李文镖,卢双舫,李俊乾,张鹏飞,陈晨,王思远
Li Wen-biao,Lu Shuang-fang,Li Jun-qian,Zhang Peng-fei,Chen Chen,Wang Si-yuan
摘要: 为研究页岩物质组成与孔隙微观结构耦合关系,对南方海相五峰组—龙马溪组30个高—过成熟页岩样品开展低温氮气吸附实验,并根据迟滞回线形态划分3类页岩。结果表明:①黏土矿物主要发育板状孔,孔径较大,从微孔(<2nm)到宏孔(>50nm)均较为发育;有机质主要发育墨水瓶状孔,主要为微孔和介孔(2~50nm)级别。②页岩比表面积主要由微孔、介孔贡献,其中微孔比表面积主要由有机质提供,黏土矿物主要提供介孔、宏孔比表面积;总孔体积主要由介孔、宏孔贡献,其中有机质主要贡献微孔、介孔体积,黏土矿物主要贡献宏孔体积。③样品普遍具有三段分形特征,且在不同孔径范围,墨水瓶状孔均要较板状孔复杂。研究成果有助于认识页岩气的储集、运移规律。
中图分类号:
[1]Yang Feng,Ning Zhengfu,Liu Huiqing.Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin,China[J].Fuel,2014,115(1):378-384. [2]Ji Wenming,Song Yan,Jiang Zhenxue,et al.Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: A case study of the Triassic strata in the southeastern Ordos Basin,China[J].International Journal of Coal Geology,2014,134-135(13):61-73. [3]Hou Yuguang,He Sheng,Yi Jizheng,et al.Effect of pore on methane sorption capacity of shales[J].Petroleum Exploration and Development,2014,41(2):248-256. 侯宇光,何生,易积正,等.页岩孔隙结构对甲烷吸附能力的影响[J].石油勘探与开发,2014,41(2):248-256. [4]Xue Bing,Zhang Jinchuan,Tang Xuan,et al.Characteristics of microscopic pore and gas accumulation on shale in Longmaxi Formation,northwest Guizhou[J].Acta Petrolei Sinica,2015,36(2):138-149. 薛冰,张金川,唐玄,等.黔西北龙马溪组页岩微观孔隙结构及储气特征[J].石油学报,2015,36(2):138-149. [5]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.The dual influence of shale composition and pore size on adsorption gas storage mechanism of organic-rich shale[J].Natural Gas Geoscience,2016,27(3):494-502. 田华,张水昌,柳少波,等.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用[J].天然气地球科学,2016,27(3):494-502. [6]Shi Miao,Yu Bingsong,Zhang Jinchuan,et al.Microstructural characterization of pores in marine shales of the Lower Silurian Longmaxi Formation,southeastern Sichuan Basin,China[J].Marine & Petroleum Geology,2018,94(6):166-178. [7]Li Zhiqing,Shen Xin,Qi Zhiyu,et al.Study on the pore structure and fractal characteristics of marine and continental shale based on mercury porosimetry,N2 adsorption and NMR methods[J].Journal of Natural Gas Science & Engineering,2018,53(5):12-21. [8]Zhu Hanqing,Jia Ailin,Wei Yunsheng,et al.Pore structure and supercriticial methane sorption capacity of organic-rich shales in southern Sichuan Basin[J].Acta Petrolei Sinica,2018,39(4):391-401. 朱汉卿,贾爱林,位云生,等.蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J].石油学报,2018,39(4):391-401. [9]Javadpour F,Fisher D,Unsworth M.Nanoscale gas flow in shale gas sediments[J].Journal of Canadian Petroleum Technology,2007,46(10):55-61. [10]Zou Caineng,Tao Shizhen,Yang Zhi,et al.New advance in unconventional petroleum exploration and research in China[J].Bulletin of Mineralogy,Petrology and Geochemistry,2012,31(4):312-322. 邹才能,陶士振,杨智,等.中国非常规油气勘探与研究新进展[J].矿物岩石地球化学通报,2012,31(4):312-322. [11]Duan Yonggang,Cao Tingkuan,Yang Xiaoying,et al.Simulation of gas flow in nano-scale pores of shale gas deposits[J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(3):63-68. 段永刚,曹廷宽,杨小莹,等.页岩储层纳米孔隙流动模拟研究[J].西南石油大学学报:自然科学版,2015,37(3):63-68. [12]Yang Rui,He Sheng,Yi Jizheng,et al.Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area,Sichuan Basin: Investigations using FE-SEM,gas adsorption and helium pycnometry[J].Marine & Petroleum Geology,2016,70(2):27-45. [13]Yang Rui,He Sheng,Hu Qinhong,et al.Applying SANS technique to characterize nano-scale pore structure of Longmaxi shale,Sichuan Basin (China)[J].Fuel,2017,197(11):91-99. [14]Xi Zhangdong,Wang Jing,Hu Jingang,et al.Experimental investigation of evolution of pore structure in Longmaxi marine shale using an anhydrous pyrolysis technique[J].Mineral,2018,8(6):226. [15]Yang Rui,He Sheng,Hu Qinghong,et al.Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin,China[J].Marine & Petroleum Geology,2016,77(9):247-261. [16]Tian Hua,Zhang Shuichang,Liu Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):419-427. 田华,张水昌,柳少波,等.压汞法和气体吸附法研究富有机质页岩孔隙特征[J].石油学报,2012,33(3):419-427. [17]Hu Jingang,Tang Shuheng,Zhang Songhang.Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China[J].Journal of Natural Gas Science & Engineering,2016,28(6):522-535. [18]Chen Yanyan,Zou Caineng,Maria Mastalerz,et al.Porosity and fractal characteristics of shale across a maturation gradient[J].Natural Gas Geoscience,2015,26(9):1646-1656. 陈燕燕,邹才能,Maria Mastalerz,等.页岩微观孔隙演化及分形特征研究[J].天然气地球科学,2015,26(9):1646-1656. [19]Strapoc D,Mastalerz M,Schimmelmann A,et al.Geochemical constraints on the origin and volume of gas in the New Albany shale(Devonian-Mississippian),eastern Illinois Basin[J].AAPG Bulletin,2010,94(11):1713-1740. [20]Yang Feng,Ning Zhengfu,Wang Qing,et al.Fractal characteristics of nanopore in shales[J].Natural Gas Geoscience,2014,25(4):618-623. 杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):618-623. [21]Avnir D,Jaroniec M.An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J].Langmuir,1989,5(6):1431-1433. [22]Zhang Chuanghui,Zhu Yanming,Liu Yu,et al.Pore and fractal characteristics of shale in different maturity[J].Fault-Block Oil & Gas Field,2016,23(5):583-588. 张闯辉,朱炎铭,刘宇,等.不同成熟度页岩孔隙及其分形特征[J].断块油气田,2016,23(5):583-588. [23]Xi Zhaodong,Tang Shuheng,Wang Jing,et al.Pore structure and fractal characteristics of Niutitang shale from China[J].Minerals,2018,8(4):163. [24]Zhao Difei,Guo Yinghai,Xie Delu,et al.Fractal characteristics of shale reservoir pores based on nitrogen adsorption[J].Journal of Northeast Petroleum University,2014,38(6):100-108. 赵迪斐,郭英海,解德录,等.基于低温氮吸附实验的页岩储层孔隙分形特征[J].东北石油大学学报,2014,38(6):100-108. [25]Tang Xianglu,Jiang Zhenxue,Li Zhuo,et al.The effect of the variation in material composition on the heterogeneous pore structure of high-maturity shale of the Silurian Longmaxi Formation in the southeastern Sichuan Basin,China[J].Journal of Natural Gas Science & Engineering,2015,23(2):464-473. [26]Xi Zhaodong,Tang Shuheng,Li Jun,et al.Investigation of pore structure and fractal characteristics of marine-continental transitional shale in the east-central of Qinshui Basin[J].Natural Gas Geoscience,2017,28(3):366-376. 郗兆栋,唐书恒,李俊,等.沁水盆地中东部海陆过渡相页岩孔隙结构及分形特征[J].天然气地球科学,2017,28(3):366-376. [27]Xiong Jian,Liu Xiangjun,Liang Lixi.Fractal characteristics of organic rich shale pore in Sichuan Basin,China[J].Fault-Block Oil & Gas Field,2017,24(2):184-189. 熊健,刘向君,梁利喜.四川盆地富有机质页岩孔隙分形特征[J].断块油气田,2017,24(2):184-189. [28]Yao Minglei,Shao Longyi,Hou Haihai,et al.Coal Reservoir pore structural and fractal features in Huainan and Huaibei coalfields[J].Coal Geology of China,2018,30(1):30-37. 姚铭檑,邵龙义,侯海海,等.两淮煤田煤储层吸附孔孔隙结构及分形特征[J].中国煤炭地质,2018,30(1):30-37. [29]Sing K S W,Everett D H,Haul R A W,et al.Reportingphysisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J].Pure & Applied Chemistry,1985,57(4):603-619. [30]Li Zhuo,Jiang Zhenxue,Tang Xianglu,et al.Lithofacies characteristics and its effect on pore structure of the marine shale in the Low Silurian Longmaxi Formation,Southeastern Chongqing[J].Earth Science,2017,42(7):1116-1123. 李卓,姜振学,唐相路,等.渝东南下志留统龙马溪组页岩岩相特征及其对孔隙结构的控制[J].地球科学,2017,42(7):1116-1123. [31]Chen Liang,Tan Kaixuan,Liu Jiang,et al.Pore structure fractal features of the Ore-bearing layer from a sandstone-type uranium deposit,Xinjiang[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2012,51(6):139-144. 陈亮,谭凯旋,刘江,等.新疆某砂岩铀矿含矿层孔隙结构的分形特征[J].中山大学学报:自然科学版,2012,51(6):139-144. |
[1] | 姜瑞忠, 原建伟, 崔永正, 张伟, 张福蕾, 张海涛, 毛埝宇. 基于TPHM的页岩气藏多级压裂水平井产能分析[J]. 天然气地球科学, 2019, 30(1): 95-101. |
[2] | 周尚文, 王红岩, 刘浩, 郭伟, 陈浩. 基于Arps产量递减模型的页岩损失气量计算方法[J]. 天然气地球科学, 2019, 30(1): 102-110. |
[3] | 郭旭升. 四川盆地涪陵平桥页岩气田五峰组—龙马溪组页岩气富集主控因素[J]. 天然气地球科学, 2019, 30(1): 1-10. |
[4] | 许崇祯, 张公社, 殷嘉伟, 纪国法, 李新发. 考虑解吸—吸附的页岩气藏压裂水平井综合渗流模型[J]. 天然气地球科学, 2019, 30(1): 111-118. |
[5] | 周立宏,蒲秀刚,肖敦清,李洪香,官全胜,林伶,曲宁. 渤海湾盆地沧东凹陷孔二段页岩油形成条件及富集主控因素[J]. 天然气地球科学, 2018, 29(9): 1323-1332. |
[6] | 赵文韬,荆铁亚,吴斌,周游,熊鑫. 断裂对页岩气保存条件的影响机制——以渝东南地区五峰组—龙马溪组为例[J]. 天然气地球科学, 2018, 29(9): 1333-1344. |
[7] | 夏鹏,王甘露,曾凡桂,牟雨亮,张昊天,刘杰刚. 黔北地区牛蹄塘组高—过成熟页岩气富氮特征及机理探讨[J]. 天然气地球科学, 2018, 29(9): 1345-1355. |
[8] | 张世铭,王建功,张小军,张婷静,曹志强,杨麟科. 酒西盆地间泉子段储层流体赋存及渗流特征[J]. 天然气地球科学, 2018, 29(8): 1111-1119. |
[9] | 康毅力,豆联栋,游利军,陈强,程秋洋. 富有机质页岩增产改造氧化液浸泡离子溶出行为[J]. 天然气地球科学, 2018, 29(7): 990-996. |
[10] | 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059. |
[11] | 朱维耀, 马东旭. 页岩储层有效应力特征及其对产能的影响[J]. 天然气地球科学, 2018, 29(6): 845-852. |
[12] | 余川,曾春林,周洵,聂海宽,余忠樯. 大巴山冲断带下寒武统页岩气构造保存单元划分及分区评价[J]. 天然气地球科学, 2018, 29(6): 853-865. |
[13] | 王香增,张丽霞,姜呈馥,尹锦涛,高潮,孙建博,尹娜,薛莲花. 鄂尔多斯盆地差异抬升对长7页岩孔隙的影响——以东南部甘泉地区和南部渭北隆起地区为例[J]. 天然气地球科学, 2018, 29(5): 597-605. |
[14] | 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615. |
[15] | 汪道兵,葛洪魁,宇波,文东升,周珺,韩东旭,刘露. 页岩弹性模量非均质性对地应力及其损伤的影响[J]. 天然气地球科学, 2018, 29(5): 632-643. |
|