天然气地球科学

• 天然气开发 • 上一篇    下一篇

考虑主裂缝的页岩气产能预测模型

张磊1,徐兵祥2,辛翠平1,乔向阳1,穆景福1,许阳3,韩长春1   

  1. 1.陕西延长石油(集团)有限责任公司研究院,陕西 西安 710075;
    2.中海油研究总院有限责任公司,北京 100028;
    3.中国石油集团测井有限公司,陕西 西安 710201
  • 收稿日期:2018-05-23 修回日期:2018-11-16 出版日期:2019-02-10
  • 作者简介:张磊(1987-),男,重庆人,工程师,硕士,主要从事气藏和非常规气藏开发研究.E-mail:zleipiece@126.com.
  • 基金资助:
    “十三五”国家科技重大专项“延安地区陆相页岩气勘探开发关键技术”(编号:2017ZX05039);陕西省重点科技创新团队项目“延长石油集团天然气勘探开发创新团队”(编号:2015KCT-17)联合资助.

Production forecasting model of shale gas considering the main fractures

Zhang Lei1,Xu Bing-xiang2,Xin Cui-ping1,Qiao Xiang-yang1,Mu Jing-fu1,Xu Yang3,Han Chang-chun1   

  1. 1.Research Institute of Shaanxi Yanchang Petroleum(Group) Co. Ltd.,Xi’an 710075,China; 2.New Energy Research Center,CNOOC Research Institute,Beijing 100028,China; 3.Production Logging Center,China Petroleum Logging Co. Ltd.,Xi’an 710201,China
  • Received:2018-05-23 Revised:2018-11-16 Online:2019-02-10

摘要: 多级压裂水平井裂缝形态复杂性增加了页岩气产能预测的难度,基于裂缝形态为“主裂缝+复杂裂缝网络”的情况,建立考虑主裂缝的页岩气三孔线性流数学模型,通过无因次化和Laplace变换求得拉式空间下产量解析解,编程计算得到三孔模型产量典型曲线,其中裂缝线性流为主裂缝与复杂裂缝网络系统的共同作用。对比三孔模型与双孔模型,三孔模型增加了主裂缝系统,主裂缝不仅决定着页岩储层中气体的流动模式,同时影响着页岩气井的产量。分析主裂缝对产量的影响,结果表明:裂缝半长xF影响流动的每个阶段,xF越大产量越高,流动到达边界时间越早;缝宽wF影响裂缝线性流和过渡流阶段,wF越大产量越高,但裂缝线性流阶段持续时间不变,过渡流持续时间缩短;xF对产量的影响程度大于xF。三孔模型的建立,不仅能指导页岩气井压裂施工,而且为存在主裂缝的页岩气多级压裂水平井提供了产能预测和分析模型,提高了页岩气井产量预测的精度。

关键词: 页岩气, 产能预测, 典型曲线, 主裂缝, 裂缝半长, 缝宽

Abstract: The complexity of fracture geometry for multi-stage fractured horizontal well increases the difficulty in predicting shale gas productivity.Based on the assumption that the fracture geometry includes main fractures and complex fracture network system,the tri-porosity linear flow model for shale gas multi-stage fractured horizontal well considering the main fractures is established.The Laplace space solution is obtained by dimensionless treatment and Laplace transformation,then the new type curves are drawn by programming calculation,which shows that both the main fractures and the fracture network contribute the fracture linear flow.Compared with the dual-porosity model,the tri-porosity model increases the main fractures system that not only determines the seepage flow pattern in shale reservoir,but also affects the production of shale gas well.Analysis of the effect of the main fracture system on the shale gas production shows that: Firstly,the fracture half-length xF affects each flow stage,the lager the xF is,the higher the production is,the sooner the flow reaches the boundary.Besides,the fracture width w affects fracture linear flow stage and transitional flow stage,the larger the wF is,the higher the production is,but the fracture linear flow duration isconstant,and the duration of transitional flow is shortened.At last,the effect of xF on productionis greater than wF.The tri-porosity model can not only guide shale gas well fracturing operation,but also provide a productivity prediction and analysis method for multi-stage fractured horizontal well with main fractures,and improve the accuracy of production prediction.


Key words: Shale gas, Production forecasting, Type curves, Main fractures, Fracture half-length, Fracture width

中图分类号: 

  • TE34
[1]Zhang Xiaolong,Zhang Tongwei,Li Yanfang,et al.Research advance in exploration and development of shale gas[J].Lithologic Reservoirs,2013,25(2):116-122.
张小龙,张同伟,李艳芳,等.页岩气勘探和开发进展综述[J].岩性油气藏,2013,25(2):116-122.
[2]Huang Jizhong.Exploration prospect of shale gas and coal-bed methane in Sichuan Basin[J].Lithologic Reservoirs,2009,21(2):116-120.
黄籍中.四川盆地页岩气与煤层气勘探前景分析[J].岩性油气藏,2009,21(2):116-120.
[3]Chen Zuo,Xue Chengjin,Jiang Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume(SRV)in shale gas wells in China[J].Natural Gas Industry,2010,30(10):33-38.
陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):33-38
[4]Gui Zhixian,Zhu Guangsheng.Research advances of microseismic monitoring[J].Lithologic Reservoirs,2015,27(4):68-76
桂志先,朱广生.微震监测研究进展[J].岩性油气藏,2015,27(4):68-76.
[5]Cipolla C L,Warpinski N R,Mayerhofer M J.Hydraulic fracture complexity:Diagnosis,remediation,and exploitation[C]//SPE Asia Pacific Oil and Gas Conference and Exhibition.Society of Petroleum Engineers,2008.
[6]Cipolla C L,Lolon E,Erdle J C,et al.Reservoir modeling in shale-gas reservoirs[C]//SPE  Eastern Regional Meeting.Society of Petroleum Engineers,2009.
[7]Clarkson C R,Pedersen P K.Tight oil production analysis:Adaptation of existing rate-transient analysis techniques[C]//Canadian Unconventional Resources and International Petroleum Conference.Society of Petroleum Engineers,2010.
[8]Cinco L,Samaniego V,Dominguez A.Transient pressure behavior for a well with a finite-conductivity vertical fracture[J].Society of Petroleum Engineers Journal,1978,18(4):253-264.
[9]Wattenbarger R A,El-Banbi A H,Villegas M E,et al.Production analysis of linear flow into fractured tight gas wells[C]//SPE Rocky Mountain Regional/low-permeability Reservoirs Symposium.Society of Petroleum Engineers,1998.
[10]Al Ahmadi H A,Almarzooq A M,Wattenbarger R A.Application of linear flow analysis to shale gas wells-field cases[C]//SPE Unconventional Gas Conference.Society of Petroleum Engineers,2010.
[11]Anderson D M,Nobakht M,Moghadam S,et al.Analysis of production data from fractured shale gas wells[C]//SPE Unconventional Gas Conference.Society of Petroleum Engineers,2010.
[12]Nobakht M,Mattar L,Moghadam S,et al.Simplified forecasting of tight/shale-gas production in linear flow[J].Journal of Canadian Petroleum Technology,2012,51(6):476-486.
[13]Nobakht M,Clarkson C R.Analysis of production data in shale gas reservoirs:Rigorous corrections for fluid and flow properties[J].Journal of Natural Gas Science and Engineering,2012,8:85-98.
[14]Nobakht M,Ambrose R J,Clarkson C R.Effect of heterogeneity in a horizontal well with multiple fractures on the long-term forecast in shale gas reservoirs[C]//Canadian Unconventional Resources Conference.Society of Petroleum Engineers,2011.
[15]Bello R O,Wattenbarger R A.Modelling and analysis of shale gas production with a skin effect[J].Journal of Canadian Petroleum Technology,2010,49(12):37-48.
[16]Moghadam S,Mattar L,Pooladi-Darvish M.Dual porosity typecurves for shale gas reservoirs[C]//Canadian Unconventional Resources and International Petroleum Conference.Society of Petroleum Engineers,2010.
[17]Brown M,Ozkan E,Raghavan R,et al.Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs[J].SPE Reservoir Evaluation & Engineering,2011,14(6):663-676.
[18]Ozkan E,Brown M L,Raghavan R,et al.Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs[J].SPE Reservoir Evaluation & Engineering,2011,14(2):248-259.
[19]Brohi I G,Pooladi-Darvish M,Aguilera R.Modeling fractured horizontal wells as dual porosity composite reservoirs-application to tight gas,shale gas and tight oil cases[C]//SPE Western North American Region Meeting.Society of Petroleum Engineers,2011.
[20]Xu Bingxiang,Li Xiangfang,Haghighi M,et al.A new model for production analysis in naturally fractured shale gas reservoirs[J].Journal of China University of Petroleum:Edition of Natural Science,2013,37(6):92-99.
徐兵祥,李相方,Haghighi M,等.裂缝性页岩气藏水平井产能预测模型[J].中国石油大学学报:自然科学版,2013,37(6):92-99.
[21]Zhao Jinzhou,Fu Dongyu,Li Yongming,et al.Analysis of sensitive factors about multistage fractured well productivity in shale gas reservoir based on modified trilinear flow model[J].Natural Gas Geoscience,2016,27(7):1324-1331.
赵金洲,符东宇,李勇明,等.基于改进三线性流模型的多级压裂页岩气井产能影响因素分析[J].天然气地球科学,2016,27(7):1324-1331.
[22]Chuprakov D A,Akulich A,Siebrits E,et al.Hydraulic Fracture Propagation in a Naturally Fractured Reservoir[C]//SPE Oil and Gas India Conference and Exhibition.Society of Petroleum Engineers,2010.
[23]Fraim M L.Gas reservoir decline-curve analysis using type curves with real gas pseudopressure and normalized time[J].SPE Formation Evaluation,1987,2(4):671-682.
[24]Liao Xinwei,Shen Pingping.Modern Well Test Analysis[M].Beijing:Petroleum Industry Press,2002:174-175.
廖新维,沈平平.现代试井分析[M].北京:石油工业出版社,2002:174-175.
[25]Zhang Lei,Li Xiangfang,Xu Bingxiang,et al.Productivity evaluating theoretical model of the fractured shale-gas horizontal wells considering gas slippage effect[J].Petroleum Geology and Oilfield Development in Daqing,2013,32(3):157-163.
张磊,李相方,徐兵祥,等.考虑滑脱效应的页岩气压裂水平井产能评价理论模型[J].大庆石油地质与开发,2013,32(3):157-163.
[26]Zhang Shicheng,Guo Tiankui,Zhou Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in natural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.
张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验[J].石油学报,2014,35(3):496-503,518.
[27]Zhao Zhihong,Huang Chao,Guo Jianchun,et al.Feasibility of complex fracture networks under simultaneous fracturing in shale reservoirs[J].Fault-Block Oil & Gas Field,2016,23(5):615-619.
赵志红,黄超,郭建春,等.页岩储层中同步压裂形成复杂缝网可行性研究[J].断块油气田,2016,23(5):615-619.
[28]Lu Cheng,Liu Xiong,Cheng Minhua,et al.Sensitivity analysis of hydraulic fracturing horizontal wells in shale gas reservoir[J].Special Oil & Gas Reservoirs,2013,20(5):114-117.
陆程,刘雄,程敏华,等.页岩气藏开发中水力压裂水平井敏感参数分析[J].特种油气藏,2013,20(5):114-117.
[29]Song Hongqing,Liu Qipeng,Yu Mingxu,et al.Characteristics of gas flow and productivity of fractured wells in shale gas sediments[J].Journal of University of Science and Technology Beijing,2014,36(2):139-144.
宋洪庆,刘启鹏,于明旭,等.页岩气渗流特征及压裂井产能[J].北京科技大学学报,2014(2):139-144.
[1] 曾凡辉, 彭凡, 郭建春, 钟华, 向建华. 考虑页岩缝宽动态变化的微裂缝气体质量传输模型[J]. 天然气地球科学, 2019, 30(2): 237-246.
[2] 谢维扬, 刘旭宁, 吴建发, , 张鉴, 吴天鹏, 陈满. 页岩气水平井组产量递减特征及动态监测[J]. 天然气地球科学, 2019, 30(2): 257-265.
[3] 徐加祥, 丁云宏, 杨立峰, 刘哲, 陈挺. 页岩气储层迂曲微裂缝二维重构及多点起裂分析[J]. 天然气地球科学, 2019, 30(2): 285-294.
[4] 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10.
[5] 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101.
[6] 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110.
[7] 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118.
[8] 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344.
[9] 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355.
[10] 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996.
[11] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[12] 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852.
[13] 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865.
[14] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[15] 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 江厚顺,白彦华,冉建立 . 水平井产能预测及射孔参数优选系统研究[J]. 天然气地球科学, 2007, 18(6): 891 -893 .
[2] 戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学. 次生型负碳同位素系列成因[J]. 天然气地球科学, 2016, 27(1): 1 -7 .
[3] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50 -59 .
[4] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .
[5] 惠潇,楚美娟. 鄂尔多斯盆地中部延长组长9油层组2种砂体类型特征及成因分析[J]. 天然气地球科学, 2016, 27(1): 81 -91 .
[6] 姚泾利,王程程,陈娟萍,高岗,王飞雁,李晓凤,李佳烨,刘岩. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J]. 天然气地球科学, 2016, 27(12): 2115 -2126 .
[7] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1 -13 .
[8] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[9] 鲁新川,安永福,夏维民,胡子见,张顺存,史基安. 准噶尔盆地阜东斜坡区侏罗系三工河组沉积微相特征及对储层的控制[J]. 天然气地球科学, 2017, 28(12): 1810 -1820 .
[10] 杨志冬. 准噶尔盆地红山嘴油田红153井区二叠系夏子街组砂砾岩储层特征及影响因素[J]. 天然气地球科学, 2017, 28(12): 1829 -1838 .