天然气地球科学

• 天然气开发 • 上一篇    下一篇

页岩气藏体积压裂水平井渗流模型

王琰琛,陈军,邓亚,肖聪   

  1. 1.中国石化胜利石油工程公司井下作业公司,山东 东营 257091;
    2.中国石油国际勘探开发有限公司,北京 100728;3.中国石油勘探开发研究院,北京 100083;4.中国石油大学石油工程教育部重点实验室,北京 102249


  • 收稿日期:2018-06-03 修回日期:2018-08-15 出版日期:2018-12-10
  • 作者简介:王琰琛(1990-),男,山东东营人,工程师,硕士,主要从事油气藏增产技术研究.E-mail:sljxwyc@163.com.
  • 基金资助:
    国家重点基础研究发展计划项目(编号:2013CB228004);国家自然科学基金重大项目(编号:51490653)联合资助.

Seepage model of volume fracturing horizontal well in shale gas reservoir

Wang Yan-chen,Chen Jun,Deng Ya,Xiao Cong   

  1. 1.Downhole Service Company of Shengli Service Corporation,Dongying 257091,China; 2.China National Oil and Gas Exploration and Development Company,CNODC,Beijing 100728,China;3.PetroChinaResearch Institute of Petroleum Exploration and Development,Beijing 100083,China; 4.Petroleum Engineering College,China University of petroleum(Beijing),Beijing 102249,China
  • Received:2018-06-03 Revised:2018-08-15 Online:2018-12-10

摘要: 实现页岩气藏有效开发的关键在于页岩储层渗流机理的研究和产能模型的建立,但页岩气藏孔渗结构具有强烈的多尺度性,渗流机理复杂;纳米级孔隙存在克努森扩散,解吸介质变形等情形。同时,在增产改造过程中形成的复杂裂缝网络形态也对页岩气多尺度流动特征及页岩气产能造成不同程度的影响。建立了页岩气藏体积压裂后,水力裂缝与天然裂缝耦合条件下的产能预测模型,综合考虑吸附、解吸、扩散、裂缝网络等非线性流动效应的作用,并分别运用有限差分、嵌套性有限差分方法及牛顿拉普森迭代法进行求解。最后,结合我国某页岩区块实际井对体积压裂后产能进行影响因素分析。该模型对页岩气藏水平井压裂设计、压裂参数优化以及产能评价研究都具有一定的指导意义。

关键词: 页岩气藏, 多尺度, 压裂水平井, 裂缝网络, 产能评价

Abstract: The seepage mechanism and productivity model of shale gas reservoirs is the critical and scientific issue to develop the shale gas reservoirs effectively.The pore structures of shale possess the strong multi-scale characteristic,and complexity of seepage mechanisms.Knudsen diffusion,matrix deformation,stress sensitivity,non-Darcy flow and complex fracture network stimulated by hydraulic fracturing technology have certain effects on the multi-scale flow characteristic and productivity model. Firstly,this paper establishes a model of apparent permeability with the consideration of adsorption,diffusion,viscous flow,rock deformation,adsorption layer.On the basis of this proposed models,the influences of some related parameters,such as rock deformation,adsorption layer,on capillary radius and apparent permeability are analyzed.Secondly,for the different fracture pattern of multi-stage fractured horizontal well and volumetric fracturing horizontal well,with the consideration of gas adsorption,diffusion,matrix deformation,stress sensitivity and non-Darcy flow,two productivity prediction models are established based on the coupled hydraulic fractures and natural fractures.Finite difference method,Newton-Rapson iterative method and embed discrete fracture method are respectively employed to solve those two models.Finally,the orthogonal test design is employed to identify and analyze the dominated factors among the relevant parameters,such as fracture spacing,fracture half length,fracture numbers,fracture conductivity,permeability,and so on.The results can provide some certain guidance for the optimization of stimulated treatment in shale gas reservoirs.

Key words: Shale gas reservoir, Multi-scale, Fracturing horizontal well, Fracture network, Productivity evaluation

中图分类号: 

  • TE357
[1]Jiang Huaiyou,Song Xinmin,An Xiaoxuan,et al.Global shale gas resoureses and its  E & P technolodies[J].Natural Gas Technology,2008,2(6):26-31.
江怀友,宋新民,安晓璇,等.世界页岩气资源与勘探开发技术综述[J].天然气技术,2008,2(6):26-31.
[2]Zou Caineng,Dong Dazhong,Wang Shejiao,et al.Geological characteristic formation mechnism and resource potential of shale gas in China[J].Petroleum Exploration and Development,2010,37(6):641-659.
邹才能,董大忠,王社教,等.中国页岩气形成机理、地质特征及资源潜力[J].石油勘探开发,2010,37(6):641-659.
[3]Tong Xiaoguang.Significant and possibilities of improving the percentage of natural gas in energy struction in China[J].Natrual Gas Industry,2010,30(10):1-6.
童晓光.大力提高天然气在能源构成中比例的意义和可能性[J].天然气工业,2010,30(10):1-6.
[4]Zhang Jinchuan,Xu Bo,Nie Haikuan,et al.Exploration potential of shale gas resources in China[J].Natrual Gas Industry,2008,28(6):136-140.
张金川,徐波,聂海宽,等.中国页岩气资源勘探潜力[J].天然气工业,2008,28(6):136-140.
[5]Wu Y S.Liu H H,Bodvarsson G S.A triple-continuum approach for modeling flow and transport processes in fractured Rock[J].Journal of Contaminant Hydrology,2004(73):145-179.
[6]Schettler P D,Parmely C R,Lee W J.Gas storage and transport in devonian shales[J].SPE Formation Evaluation,1986,4(3):371-376.
[7]Xu B X,Manouchehr H,Li X F,et al.Development of new type curves for production analysis in naturally fractured shale gas/tight gas reservoirs[J].Journal of Petroleum Science and Engineering,2013(15):107-115.
[8]Ren Junjie,Guo Ping,Wang Delong,et al.Productivity model and its influence factors for the fracturing horizontal well in shale gas reservoir[J].Journal of Northeast Petroleum University,2012,36(6):76-81.
任俊杰,郭平,王德龙,等.页岩气藏压裂水平井产能模型及影响因素[J].东北石油大学学报,2012,36(6):76-81.
[9]Zhu Qin,Zhang Liehui,Zhang Boning,et al.Study of transient productivity decline for triple-porosity shale gas model by considering micro-fractures[J].Science Technology and Engineering,2013,13(9):8596-8599.
朱琴,张烈辉,张博宁,等.考虑微裂缝的页岩气藏三重介质不稳定产量递减研究[J].科学技术与工程,2013,13(9):8596-8599.
[10]Chen Z M,Liao X W,Zhao X L,et al.A semianalytical approach for obtaining type curves of multiple-fractured horizontal wells with secondary-fracture networks[J].SPE Journal,2016(1):148-161.
[11]Liu M J,Xiao C,Wang Y C,et al.Sensitivity analysis of geometry for multi-stage fractured horizontal wells with consideration of finite-conductivity fractures in shale gas reservoirs[J].Journal of Natural Gas Science and Engineering,2015,22(6):182-195.
[12]Zhou W,Banerjee R,Poe B D,et al.Semianalytical production simulation of complex hydraulic-fracture networks[J].SPE Journal,2014(1):123-136.
[13]Chen Zuo,Xue Chengjin,Jiang Tingxue,et al.Proposals for the application of fracturing by stimulated reservoir volume[J].Natural Gas Industry,2010,30(10):30-32.
陈作,薛承瑾,蒋廷学,等.页岩气井体积压裂技术在我国的应用建议[J].天然气工业,2010,30(10):30-32.
[14]Warren J E,Root P J.The behavior of naturally fractured reservoirs[J].SPE Journal,1963(3):245-255.
[15]Kazemi H.Pressure transient of naturally fractured reservoirs with uniform fracture distribution[J].SPE Journal,1969(4):451-462.
[16]Lee S H,Lough M F,Jensen C L.Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J].Water Resources Research,2001,37(3):443-455.
[17]Karimi-Fard M,Durlofsky L J,Aziz K.An efficient discrete-fracture model applicable for general-purpose reservoir simulators[J].SPE Journal,2004(2):214-235.
[18]Narasimhan T N,Pruess K.MINC:An Approach for Analyzing Transport in Strongly Heterogeneous Systems[M].Groundwater Flow and Quality Modelling.Netherlands:Springer,1987:375-391.
[1] 曾凡辉,王小魏,郭建春,郑继刚,李亚州,向建华. 基于连续拟稳定法的页岩气体积压裂水平井产量计算[J]. 天然气地球科学, 2018, 29(7): 1051-1059.
[2] 吕志凯,贾爱林,唐海发,刘群明,王泽龙. 大型致密砂岩气藏水平井产能评价与新认识[J]. 天然气地球科学, 2018, 29(6): 873-879.
[3] 卢文涛,李继庆,郑爱维,梁榜,张谦,杨文新. 涪陵页岩气田定产生产分段压裂水平井井底流压预测方法[J]. 天然气地球科学, 2018, 29(3): 437-442.
[4] 严谨,何佑伟,史云清,郑荣臣,程时清,于海洋,李鼎一. 致密气藏水平井压裂缝不均匀产气试井分析[J]. 天然气地球科学, 2017, 28(6): 839-845.
[5] 何岩峰,成景烨,窦祥骥,王相,唐波. 页岩天然裂缝网络渗透率模型研究[J]. 天然气地球科学, 2017, 28(2): 280-286.
[6] 乔霞,罗明高, 王洪峰,肖香姣,阳建平. #br# 一种利用生产动态历史评价异常高压气井产能的新方法[J]. 天然气地球科学, 2017, 28(12): 1908-1913.
[7] 朱维耀,马东旭,朱华银,安来志,李兵兵. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5): 892-897.
[8] 魏明强,段永刚,方全堂,李安豪,卢婷. 页岩气藏压裂水平井产量递减曲线分析法[J]. 天然气地球科学, 2016, 27(5): 898-904.
[9] 何军,范子菲,赵伦,宋珩,李孔绸,孔璐琳. 点汇离散法在压裂水平井产能评价中的应用[J]. 天然气地球科学, 2016, 27(1): 134-141.
[10] 李波,贾爱林,何东博,李学营. 低渗致密气藏压裂水平井产能预测新方法[J]. 天然气地球科学, 2015, 26(9): 1793-1802.
[11] 谢维扬,李晓平,张烈辉,王俊超,程子洋,袁淋. 页岩气多级压裂水平井不稳定产量递减探讨[J]. 天然气地球科学, 2015, 26(2): 384-390.
[12] 苏玉亮,张琪,张敏,王文东. 页岩气多重复合模型流动规律研究[J]. 天然气地球科学, 2015, 26(12): 2388-2394.
[13] 姜瑞忠,滕文超,乔欣,徐建春,孙召勃,郜益华,范海军. 复合页岩气藏压裂水平井压力动态分析[J]. 天然气地球科学, 2015, 26(12): 2336-2342.
[14] 魏明强,段永刚,李彦波,方全堂,姚陆峰. 存在大尺度天然裂缝的气藏数值试井分析方法[J]. 天然气地球科学, 2014, 25(5): 778-782.
[15] 杜殿发,王妍妍,张琼,乔妮,刘洋. 页岩气藏综合渗流模型及压力动态分析[J]. 天然气地球科学, 2014, 25(4): 612-617.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 韩中喜,李剑,严启团,垢艳侠,王淑英,葛守国,王春怡. 天然气汞含量作为煤型气和油型气判识指标的探讨[J]. 天然气地球科学, 0, (): 129 -133 .
[2] 戴金星,倪云燕,黄士鹏,龚德瑜,刘丹,冯子齐,彭威龙,韩文学. 次生型负碳同位素系列成因[J]. 天然气地球科学, 2016, 27(1): 1 -7 .
[3] 王鹏,刘四兵,沈忠民,黄飞,罗自力,陈飞. 四川盆地上三叠统气藏成藏年代及差异[J]. 天然气地球科学, 2016, 27(1): 50 -59 .
[4] 惠潇,楚美娟. 鄂尔多斯盆地中部延长组长9油层组2种砂体类型特征及成因分析[J]. 天然气地球科学, 2016, 27(1): 81 -91 .
[5] 姚泾利,王程程,陈娟萍,高岗,王飞雁,李晓凤,李佳烨,刘岩. 鄂尔多斯盆地马家沟组盐下碳酸盐岩烃源岩分布特征[J]. 天然气地球科学, 2016, 27(12): 2115 -2126 .
[6] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1 -13 .
[7] 杨振恒,魏志红,何文斌,范明,俞凌杰,徐二社,钱门辉. 川东南地区五峰组—龙马溪组页岩现场解吸气特征及其意义[J]. 天然气地球科学, 2017, 28(1): 156 -163 .
[8] 杨晓东,张苗,魏巍,李娟,傅雪海. 沁水盆地古县区块煤系“三气”储层孔隙特征对比[J]. 天然气地球科学, 2017, 28(3): 356 -365 .
[9] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781 -1796 .
[10] 钱凯,孙晓惠,许小琼,韩荣花,范云,魏星,昌新玲,任珠琳,崔亚亚. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学, 2017, 28(12): 1797 -1809 .