天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

不同煤系烃源岩热解气地球化学差异及其在苏里格气田的应用

于聪,胡国艺,陈瑞银   

  1. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2018-07-09 修回日期:2018-10-30 出版日期:2019-01-10
  • 作者简介:于聪(1987-),女,吉林长春人,博士研究生,主要从事天然气地质与地球化学研究.E-mail:yucongcong1234@163.com.
  • 基金资助:
    国家油气科技重大专项“高过成熟阶段天然气生成机理与源灶有效性评价”(编号:2016ZX05007-001);中国石油天然气股份有限公司科学研究与技术开发项目“复杂油气成藏示踪技术开发与应用”(编号:2016A-0205);
    中国石油勘探开发研究院科学研究与技术开发项目“石炭—二叠系陆相烃源岩发育环境与资源潜力”(编号:2018ycq02)联合资助.

Geochemical features of hydrocarbon gas generated from different coaly source rocks by pyrolysis experiments:Case study of the Sulige Gas Field in the Ordos Basin,China

Yu Cong,Hu Guo-yi,Chen Rui-yin   

  1. PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China
  • Received:2018-07-09 Revised:2018-10-30 Online:2019-01-10

摘要: 为了研究不同煤系烃源岩(煤、暗色泥岩和炭质泥岩)生气差异,对三者进行了高压釜热模拟实验,并对热模拟气进行了组分分析、碳氢同位素分析和轻烃地球化学分析。实验结果表明:煤的产气率高于暗色泥岩和炭质泥岩,并在热模拟初期阶段产生大量CO2气体,煤在低温阶段的CO2产气量可达20%;暗色泥岩热模拟气甲烷含量在整个热模拟阶段都处于领先地位,炭质泥岩的C2—C4烷烃气的含量高于煤和暗色泥岩,煤生成的非烃气体含量最多;在整个热模拟阶段,煤热解气的碳、氢同位素略重于暗色泥岩和炭质泥岩热模拟气(δ13C2煤>δ13C2暗泥>δ13C2炭泥),热模拟温度高于500℃后,热模拟气出现碳同位素序列倒转现象;在轻烃产物中,煤热模拟气具有较高含量苯、甲苯以及2,3-甲基戊烷,而炭质泥岩热模拟气具有较高含量的2,4-甲基戊烷。将热模拟实验结果应用到苏里格气田,可以得到如下启示:①苏里格气区煤系烃源岩生烃早期形成的CO2可能与储层致密化有一定关系;②轻烃特征可作为不同煤系烃源岩生气鉴别指标,苏里格气田天然气的主要贡献者是煤。

关键词: 不同煤系烃源岩, 碳同位素, 氢同位素, 轻烃, 苏里格气田

Abstract: In order to study the gas generation process of different coaly source rocks,we did thermal simulation experiments on coal,coaly mudstone and carbon mudstone.And a series of geochemical analysis including chemical composition,carbon and hydrogen isotope composition as well as light hydrocarbon analysis on thermal simulation gas are also carried out in this study.It revealed coal has the highest gas production rate,in addition,it yields a large amount of CO2 gas in the early stage of simulation experiment.Carbon and hydrogen isotope of coalthermal simulation gas is slightly heavier than that of coaly mudstone and carbonaceous mudstone gas.Before 500℃,carbon and hydrogen isotope of these three kinds of gases became lighter and then higher with the increase of temperature,but after 500℃,they became lighter all the time.Carbon isotope series reversal is observed in this process.The coal thermal simulation gas has the highest content of benzene,toluene and 2,3-methyl pentane.This study indicated 2 high lights on Sulige Gas Field:(1) CO2,formed in the early stage of hydrocarbon generation,may have a direct relationship with reservoir densification in the Sulige Gas Field.(2) According to the analysis of light hydrocarbon,coal should be the dominant contributor for the accumulation of the Sulige natural gas,but the contribution of coaly mudstone and carbonaceous mudstone cannot be ignored.

Key words: Different coaly source rocks, Carbon isotope, Hydrogen isotope, Light hydrocarbon, Sulige Gas Field

中图分类号: 

  • TE122.1+13
[1]Dai Jinxing,Wu Wei,Fang Chenchen,et al.Exploration and development of large gas fields in China since 2000[J].Natural Gas Industry,2015,35(1):1-9.
戴金星,吴伟,房忱琛,等.2000年以来中国大气田勘探开发特征[J].天然气工业,2015,35(1):1-9.
[2]Dai Jinxing,Ni Yunyan,Wu Xiaoqi.Tight gas in China and its significance in exploration and exploitation[J].Petroleum Exploration and Development,2012,39(3):257-264.
戴金星,倪云燕,吴小奇.中国致密砂岩气及在勘探开发上的重要意义[J].石油勘探与开发,2012,39(3):257-264.
[3]Dai Jinxing,Ni Yunyan,Huang Shipeng,et al.Significant function of coal-derived gas study for natural gas industry development in China[J].Natural Gas Geoscience,2014,25(1):1-22.
戴金星,倪云燕,黄士鹏,等.煤成气研究对中国天然气工业发展的重要意义[J].天然气地球科学,2014,25(1):1-22.
[4]Duan Y,Wu B,He J,et al.Characterization of gases and solid residues from closed system pyrolysis of peat and coals at two heating rates[J].Fuel,2011,90(3):974-979.
[5]Zhao Mengjun,Xiao Zhongyao,Peng Yan,et al.Geochemistry of oils from coal and from the shale in coal measure strata[J].Petroleum Exploration and Development,1998,25(5):8-10.
赵孟军,肖中尧,彭燕,等.煤系泥岩和煤岩生成原油的地球化学特征[J].石油勘探与开发,1998,25(5):8-10.
[6]Mao Rong,Mi Jingkui,Zhang Shuichang,et al.Study on the hydrocarbon generation characteristics of different coaly source rocks by gold-tube pyrolysis experiments[J].Natural Gas Geoscience,2012,23(6):1127-1134.
毛榕,米敬奎,张水昌,等.不同煤系源岩生烃特征的黄金管热模拟实验对比研究[J].天然气地球科学,2012,23(6):1127-1134.
[7]Wang Min,Lu Shuangfang,Wu Chaodong,et al.Pyrolysis products characteristics and kinetic analysis of coal and mudstone during thermal cracking process in the closed system[J].Acta Sedimentologica Sinica,2011,29(6):1190-1198.
王民,卢双舫,吴朝东,等.煤岩、泥岩密闭体系下热解产物特征及动力学分析[J].沉积学报,2011,29(6):1190-1198.
[8]Wang Min,Lu Shuangfang,Wang Dongliang,et al.Characteristics and kinetic of coal pyrolysates with different thermal simulation apparatuses[J].Acta Petrolei Sinica,2011,32(5):806-814.
王民,卢双舫,王东良,等.不同热模拟实验煤热解产物特征及动力学分析[J].石油学报,2011,32(5):806-814.
[9]Yu C,Gong D Y,Huang S P,et al.Characteristics of light hydrocarbons of tight gases and its application in the Sulige Gas Field,Ordos Basin,China[J].Energy Exploration & Exploitation,2014,32(1):211-226.
[10]Yu Cong,Huang Shipeng,Gong Deyu,et al.Partial reversal cause of carbon and hydrogen isotope compositions of natural gas:A case study in Sulige Gas Field,Ordos Basin[J].Acta Petrolei Sinica,2013,34(supplement 1):92-100.
于聪,黄士鹏,龚德瑜,等.天然气碳、氢同位素部分倒转成因——以苏里格气田为例[J].石油学报,2013,34(增刊1):92-100.
[11]Carrigan W J,Jones P J,Tobey M H,et al.Geochemical variations among eastern Saudi Arabian Paleozoic condensates related to different source kitchen areas[J].Organic Geochemistry,1998,29(1-3):785-798.
[12]Galimov E M.The Biological Fractionation of Isotopes[M].London:Academic Press,1985.
[13]Kotarba M.Geochemical Criteria for the Origin of Natural Gases Accumulated in the Upper Carboniferous Coal Seam Bearing Formations in Walbrzych Coal Basin[R].Stasnislaw Staszic University of Mining and Metallurgy,Scientific Bulletin 1199,Geology,1998.
[14]Hunt J M.Petroleum Geochemistry and Geology[M].Second Edition.New York:Freeman Press,1996.
[15]Lv Chengfu,Fu Suying,Li Xiaofeng,et al.Diagenetic facies and high quality reservoir distribution of Chang8 sandstones in Zhenbei area of Ordos Basin[J].Journal of Oil and Gas Technology,2011,33(7):1-6.
吕成福,付素英,李晓峰,等.鄂尔多斯盆地镇北地区长8油层组砂岩成岩相与优质储层分布[J].石油天然气学报,2011,33(7):1-6.
[16]Shuai Y H,Zhang S C,Gao Y,et al.Effect and quantitative evaluation of CO2 derived from organic matter in coal on the formation of tight sandstone reservoirs[J].Science China:Earth Sciences,2013,56:756-762.
[17]He Zixin,Fu Jinhua,Xi Shengli,et al.Geological features of reservoir formation of Sulige Gas Field[J].Acta Petrolei Sinica,2003,24(2):6-12.
何自新,付金华,席胜利,等.苏里格大气田成藏地质特征[J].石油学报,2003,24(2):6-12.
[18]Halpern H I,Development and applications of light-hydrocarbon-based star diagrams[J].AAPG Bulletin,1995,79(6):801-815.
[19]Wever H E,Petroleum and source rock characterization based on C7 star Plot results:Examples from Egypt[J].AAPG Bulletin,2000,84(7):1041-1054.
[20]Peng Weilong,Hu Guoyi,Huang Shipeng,et al.Natural gas geochemical characteristics and genetic analysis:A case study of the Dongsheng Gas Field in the Ordos Basin of China[J].Journal of China University of Mining & Technology,2017,46(1):80-90.
彭威龙,胡国艺,黄士鹏,等.天然气地球化学特征及成因分析——以鄂尔多斯盆地东胜气田为例[J].中国矿业大学学报,2017,46(1):80-90.

[1] 张帆, 冉清昌, 吴玉明, 任志高. 松辽盆地北部古中央隆起带天然气地球化学特征及成藏条件[J]. 天然气地球科学, 2019, 30(1): 126-132.
[2] 崔明明,王宗秀,樊爱萍,高万里. 鄂尔多斯盆地苏里格气田西南部地层水特征与气水关系[J]. 天然气地球科学, 2018, 29(9): 1364-1375.
[3] 裴立新,刚文哲,朱传真,刘亚洲,何文军,向宝力,董岩. 准噶尔盆地烷烃气碳同位素组成及来源[J]. 天然气地球科学, 2018, 29(7): 1020-1030.
[4] 邓焱,胡国艺,赵长毅. 四川盆地龙岗气田长兴组—飞仙关组天然气地球化学特征及成因[J]. 天然气地球科学, 2018, 29(6): 892-907.
[5] 段毅,吴应忠,赵阳,曹喜喜,马兰花. 草本沼泽泥炭加水热解产物烃类气体氢同位素特征[J]. 天然气地球科学, 2018, 29(3): 305-310.
[6] 秦胜飞,周国晓. 气田水对甲烷氢同位素分馏作用[J]. 天然气地球科学, 2018, 29(3): 311-316.
[7] 白云云, 孙卫, 任大忠, 韩进. 鄂尔多斯盆地苏里格气田西区苏48区块盒8段砂岩成岩相定量划分及特征差异[J]. 天然气地球科学, 2018, 29(12): 1739-1747.
[8] 纪红,黄光辉,成定树,许姗姗. 塔里木盆地库车坳陷大宛齐—大北地区原油轻烃特征及地球化学意义[J]. 天然气地球科学, 2017, 28(6): 965-974.
[9] 祁帅,李贤庆,何坤,张光武,陈金明,高文杰,梁万乐. 不同类型有机质热演化轻烃产率及组成特征对比[J]. 天然气地球科学, 2017, 28(6): 975-986.
[10] 吴伟,谢军,石学文,赵圣贤,季春海,胡颖,郭艳波. 川东北巫溪地区五峰组—龙马溪组页岩气成藏条件与勘探前景[J]. 天然气地球科学, 2017, 28(5): 734-743.
[11] 庞强, 冯强汉,马妍,张昱煜,彭雪花. 三维地质建模技术在水平井地质导向中的应用——以鄂尔多斯盆地苏里格气田X3-8水平井整体开发区为例[J]. 天然气地球科学, 2017, 28(3): 473-478.
[12] 蔡郁文,张水昌,何坤,米敬奎,张文龙,王晓梅,王华建,吴朝东. 磁铁矿对有机质生烃及同位素分馏的影响[J]. 天然气地球科学, 2017, 28(2): 331-340.
[13] 郭佳佳,孙国强,龙国徽,管斌,康健,夏维民,陈波,史基安. 柴达木盆地北缘冷湖五号构造下侏罗统沉积—成岩环境分析[J]. 天然气地球科学, 2017, 28(12): 1839-1845.
[14] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156-163.
[15] 马志欣,付斌,王文胜,罗川又,张吉,张春阳,魏千盛. 基于层次分析的辫状河储层水平井地质导向策略[J]. 天然气地球科学, 2016, 27(8): 1380-1387.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘朝露;李剑;方家虎;胡国艺;严启团;李志生;马成华;孙庆武;. 水溶气运移成藏物理模拟实验技术[J]. 天然气地球科学, 2004, 15(1): 32 -36 .
[2] 李广之, 胡斌 邓天龙 袁子艳 . 微量元素V和Ni的油气地质意义[J]. 天然气地球科学, 2008, 19(1): 13 -17 .
[3] 梅博文,袁志华. 地质微生物技术在油气勘探开发中的应用[J]. 天然气地球科学, 2004, 15(2): 156 -161 .
[4] 吕锡敏;皮学军;任战利;刘全新;蔡振忠;丁兆海;. 库车前陆盆地含油气系统的地质特征[J]. 天然气地球科学, 2004, 15(3): 214 -217 .
[5] 窦启龙,陈践发,王杰,张殿伟. 微生物采油技术的研究进展及展望[J]. 天然气地球科学, 2004, 15(5): 559 -563 .
[6] 温德顺;苏龙;孙国强;郑建京;胡慧芳;. 前陆盆地的沉降和抬升机制研究进展[J]. 天然气地球科学, 2006, 17(3): 385 -390 .
[7] 吴青柏;,蒲毅彬,蒋观利,邢莉莉. 冻结粗砂土中甲烷水合物形成CT试验研究[J]. 天然气地球科学, 2006, 17(2): 239 -244 .
[8] 班凡生,耿晶,高树生,单文文. 岩盐储气库水溶建腔的基本原理及影响因素研究[J]. 天然气地球科学, 2006, 17(2): 261 -266 .
[9] 张铭杰;王先彬;胡沛青;张昱;叶先仁;李立武;. 地幔流体化学组成与成烃[J]. 天然气地球科学, 2006, 17(1): 31 -35 .
[10] 刘朝露,夏 斌. 济阳坳陷新生代构造演化特征与油气成藏组合模式[J]. 天然气地球科学, 2007, 18(2): 209 -214 .