天然气地球科学

• 天然气开发 • 上一篇    下一篇

三重介质压裂气藏椭圆流非稳态产能模型

姜瑞忠1,张福蕾1,郜益华2,崔永正1,沈泽阳1,原建伟1   

  1. 1.中国石油大学(华东)石油工程学院,山东 青岛 266580;
    2.中海油研究总院有限责任公司,北京 100028
  • 收稿日期:2018-09-22 修回日期:2018-12-21 出版日期:2019-03-10
  • 作者简介:姜瑞忠(1964-),男,江苏溧江人,教授,博士,主要从事油气田开发研究和教学工作.E-mail:19870005@upc.edu.cn.
  • 基金资助:
    国家自然科学基金项目“致密储层体积压裂缝网扩展模拟研究”(编号:51574265);国家科技重大专项“厚层非均质气藏产能评价及预测技术”(编号:2016ZX05027004-004)联合资助.

Unsteady productivity model of elliptical flow in fracturing triple medium gas reservoir

Jiang Rui-zhong1,Zhang Fu-lei1,Gao Yi-hua2,Cui Yong-zheng1,Shen Ze-yang1,Yuan Jian-wei1   

  1. 1.School of Petroleum Engineering,China University of Petroleum(East China),Qingdao 266580,China; 2.CNOOC Research Institute Co. Ltd.,Beijing 100028,China
  • Received:2018-09-22 Revised:2018-12-21 Online:2019-03-10

摘要: 天然气藏经水力压裂后产生藏改造体积(SRV),SRV内的气藏性质与原始储层存在很大的差异,水力压裂每一阶段的SRV可简化为水力裂缝附近的一个椭圆形区域。由于三重介质气藏为各向异性储层,与经典的径向流模型相比,椭圆流模型对于三重介质气藏的优化开发至关重要。通过建立一个新的压裂井复合椭圆流模型来分析考虑SRV的三重介质气藏产能变化,模型内外椭圆区均为三重介质,高流动能力的内区用来表征SRV,基质和裂缝间的窜流视为非稳态。使用Mathieu函数、拉普拉斯变换和Stehfest数值反演算法等求解数学模型,之后绘制无因次典型曲线,并对模型进行验证。典型曲线的特征显示模型存在13个流动阶段,将基质与裂缝间非稳态与拟稳态窜流进行比较,并分析了井筒半径、SRV半径、流度比和储容比等相关敏感参数对产能的影响。


关键词: 椭圆流, 三重介质, 复合气藏, 非稳态产能, 储层改造体积, 压裂井

Abstract: The stimulated reservoir volume(SRV) is generated after hydraulic fracturing,and the gas reservoir properties in SRV are different from those in original formation.SRV can be simplified to an elliptical shape region around hydraulic fracture at each stage of hydraulic fracturing.Since the triple medium gas reservoir is an anisotropic formation,compared to classical radial flow model,the elliptical flow model is essential for the optimal development of triple medium gas reservoirs.A new composite elliptical flow model of fracturing wells is established to analyze the production performance of triple medium gas reservoirs considering SRV.The inner and outer elliptical regions of the model both are triple media,and the inner region with high flow capacity is used to characterize SRV.The cross flow between matrix and fractures is considered as unsteady flow.The elliptical flow model is solved using the Mathieu function,Laplacian variation and Stehfest numerical inversion algorithm.The dimensionless typical curves are plotted and the model is verified.According to the characteristics of type curves,there are thirteen flow regimes.The unsteady cross flow between matrix and fractures is compared with the pseudo-steady cross flow.The influences of relevant parameters on productivity are analyzed,such as wellbore radius,SRV radius,mobility ratio and storativity ratio.

Key words: Elliptical flow, Triple medium, Composite gas reservoir, Unsteady productivity, Stimulated reservoir volume, Fractured wells

中图分类号: 

  • TE32
[1]Jiang Ruizhong,Teng Wenchao,Qiao Xin,et al.Pressure transient analysis of fractured horizontal well in composite shale gas reservoir[J].Natural Gas Geoscience,2015,26(12):2336-2342,2407.
姜瑞忠,滕文超,乔欣,等.复合页岩气藏压裂水平井动态分析[J].天然气地球科学,2015,26(12):2336-2342,2407.
[2]Zhang Yitang,Liu Ciqun.Further study on the approximate solution of the elliptical flow model for wells with vertical fractures[J].Acta Petrolei Sinica,1996,17(4):71-77.
张义堂,刘慈群.垂直裂缝井椭圆流模型近似解的进一步研究[J].石油学报,1996,17(4):71-77.
[3]Luo Tianyu,Zhao Jinzhou,Guo Jianchun.Elliptical flow method to calculate productivity of gas wells after fracturing[J].Natural Gas Industry,2005,25(10):94-96.
罗天雨,赵金洲,郭建春.求取压裂后气井产能的椭圆流方法[J].天然气工业,2005,25(10):94-96.
[4]Zhang L H,Zhang X T,Wang Y,et al.A study on elliptical gas flow in tri-porosity gas reservoirs[J].Transport in Porous Media,2011,87(3):777-791.
[5]Kucuk F,Brigham W E.Transient flow in elliptical systems[J].SPE Journal,1979,19(6):401-410.
[6]Riley M F,Brigham W E,Horne R N.Analytic solutions for elliptical finite-conductivity fractures[C]//paper 22656-MSpresented at the SPE 66th Annual Technical Conference and Exhibition,USA:Dallas,TX,1991:6-9.
[7]Amini S,Ilk D,Blasingame T A.Evaluation of the elliptical flow period for hydraulically-fractured wells in tight gas sands-theoretical aspects and practical considerations[C]// paper 106308-MS presented at the SPE Hydraulic Fracturing Technology Conference,USA:College Station,TX,2007:29-31.
[8]Cheng Y M,Lee W J,Mcvay D A.A new approach for reliable estimation of hydraulic fracture properties in tight gas wells[J].SPE Reservoir Evaluation Engineering,2009,2(12):254-262.
[9]Escobar F H,Ghisays-Ruiz A,Bonilla L F.New model for elliptical flow regime in hydraulically-fractured vertical wells in homogeneous and naturally-fractured systems[J].APRN Journal of Engineering and Applied Sciences,2014,9(9):1629-1636.
[10]Clarkson C R.Production data analysis of tight gas wells:review of theory and best practices[J].International Journal of Coal Geology,2013,109:101-146.
[11]Guo T K,Zhang S C,Qu Z Q,et al.Experimental study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128:373-380.
[12]Cipolla C L,Lolon E P,Erdle J C,et al.Reservoir modeling in shale-gas reservoirs[J].SPE Reservoir Evaluation Engineering,2010,13(4):638-653.
[13]Zhao Haifeng,Jiang Di,Shi Jun.Fluid mechanics and rock fracture kinetics of fracture mesh system in tight sand gas reservoirs[J].Natural Gas Geoscience,2016,27(2):346-351.
赵海峰,蒋迪,石俊.致密砂岩气藏缝网系统渗流力学和岩石断裂动力学[J].天然气地球科学,2016,27(2):346-351.
[14]Wang H,Liao X,Zhao X.Study of tight oil reservoir flow regimes in different treated horizontal well[J].Journal of the Energy Institute,2015,88(2):198-204.
[15]Zhao Y L,Zhang L H,Luo J X,et al.Performance of fractured horizontal well with stimulated reservoir volume in tight gas reservoir[J].Journal of Hydrology,2014,512:447-456.
[16]Wen Qingzhi,Gao Jinjian,Li Yang,et al.Analysis of the factors of influencing stimulated volume of shale reservoir volume fracturing[J].Journal of Xi’an Shiyou University:Natural Science Edition,2014,29(6):58-64.
温庆志,高金剑,李扬,等.页岩气储层SRV影响因素分析[J].西安石油大学学报:自然科学版,2014,29(6):58-64.
[17]Wang Yanyan,Wang Weihong,Hu Xiaohu,et al.Pressure dynamic analysis model of MFHW in induced permeability field[J].Natural Gas Geoscience,2017,28(5):785-791.
王妍妍,王卫红,胡小虎.诱导渗透率场中压裂水平井压力动态分析模型[J].天然气地球科学,2017,28(5):785-791.
[18]Obuto T S,Ertekin T.A composite system solution in elliptic flow geometry[J].SPE Formation Evaluation,1987,2(3):227-238.
[19]Zhang Q,Su Y L,Wang W D,et al.Performance analysis of fractured wells with elliptical SRV in shale reservoirs[J].Journal of Natural Gas Science and Engineering,2017,45:380-390.
[20]Ma Kuiqian,Gao Yihua,Sun Zhaobo.Well test model of triple media composite reservoir based on elliptic flow[J].Fault-Block Oil & Gas Field,2017,24(1):63-68.
马奎前,郜益华,孙召勃.三重介质复合油藏椭圆流试井模型[J].断块油气田,2017,24(1):63-68.
[21]Xie J,Yang C D,Gupta N,et al.Integration of shale-gas-production data and microseismic for fracture and reservoir properties with the fast marching method[J].SPE Journal,2015,20(2):347-359.
[22]Brown M,Ozkan E,Raghavan R,et al.Practical solutions for pressure-transient responses of fractured horizontal wells in tight shale reservoirs[J].SPE Reservoir Evaluation Engineering,2011,14(6):663-676.
[23]Jia Y L,Fan X Y,Nie R S,et al.Flow modeling of well test analysis for porous-vuggy carbonate reservoirs[J].Transport in Porous Media,2013,97(2):253-279.
[24]McLachlan N W.Theory and Application of Mathieu Functions[M].Oxford:Oxford University Press,1951:10-57.
[25]Van Everdingen A F,Hurst W.The application of the Laplace transformation to flow problems in reservoirs[J].Journal of Petroleum Technology,1949,1(12):305-324.
[26]Stehfest H.Algorithm 368 numerical inversion of Laplace transforms[J].Communication of the ACM,1970,13(1):47-49.
[1] 黄雨,李晓平,谭晓华. 三重介质复合气藏水平井不稳定产量递减动态分析[J]. 天然气地球科学, 2018, 29(8): 1190-1197.
[2] 姜瑞忠,郜益华,孙召勃,滕文超,乔欣,李渊. 考虑水平井穿透复合气藏内区的不稳定产能分析[J]. 天然气地球科学, 2015, 26(9): 1773-1780.
[3] 樊怀才,钟兵,刘义成,杨学锋,冯曦,邓惠. 三重介质底水气藏非稳态水侵规律研究[J]. 天然气地球科学, 2015, 26(3): 556-563.
[4] 郭珍珍,李治平,赖枫鹏,孟雅,李洪,张荻萩. 考虑硫沉积的气井流入动态曲线特征[J]. 天然气地球科学, 2014, 25(12): 2065-2071.
[5] 徐梦雅,冉启全,李宁,沈冠中. 应力敏感性致密气藏压裂井动态反演新方法[J]. 天然气地球科学, 2014, 25(12): 2058-2064.
[6] 樊怀才,钟兵,邓惠,刘义成,杨学锋,冯曦,张小涛. 三重介质底水气藏压裂水平井非稳态产能变化规律研究[J]. 天然气地球科学, 2014, 25(11): 1861-1867.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李梅;包建平;汪海;张秋茶;郑多明;卢玉红;黄龙藏;. 库车前陆盆地烃源岩和烃类成熟度及其地质意义[J]. 天然气地球科学, 2004, 15(4): 367 -378 .
[2] 张忠民;龙胜祥;徐立民 . 苏北盆地古生界天然气勘探前景[J]. 天然气地球科学, 2008, 19(3): 347 -350 .
[3] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[4] 宋琦, 王树立, 陈燕, 郑志, 谢磊. 天然气水合物新型动力学模型与实验研究[J]. 天然气地球科学, 2010, 21(5): 868 -874 .
[5] 田福清. 二连盆地巴音都兰凹陷烃源岩评价及油源研究[J]. 天然气地球科学, 2008, 19(4): 541 -543 .
[6] 彭金宁, 傅雪海. 潘谢东区块煤层气富集地质控制因素研究[J]. 天然气地球科学, 2007, 18(4): 568 -571 .
[7] 杨瑞东,程伟,周汝贤. 贵州页岩气源岩特征及页岩气勘探远景分析[J]. 天然气地球科学, 2012, 23(2): 340 -347 .
[8] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .
[9] 白振华,姜振学,宋岩,赵孟军,方世虎,张健. 准噶尔盆地南部霍玛吐构造带古近系紫泥泉子组储层发育特征与控制因素分析[J]. 天然气地球科学, 2013, 24(2): 273 -281 .
[10] 李琴,陈程,荀小全. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2013, 24(3): 633 -638 .