天然气地球科学

• 天然气开发 • 上一篇    下一篇

基于TPHM的页岩气藏多级压裂水平井产能分析

姜瑞忠,原建伟,崔永正,张伟,张福蕾,张海涛,毛埝宇   

  1. 1.中国石油大学(华东)石油工程学院,山东 青岛 266580;
    2.The Pennsylvania State University,University Park,PA 16802,United States
  • 收稿日期:2018-04-15 修回日期:2018-09-29 出版日期:2019-01-10
  • 作者简介:姜瑞忠(1964-),男,江苏溧阳人,教授,博士生导师,主要从事油气田开发研究.E-mail:jrzhong@126.com.
  • 基金资助:
    国家自然科学基金项目“页岩气藏多级压裂水平井流动特征及产能评价方法研究”(编号:51374227);国家科技重大专项“厚层非均质气藏产能评价及预测技术”(编号:2016ZX05027004-004)联合资助.

Productivity analysis of multifractured horizontal wells in shale gas reservoirs based on TPHM

Jiang Rui-zhong,Yuan Jian-wei,Cui Yong-zheng,Zhang Wei,Zhang Fu-lei,Zhang Hai-tao,Mao Nian-yu   

  1. 1.Petroleum Engineering College,China University of Petroleum(East China),Qingdao 266580,China; 2.The Pennsylvania State University,University Park,PA 16802,United States
  • Received:2018-04-15 Revised:2018-09-29 Online:2019-01-10

摘要: 页岩孔隙结构复杂,微裂缝发育,传统的应力敏感模型不能准确表征开发过程中页岩基质的渗透率变化,基于双应变胡克模型(Two-Part Hooke’s Model,简称TPHM),建立综合考虑页岩气黏性流、Knudsen扩散、吸附解吸的数学模型。利用离散裂缝模型对地层微裂缝及水力裂缝进行描述,采用商业化软件对模型进行有限元求解,并对相应的参数进行敏感性分析。结果表明:考虑Knudsen扩散后,页岩气产气速度增大;考虑TPHM表征的渗透率后,页岩气产气速度显著下降;人工裂缝间距、长度、条数均对页岩气产能有很大的影响,人工裂缝间距越大、长度越长以及条数越多,页岩气产气速度越大。通过实例应用,验证了TPHM的正确性。该渗透率模型更加符合页岩的特点,从而可以更加精确地模拟页岩气井的产能,辅助开发方案的制订。

关键词: 页岩气, TPHM, 应力敏感, 多级压裂水平井, Knudsen扩散

Abstract: Shale has complex pore structure and many micro-cracks.Traditional stress-sensitive models cannot accurately characterize the permeability changes of the shale matrix during development.Based on the Two-part Hooke's Model(TPHM),we established a mathematical model that comprehensively considers shale gas viscous flow,Knudsen diffusion,and adsorption-desorption.We use the discrete fracture model to describe the formation micro-cracks and hydraulic fractures.The commercial software is used to solve the model by finite element method.Then we analyze the sensitivity of the corresponding parameters.The results showed that:Considering the diffusion of Knudsen,the gas production rate of shale gas increases.After considering the permeability of TPHM,the gas production rate of shale gas decreased significantly.The distance,length and number of artificial fractures have great influence on shale gas productivity.The greater the distance between artificial fractures,the larger the length and the more the number of columns,the higher the gas production rate of shale gasis.The correctness of the TPHM is verified by an example.This permeability model is more suitable for the characteristics of shale.It can more accurately simulate the productivity of shale gas wells and help develop the development plan.

Key words: Shale gas, TPHM, Stress-sensitive, Multi-stage fractured horizontal well, Knudsen diffusion

中图分类号: 

  • TE243
[1]Chen Jinhui,Kang Yili,You Lijun,et al.Review and prospect about study on stress-sensitivity of low-permeability reservoir[J].Natural Gas Geoscience,2011,22(1):182-189.
陈金辉,康毅力,游利军,等.低渗透储层应力敏感性研究进展及展望[J].天然气地球科学,2011,22(1):182-189.
[2]Jiang Ruizhong,Wang Yang,Jia Junfei,et al.The new model for matrix and fracture permeability in shale reservoir[J].Natural Gas Geoscience,2014,25(6):934-939.
姜瑞忠,汪洋,贾俊飞,等.页岩储层基质和裂缝渗透率新模型研究[J].天然气地球科学,2014,25(6):934-939.
[3]Pedrosa O A.Pressure transient response in stress-sensitive formations[C]∥SPE California Regional Meeting.Society of Petroleum Engineers,1986:203-210.
[4]Shi Yujiang,Sun Xiaoping.Stress sensitivity analysis of Changqing tight clastic reservoir[J].Petroleum Exploration and Exploitation,2001,28(5):85-87.
石玉江,孙小平.长庆致密碎屑岩储集层应力敏感性分析[J].石油勘探与开发,2001,28(5): 85-87.
[5]Gangi A F.Variation of whole and fractured porous rock permeability with confining pressure[J].International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1978,15(5):249-257.
[6]McKee C R,Bumb A C,Koenig R A.Stress-dependent permeability and porosity of coal and other geologic formations[J].SPE Formation Evaluation,1988,3(1):81-91.
[7]Bao Xueyang,Shi Xingjue.Experiment research and interpretation on nonlinear elasticity of rock using P-M model[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(20):3397-3404.
包雪阳,施行觉.岩石非线性弹性的实验研究及其P-M模型的理论解释[J].岩石力学与工程学报,2004,23(20):3397-3404.
[8]Liu H H,Rutqvist J,Berryman J G.On the relationship between stress and elastic strain for porous and fractured rock[J].International Journal of Rock Mechanics & Mining Sciences,2009,46(2):289-296.
[9]Zheng J,Zheng L,Liu H H,et al.Relationships between permeability,porosity and effective stress for low-permeability sedimentary rock[J].International Journal of Rock Mechanics & Mining Sciences,2015,78:304-318.
[10]Zheng J,Ju Y,Liu H H,et al.Numerical prediction of the decline of the shale gas production rate with considering the geomechanical effects based on the two-part Hooke’s model[J].Fuel,2016,185:362-369.
[11]He Yidong,Ren Lan,Zhao Jinzhou,et al.Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J].Fault-Block Oil & Gas Field,2017,24(4):550-556.
何易东,任岚,赵金洲,等.页岩气藏体积压裂水平井产能有限元数值模拟[J].断块油气田,2017,24(4):550-556.
[12]Bian Xiaobing,Jiang Tingxue,Su Yuan,et al.Influence of fracture parameters on post-fracturing shale gas production in horizontal well[J].Special Oil & Gas Reservoirs,2014,21(4):126-129.
卞晓冰,蒋廷学,苏瑗,等.裂缝参数对压裂后页岩气水平井排采影响[J].特种油气藏,2014,21(4):126-129.
[13]Liang Bing,Dai Yuanyuan,Chen Tianyu,et al.Influence of fissure parameters on production capacity of shale gas horizontal wells considering slippage effect[J].Coal Geology & Exploration,2015,43(2):44-47.
梁冰,代媛媛,陈天宇,等.裂缝参数对考虑滑脱效应页岩气水平井产能的影响[J].煤田地质与勘探,2015,43(2):44-47.
[14]Wang Rui,Zhang Ningsheng,Liu Xiaojuan,et al.Research progress of mechanism of adsorption and desorption of gas in shale[J],Science Technology and Engineering,2013,13(19):5561-5567.
王瑞,张宁生,刘晓娟,等.页岩气吸附与解吸附机理研究进展[J].科学技术与工程,2013,13(19):5561-5567.
[15]Zhao Yuji,Guo Wei,Xiong Wei,et al.Study of impact factors on shale gas adsorption and desorption[J].Natural Gas Geoscience,2014,25(6):940-946.
赵玉集,郭为,熊伟,等.页岩等温吸附/解吸影响因素研究[J].天然气地球科学,2014,25(6):940-946.
[16]Shi J,Zhang L,Li Y,et al.Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting[C]//SPE Unconventional Resources Conference Canada.Society of Petroleum Engineers,2013:1-19.
[17]Wu Y,Moridis G J,Bai B,et al.A multi-continuum model for gas production in tight fractured reservoirs[C]∥SPE Hydraulic Fracturing Technology Conference.Society of Petroleum Engineers,2009:1-16.
[18]Jiang Ruizhong,Zhang Wei,Teng Wenchao,et al.Interporosity flow coefficient analysis for a triple-porosity shale gas reservoir[J].Special Oil & Gas Reservoirs,2017,24(4):78-82.
姜瑞忠,张伟,滕文超,等.页岩气藏三重介质窜流参数分析[J].特种油气藏,2017,24(4):78-82.
[1] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[2] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[3] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[4] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[5] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[6] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[7] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[8] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[9] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[10] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[11] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[12] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
[13] 龙胜祥,冯动军,李凤霞,杜伟. 四川盆地南部深层海相页岩气勘探开发前景[J]. 天然气地球科学, 2018, 29(4): 443-451.
[14] 贺领兄,宋维刚,安生婷,徐永锋,沈娟,路超,王军. 青海东昆仑地区八宝山盆地烃源岩有机地球化学特征与页岩气勘探前景[J]. 天然气地球科学, 2018, 29(4): 538-549.
[15] 邢 舟,曹高社,毕景豪,周新桂,张交东. 南华北盆地禹州地区ZK0606钻孔上古生界煤系烃源岩评价[J]. 天然气地球科学, 2018, 29(4): 518-528.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[2] 王东旭;曾溅辉;宫秀梅;. 膏盐岩层对油气成藏的影响[J]. 天然气地球科学, 2005, 16(3): 329 -333 .
[3] 吴雪松, 赵仕民, 肖敦清, 苏俊青, 汪新兰, 孙伟红, 刘安元. 埕北断阶带油气成藏条件与模式研究[J]. 天然气地球科学, 2009, 20(3): 362 -371 .
[4] 高岗, 柳广弟, 黄志龙, 闵忠顺. 兴隆台油气田天然气成因与成藏特殊性分析[J]. 天然气地球科学, 2010, 21(6): 955 -960 .
[5] 戴金星, 邹才能, 陶士振, 刘全有, 周庆华, 胡安平, 杨 春.
中国大气田形成条件和主控因素
[J]. 天然气地球科学, 2007, 18(4): 473 -484 .
[6] 刘兴旺,郑建京,杨鑫,孙国强,苏龙,王亚东. 中、新生代阿尔金走滑断裂系构造运动的沉积学揭示[J]. 天然气地球科学, 2012, 23(1): 119 -128 .
[7] 陈建阳, 李国永, 于兴河, 王辉. 大庆长垣杏5X区块葡一组高分辨率层序叠加样式与沉积格局[J]. 天然气地球科学, 2012, 23(2): 244 -250 .
[8] 《天然气地球科学》2012年第2期 目录. 《天然气地球科学》2012年第2期   目录[J]. 天然气地球科学, 2012, 23(2): 1 .
[9] 李浩武,童晓光. 波斯湾盆地Khuff组成藏组合地质特征[J]. 天然气地球科学, 2012, 23(4): 727 -735 .
[10] 李武广,杨胜来,徐晶,董谦. 考虑地层温度和压力的页岩吸附气含量计算新模型[J]. 天然气地球科学, 2012, 23(4): 791 -796 .