边人,硕士,主要从事储层地质及非常规油气地质研究.E-mail:liutian0228@163.com.
  • 基金资助:
    “十三五”国家科技重大专项课题(编号:2017ZX05001001-002);四川省教育厅科研项目(编号:16ZB0089);天然气地质四川省重点实验室课题(编号:2015trqdz01)联合资助。

Elemental geochemical characteristics and limit on sedimentary environmentin the Late Ordovician Wufengian period in the Wuxi area,NE Chongqing

Liu Tian1,Feng Ming-you1,Wang Xing-zhi1,2,Chen Bo3,Zhang Liang-hua3,Liu Xiao-hong1,2,Wang Jue-bo1   

  1. 1.School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China;
    2.Sichuan Provincial Key Laboratory of Natural Gas Geology,Southwest Petroleum University,Chengdu 610500,China;
    3.Geology Institute of Chongqi Gas District,PetroChina Southwest Oil & Gas Field Company,Chongqing 400000,China
  • Received:2018-12-21 Revised:2019-01-31 Online:2019-05-10

摘要: 渝东北地区奥陶系五峰组沉积期广泛发育硅质岩及页岩等细粒沉积物,深化其海平面变化及沉积环境研究对页岩气勘探意义重大。综合全岩分析、主—微量及稀土元素地球化学指标及草莓状黄铁矿等系统研究表明,巫溪地区五峰组Al2O3/(Al2O3+Fe2O3)均值为0.78、Y/Ho均值为29.05,指示其属陆源碎屑影响的大陆边缘—远洋沉积环境。微量元素UEF—MoEF及V/Cr—U/Th交会特征反映五峰组沉积期水体属硫化—缺氧状态。稀土元素分析表明δEu值具明显负异常、由下至上ΣREE渐增且轻稀土由相对富集变为无富集或轻微亏损,指示正常海水沉积、受热液作用影响不明显。多参数氧化还原指标U/Th、Ni/Co及V/Cr等共同指示五峰组沉积期属厌氧—贫氧环境,对应草莓状黄铁矿平均粒径由下至上逐渐变大,反映氧化性逐渐增强。综合研究表明,渝东北巫溪地区五峰组沉积期历经完整海侵—海退三级海平面变化旋回并可细分为5个次级海平面变化旋回;早期属厌氧环境、晚期属贫氧环境,沉积环境由外陆棚向内陆棚过渡。

关键词: 渝东北, 白鹿剖面, 晚奥陶世, 五峰组, 氧化还原指标, 草莓状黄铁矿, 海平面变化旋回

Abstract: The deep-water rocks are confused to reflect fluctuation of sea level by the fine-grained sediments and occurrence of a thin succession.Upper Ordovician black siliceous rocks and siliceous shales (Wufeng Formation) from Wuxi (Northeastern Chongqing,Southwest China) are studied using integrated petrographic,and geochemical methods (major,trace elements and REE) and pyrite framboid in order to decipher depositional conditions during the sedimentation of siliceous rocks.Al2O3/(Al2O3+Fe2O3),SiO2/Al2O3 and Al-Fe-Mn values indicate that the sediments of Wufeng Formation are deposited in a continental margin and influenced by detrital input.UEF-MoEF and V/Cr-U/Th cross plots suggest the Wufeng Formation was formed in dysoxic to anoxic conditions.In addition,redox proxies such as U/Th and V/Cr suggest that the lower part of Wufeng Formation was deposited in an anoxic environment,while the upper part was deposited in a dysoxic environment.Furthermore,the gradual increase of the average size of pyrite framboids (from 3.46μm to 4.21μm) shows that the oxidizability increased.During the Wufengian period deposition,sea level fluctuations can be divided into a third-order cycles and subdivided into five fourth-order cycles.U/Th,Ni/Co,V/Cr,and the size of pyrite framboid decrease gradually,which indicates that oxidizability (from anoix to dysoxic) and depth of the water gradually increased.The sedimentary environment was transformed from outside shelf to inner shelf.

Key words: Northeastern Chongqing, Bailu section, Late Ordovician, Wufeng Formation, Redox proxies, Pyrite framboid, Eustatic cycles

中图分类号: 

  • TE122.1+13
[1]Trotter J A,Williams I S,Barnes C R,et al.Did cooling oceans trigger Ordovician biodiversification?Evidence from conodont thermometry[J].Science,2008,321(5888):550-554.
[2]Harper D A T,Jin Jisuo,Rasmussen C M .Late Ordovician carbonate mounds from North Greenland:A peri-Laurentian dimension to the Boda Event?[J].GFF,2014,136(1):95-99.
[3]Zou Caineng,Qiu Zhen,Poulton S W,et al.Oceaneuxinia and climate change “double whammy” drove the Late Ordovician mass extinction[J].Geology,2018,46(6):535-538.
[4]Bartlett R,Elrick M,Wheeley J R,et al.Abrupt global-ocean anoxia during the Late Ordovician-early Silurian detected using uranium isotopes of marine carbonates[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(23):5896-5901.
[5]Zhang Jizhen,Li Xianqing,Zhang Xueqing,et al.Geochemical and geological characterization of marine-continental transitional shales from Longtan Formation in Yangtze area,South China[J].Marine and Petroleum Geology,2018,96:1-15.
[6]Smolarek J,Wiesaw T,Bond D P G,et al.Lower Wenlock black shales in the northern Holy Cross Mountains,Poland:Sedimentary and geochemical controls on the Ireviken Event in a deep marine setting[J].Geological Magazine,2017,154(2):247-264.
[7]Bergmann K D,Finnegan S,Creel R,et al.A paired apatite and calcite clumped isotope thermometry approach to estimating Cambro-Ordovician seawater temperatures and isotopic composition[J].Geochimica et Cosmochimica Acta,2018,224:18-41.
[8]Bjerrum C J.Sea level,climate,and ocean poisoning by sulfide all implicated in the first animal mass extinction[J].Geology,2017,46(6):575-576.
[9]Loydell D K,Fry[DD·[DD)]da J.Carbon isotope stratigraphy of the Upper Telychian and Lower Sheinwoodian (Landovery-Wenlock,Silurian) of the Banwy River section,Wales[J].Geological Magazine,2007,144(6):1015-1019.
[10]Munnecke A,Calner M,Harper D A T,et al.Ordovician and Silurian sea-water chemistry,sea level,and climate:A synopsis[J].Palaeogeography Palaeoclimatology Palaeoecology,2010,296(3/4):389-413.
[11]Jeppsson L.An oceanic model for lithological and faunal changes tested on the Silurian record[J].Journal of the Geological Society,1990,147(4):663-674.
[12]Bickert T,P tzold J,Samtleben C,et al.Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland,Sweden[J].Geochimica and Cosmochimica Acta,1997,61(13):2717-2730.
[13]Bi He,Jiang Zhenxue,Li Peng,et al.Shale reservoir characteristics and its influence on gas content of Wufeng-Longmaxi Formation in the southeastern Chongqing[J].Natural Gas Geoscience,2014,25(8):1275-1283.
毕赫,姜振学,李鹏,等.渝东南地区黔江凹陷五峰组—龙马溪组页岩储层特征及其对含气量的影响[J].天然气地球科学,2014,25(8):1275-1283.
[14]Xiong Xiaohui,Wang Jian,Yu Qian,et al.Element geochemistry inversion of the environment and background of organic-rich black shale formations:A case study of the Wufeng-Longmaxi black shale in the Tianba section in northeastern Chongqing[J].Natural Gas Industry,2015,35(4):25-32.
熊小辉,王剑,余谦,等.富有机质黑色页岩形成环境及背景的元素地球化学反演:以渝东北地区田坝剖面五峰组—龙马溪组页岩为例[J].天然气工业,2015,35(4):25-32.
[15]Wang Taoli,Hao Aisheng,Chen Qing,et al.The study of main factors controlling the development of Wufeng Formation and Longmaxi Formation organic-rich shales in the Yichang area,Middle Yangtze Region[J].Natural Gas Geoscience,2018,29(5):616-631.
王涛利,郝爱胜,陈清,等.中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J].天然气地球科学,2018,29(5):616-631.
[16]Qiu Zhen,Zou Caineng,Li Xizhe,et al.Discussion on the contrition of graptolite to organic enrichment and reservoir of gas shale:A case study of the Wufeng-Longmaxi Formations in south China[J].Natural Gas Geoscience,2018,29(5):606-615.
邱振,邹才能,李熙喆,等.论笔石对页岩气源储的贡献—以华南地区五峰组—龙马溪组笔石页岩为例[J].天然气地球科学,2018,29(5):606-615.
[17]Long Shengxiang,Feng Dongjun,Li Fengxia,et al.Prospect of the deep marine shale gas exploration and development in the Sichuan Basin[J].Natural Gas Geoscience,2018,29(4):443-451.
龙胜祥,冯动军,李凤霞,等.四川盆地南部深层海相页岩气勘探开发前景[J].天然气地球科学,2018,29(4):443-451.
[18]Wu Lanyu,Lu Yongchao,Jiang Shu,et al.Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area[J].Marine and Petroleum Geology,2019,102:74-85.
[19]Le Guangyu.Tctonic characteristics and tctonic evolution of Dabashan orogenic belt and its foreland basin[J].Journal of Mineralogy and Petrology,1998,18(A1):14-21.
乐光禹.大巴山造山带及其前陆盆地的构造特征和构造演化[J].矿物岩石,1998,18(A1):14-21.
[20]Wang Zecheng,Zou Caineng,Tao Shizhen,et al.Analysis on tectonic evolution and exploration potential in Dabashan foreland basin[J].Acta Petrolei Sinica,2004,25(6):23-28.
汪泽成,邹才能,陶士振,等.大巴山前陆盆地形成及演化与油气勘探潜力分析[J].石油学报,2004,25(6):23-28.
[21]Mu Chuanlong,Zhou Kenken,Liang Wei,et al.Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J].Acta Geologica Sinica,2011,85(4):526-532.
牟传龙,周恳恳,梁薇,等.中上扬子地区早古生代烃源岩沉积环境与油气勘探[J].地质学报,2011,85(4):526-532.
[22]Li Jiao,He Dengfa,Mei Qinghua.Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J].Acta Petrolei Sinica,2015,36(4):427-445.
李皎,何登发,梅庆华.四川盆地及邻区奥陶纪构造—沉积环境与原型盆地演化[J].石油学报,2015,36(4):427-445.
[23]Qiu Zhen,Jiang Zengguang,Dong Dazhong,et al.Organic matter enrichment model of the shale in Wufeng-LongmaxiFormation of Wuxi area[J].Journal of China University of Mining & Technology,2017,46(5):1134-1143.
邱振,江增光,董大忠,等.巫溪地区五峰组—龙马溪组页岩有机质沉积模式[J].中国矿业大学学报,2017,46(5):1134-1143.
[24]Wignall T K,Geoffroy J D.Multivariate bayesian classification models:Application to the optimal selection of prospecting areas and exploration targets[J].Statistical Models for Optimizing Mineral Exploration,1987,16:250-288.
[25]Wright J,Schrader H,Holser W T.Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J].Geochimica and Cosmochimica Acta,1987,51(3):631-644.
[26]Tribovillard N,Algeo T J,Lyons T,et al.Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology,2006,232(1/2):12-32.
[27]Wignall P B,Myers K J.Interpreting benthic oxygen levels in mudrocks:A new approach[J].Geology,1988,16:452-455.
[28]Shields G,Stille P.Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of Cambrian phosphorites[J].Chemical Geology,2001,175(1/2):29-48.
[29]Mouro L D,Rakociński M,Marynowski L,et al.Benthic anoxia,intermittent photic zone euxinia and elevated productivity during deposition of the Lower Permian,post-glacial fossiliferous black shales of the Paraná Basin,Brazil[J].Global and Planetary Change,2017,158:155-172.
[30]Bostrm K,Kraemer T,Gartner S.Provenance and accumulation rates of opaline silica,Al,Ti,Fe,Mn,Cu,Ni and Co in Pacific pelagic sediments[J].Chemical Geology,1973,11(2):123-148.
[31]Adachi M,Yamamoto K,Sugisaki R.Hydrothermal chert and associated siliceous rocks from the northern Pacific:Their geological significance as indication of ocean ridge activity[J].Sediment Geology,1986,47(1/2):125-148.
[32]Murray R W.Chemical criteria to identify the depositional environment of chert:General principles and applications[J].Sedimentary Geology,1994,90(3/4):213-232.
[33]Jones B,Manning D A C.Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J].Chemical Geology,1994,111(1-4):111-129.
[34]Rimmer S M.Geochemical paleoredox indicators in Devonian-Mississippian black shales,Central Appalachian Basin (USA)[J].Chemical Geology,2004,206(3):373-391.
[35]Wójcik T P.Depositional redox conditions of the Grybów Succession (Oligocene,Polish Carpathians) in the light of petrological and geochemical indices[J].Geological Quaterly,2015,59(4):603-614.
[36]Rakociński M,Pisarzowska A,Janiszewska K,et al.Depositional conditions during the Lower Kellwasser Event (Late Frasnian) in the deep-shelf ysogóry Basin of the Holy Cross Mountains Poland[J].Lethaia,2016,49:571-590.
[37]Bond D P G,Zatoń M,Wignall P G,et al.Evidence for shallow-water “Upper Kellwasser” anoxia in the Frasnian-Famennian reefs of Alberta,Canada[J].Lethaia,2013,46(3):355-368.
[38]Wilde P,Hunt M S Q,Erdtmann B D.The whole-rock cerium anomaly:A potential indicator of eustatic sea-level changes in shales of the anoxic facies[J].Sedimentary Geology,1996,101(1-2):43-53.
[39]Feng Hongzhen,Erdtmann B D,Wang Haifeng.Early Paleozoic whole-rock Ce anomalies and secular eustatic changes in the Upper Yangtze Region[J].Science in China,Series D:Earth Sciences,2000,43(3):328-336.
[40]Alibo D S,Nozaki Y.Rare earth elements in seawater:Particle association,shale-normalization,and Ce oxidation[J].Geochimica et Cosmochimica Acta,1993,63(3/4):363-372.
[41]Algeo T J,Tribovillard N.Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J].Chemical Geology,2009,268(3/4):211-225.
[42]Tribovillard N,Algeo T J,Baudin F,et al.Analysis of marine environmental conditions based on molybdenum-uranium covariation-Applications to Mesozoic paleoceanography[J].Chemical Geology,2012,(324/325):46-58.
[43]Kidder D L,Tomescu I.Biogenic chert and the Ordovician silica cycle[J].Palaeogeography Palaeoclimatology Palaeoecology,2016,458:29-38.
[44]Wilkin R T,Barnes H L,Brantley S L.The size distribution of framboidal pyrite in modern sediments:An indicator of redox conditions[J].Geochimica Et Cosmochimica Acta,1996,20(60):3897-3912.
[45]Li Yanfang,Shao Deyong,Lv Haigang,et al.A relationship between element geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(12):1470-1483.
李艳芳,邵德勇,吕海刚,等.四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J].石油学报,2015,36(12):1470-1483.
[46]Chen Chao,Mu Chuanlong,Zhou Kenken,et al.The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin,South China[J].Marine and Petroleum Geology,2016,76:159-175.
[47]Ma Yiquan,Fan Majie,Lu Yongchao,et al.Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China:Implications for depositional controls on organic matter accumulation[J].Marine and Petroleum Geology,2016,75:291-309.
[48]Yin Xiangdong,Lu Shuangfang,Liu Keyu,et al.Non-uniform subsidence and its control on the temporal-spatial evolution of the black shale of the Early Silurian Longmaxi Formation in the western Yangtze block,South China[J].Marine and Petroleum Geology,2018,98:881-889.
[49]Qiu Zhen,Dong Dazhong,Lu Bin,et al.Discussion on the relationship between graptolite abundance and organic enrichment in shales from the Wufeng and Longmaxi Formation,South China[J].Acta Sedimentologica Sinica,2016,34(6):1011-1020.
邱振,董大忠,卢斌,等.中国南方五峰组—龙马溪组页岩中笔石与有机质富集关系探讨[J].沉积学报,2016,34(6):1011-1020.
[50]Xu Lunxun,Xiao Chuantao,Gong Wenping,et al.A study on the deep-sea sediment of the Guanyinqiao member of the Upper Ordovician Wufeng Formation in the Yangtze area[J].Acta Geologica Sinica,2004,78(6):726-732.
徐论勋,肖传桃,龚文平,等.论扬子地区上奥陶统五峰组观音桥段的深海成因[J].地质学报,2004,78(6):726-732.
[51]He Weihong,Wang Xiaofeng.Sea-level change of the central Yangtze Sea Basin in the Late Ordovician Wufengian Period[J].Acta Geoscientia Sinica,2003,24(1):55-60.
何卫红,汪啸风.扬子海盆中部晚奥陶世五峰期海平面变化[J].地球科学,2003,24(1):55-60.
[52]Marynowski L,Pisarzowska A,Derkowski A,et al.Influence of palaeoweathering on trace metal concentrations and environmental proxies in black shales[J].Palaeogeography Palaeoclimatology Palaeoecology,2017,472:177-191.
[53]Videt B,Paris F,Rubino J L,et al.Biostratigraphical calibration of third order Ordovician sequences on the northern Gondwana platform[J].Palaeogeography Palaeoclimatology Palaeoecology,2010,296(3/4):359-375.
[54]Morford J L,Russell A D,Emerson S.Trace metal evidence for changes in the redox environment assocoated with thetransition from terrigenous clay to diatomaceous sediments,Saanich Inlet,BC[J].Marine Geology,2001,174(1):355-369.
[55]Thomson J,Jarvis I,Green D R H,et al.Oxidation fronts in Madeira Abyssal Plain turbidites:persistence of early diagenetic trace-element enrichments during burial,Site 950[J].Proceedings of the Ocean Drilling Program:Scientific Results,1998,157:559-571.
[56]Schnetger B,Brumsack H J,Schale H,et al.Geochemical characteristics of deep-sea sediments from the Arabian Sea:A high-resolution study[J].Deep Sea Research Part II Topical Studies in Oceanography,2000,47(14):2735-2768.
[57]Mangini A,Laukenmann J S.What do we learn from peaks of uranium and of manganese in deep sea sediments?[J].Marine Geology,2001,177(1):63-78.
[1] 杨振恒, 韩志艳, 腾格尔, 熊亮, 申宝剑, 张庆珍, 史洪亮, 魏力民, 李艳芳, . 四川盆地南部五峰组—龙马溪组页岩地质甜点层特征——以威远—荣昌区块为例[J]. 天然气地球科学, 2019, 30(7): 1037-1044.
[2] 王秀平, 牟传龙, 肖朝晖 , 郑斌嵩 , 陈尧 , 王启宇. 鄂西南地区五峰组—龙马溪组连续沉积特征[J]. 天然气地球科学, 2019, 30(5): 635-651.
[3] 何龙, 王云鹏, 陈多福, 王钦贤, 王成. 重庆南川地区五峰组—龙马溪组黑色页岩沉积环境与有机质富集关系[J]. 天然气地球科学, 2019, 30(2): 203-218.
[4] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[5] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[6] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[7] 何治亮,胡宗全,聂海宽,李双建,许锦. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学, 2017, 28(5): 724-733.
[8] 罗情勇,郝婧玥,李可文,戴娜,栾进华,程礼军,张志平,胡科,钟宁宁. 重庆地区五峰组—龙马溪组页岩笔石光学特征及其在成熟度评价中的应用[J]. 天然气地球科学, 2017, 28(12): 1855-1863.
[9] 陈祖庆,郭旭升,李文成,李金磊. 基于多元回归的页岩脆性指数预测方法研究[J]. 天然气地球科学, 2016, 27(3): 461-469.
[10] 蔡潇,王亮,靳雅夕,高玉巧,曹海虹,丁安徐. 渝东南地区页岩有机孔隙类型及特征[J]. 天然气地球科学, 2016, 27(3): 513-519.
[11] 魏祥峰,郭彤楼,刘若冰. 涪陵页岩气田焦石坝地区页岩气地球化学特征及成因[J]. 天然气地球科学, 2016, 27(3): 539-548.
[12] 毕赫,姜振学,李鹏,李卓,唐相路,张定宇,许野. 渝东南地区黔江凹陷五峰组—龙马溪组页岩储层特征及其对含气量的影响[J]. 天然气地球科学, 2014, 25(8): 1275-1283.
[13] 邱小松,杨波,胡明毅. 中扬子地区五峰组—龙马溪组页岩气储层及含气性特征[J]. 天然气地球科学, 2013, 24(6): 1274-1283.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵应成,周晓峰,王崇孝,王满福,郭娟娟 . 酒西盆地青西油田白垩系泥云岩裂缝油藏特征和裂缝形成的控制因素[J]. 天然气地球科学, 2005, 16(1): 12 -15 .
[2] Seewald J S;Benitez-Netson B C;Whelan J K(美国);刘全有(译). 天然气形成与组成的实验和理论因素[J]. 天然气地球科学, 2000, 11(4-5): 30 -44 .
[3] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[4] 杨蕾;同登科;. 变形介质煤层气双渗流动压力分析[J]. 天然气地球科学, 2006, 17(3): 429 -433 .
[5] 胡锌波;张贵宾;邢卫新;李广超;张海霞;谢宗奎;. 精细构造解释在苏丹Gasab区块的应用[J]. 天然气地球科学, 2006, 17(4): 523 -526 .
[6] 王生维;陈钟惠;段连秀;杨梅珍;. 我国中新生代聚煤盆地煤层气地质特征与勘探前景[J]. 天然气地球科学, 2004, 15(4): 337 -340 .
[7] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[8] 陈文龙;吴迪;尹显林;张明益;邹应勇;向文刚;. 水平井在凝析气田开发中的应用及效果评价[J]. 天然气地球科学, 2004, 15(3): 290 -293 .
[9] 文志刚;何文祥;米立军;刘逸;王根照;唐友军;. 利用盆地模拟技术评价渤东凹陷下第三系油气勘探潜力[J]. 天然气地球科学, 2004, 15(4): 379 -382 .
[10] 张丽娟,韩杰,孙玉善,程明. 塔中4油田石炭系含砾砂岩亚段沉积储层研究[J]. 天然气地球科学, 2007, 18(1): 50 -56 .