天然气地球科学

• 天然气地球化学 • 上一篇    下一篇

塔中地区中深1C井寒武系原油低聚硫代金刚烷含量分析

马安来,朱翠山,顾忆,李慧莉   

  1. 1.中国石油化工股份有限公司石油勘探开发研究院,北京 100083;
    2.长江大学资源与环境学院,湖北 武汉 430100
  • 收稿日期:2018-03-22 修回日期:2018-06-19 出版日期:2018-07-10 发布日期:2018-07-10
  • 作者简介:马安来(1969-),男,安徽淮南人,副教授,博士,主要从事油气地球化学与成藏机理研究.E-mail:maal.syky@sinopec.com.
  • 基金资助:
    国家自然科学基金项目(编号:41772153);中国石油化工股份有限公司科技部项目(编号:P16090;P17049-1)联合资助.
     

Concentrations analysis of lower thiadiamondoids of Cambrian oil from Well Zhongshen 1C of Tazhong Uplift,Tarim Basin,NW China

Ma An-lai,Zhu Cui-shan,Gu Yi1,Li Hui-li   

  1. 1.Sinopec Petroleum Exploration & Production Research Institute,Beijing 100083,China;
    (2.College of Resource and Environment,Yangtze University,Wuhan 430100,China
  • Received:2018-03-22 Revised:2018-06-19 Online:2018-07-10 Published:2018-07-10

摘要: 中深1井、中深1C井在塔里木盆地寒武系盐下获得油气突破,中寒武统阿瓦塔格组(∈2a)和下寒武统肖尔布拉克组(∈1x)原油在地球化学特征上存在较大差异。对中深1井 ∈2a原油和中深1C井∈1x原油进行银盐离子柱色层分离,获得含硫非烃,使用气相色谱—质谱方法在中深1C井原油含硫非烃检测出完整的低聚硫代金刚烷系列,包括硫代单金刚烷、硫代双金刚烷和硫代三金刚烷系列,分析了26个化合物的质谱特征,并与文献质谱特征进行对比。除了含有[M-SH]和[M-CH 3+]特征离子外,硫代金刚烷具有较强的分子离子,分子离子为硫代双金刚烷和硫代三金刚烷的基峰。使用D16-单金刚烷作为定量内标,中深1井、中深1C井寒武系原油中低聚硫代金刚烷含量分别为7.36μg/g、8 758.02μg/g,表明中深1C井肖尔布拉克组原油为强烈硫酸盐热化学还原作用(TSR)的残余油,而中深1井阿瓦塔格组原油基本未受TSR作用。中深1C井原油极高的金刚烷和二苯并噻吩系列化合物含量分别为83 872.20μg/g和57 212.5μg/g,而中深1井原油中金刚烷和二苯并噻吩系列化合物含量仅为2 180.27μg/g和421.3μg/g,进一步支持中深1C井寒武系原油经历了强烈的TSR作用。中深1C井肖尔布拉克组油气藏温度大于160℃,地层水中丰富的SO2-4、Mg2+为油气藏中的原油发生强烈TSR提供了条件。

关键词: 低聚硫代金刚烷, 硫代单金刚烷, 硫代双金刚烷, 硫代三金刚烷, 硫酸盐热化学还原反应(TSR), 中深1C井, 塔中隆起, 寒武系

Abstract: A breakthrough of deep petroleum exploration was achieved in the Cambrian pre-salt intervals of Wells ZS1 and ZS1C.However,the ZS1 oil from Awatage Formation of Middle Cambrian and ZS1C oil from Xiaoerbulake Formation of Lower Cambrian show great differences in the geochemical characteristics.Using sliver nitrate-impregnated silica chromatographic column,the sulfur-bearing non-hydrocarbon fractions were separated from the oils of Wells ZS1 and ZS1C.The complete lower thiadiamondoids series,including thiaadamantanes,thiadiamantanes and thiatrimantanes,were detected in ZS1C oil.The mass spectrum of over 26 compounds were analyzed and compared with the literatures.Except having [M-SH] and [M-CH+3] characterized ion,the lower thiadiamondoids have strong molecular ion,which is the base peak for the thiadiamantanes and thiatriamantanes.Using D16- adamantane as an internal standard,the lower thiadiamondoids concentrations of oils from Well ZS1 and ZS1C were 7.36μg/g,8 758.02μg/g respectively,suggesting that the ZS1C oil had suffered serious thermochemical sulfate reduction (TSR),whereas the degree of TSR of ZS1 oil is negligible.The concentrations of diamondoids and dibenzothiophene series (DBTs) of ZS1C oil were 83 872.20μg/g,57 212.5μg/g respectively,whereas the concentrations of diamondoids and DBTs of ZS1 oil from were only 2 180.27μg/g and 421.3μg/g,further support that the ZS1C oil is a residual oil of serious TSR alteration.The reservoir temperature of ZS1C from Xiaoerbulake Formation greater than 160℃,combined abundance concentration ions of SO2-4 and Mg2+in the formation water,both provided advantage condition for the ZS1C oil in the reservoir suffered the severely TSR.

Key words: Lower thiadiamondoids, Thiaadamantane, Thiadiamantane, Thiatriamantane, Thermochemical sulfate reduction(TSR), Well Zhongshen 1C, Tazhong Uplift, Cambrian

中图分类号: 

  • TE122.1+13

[1]Birch S F,Cullum T V,Dean R A,et al.Thiaadamantane[J].Nature,1952,170(4328):629-630.
[2]Hanin S,Adam P,Kowalewski I,et al.Bridgehead alkylated 2-thiaadamantanes:novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J].Chemical Communication,2002,16:1750-1751.
[3]Wei Zhibin.Molecular Organic Geochemistry of Cage Compounds and Biomarkers in the Geosphere:A Novel Approach to Understand Petroleum Evolution and Alteration[D].California:Stanford University,2006:274-309.
[4]Wei Zhibin,Walters C C,Moldowan J M,et al.Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J].Organic Geochemistry,2012,44:55-70.
[5]Wei Zhibin,Mankiewicz P,Walters C,et al.Natural occurrence of higher thiadiamondoids and diamondoidthiols in a deep petroleum reservoir in the Mobile Bay Gasfield[J].Organic Geochemistry,2011,42(2):121-133.
[6]Jiang Naihuang,Zhu Guangyou,Zhang Shuichang,et al.Detection of 2-thiaadamantanes in the oil from Well TZ-83 in Tarim Basin and its geological implication[J].Chinese Science Bulletin,2008,53(3):396-401.
姜乃煌,朱光有,张水昌,等.塔里木盆地塔中83井原油中检测出2-硫代金刚烷及其地质意义[J].科学通报,2007,52(24):2871-2875.
[7]Zhu Guangyou,Wang Huitong,Weng Na.TSR-altered oil with high abundance thiaadamantanes of a deep-buried Cambrian gas condensate reservoir in Tarim Basin[J].Marine and Petroleum Geology,2016,69:1-12.
[8]Zhu Guangyou,Zhang Shuichang,Huang Haiping,et al.Gas Genetic type and origin of hydrogen sulfide in the Zhongba Gasfield of the western Sichuan Basin,China[J].Applied Geochemistry,2011,26(7):1261-1273.
[9]Ma Anlai,Jin Zhijun,Zhu Cuishan.Detection and research significance of thiadiamondoids from crude oil in Well Shunnan 1,Tarim Basin[J].Acta Petrolei Sinica,2018,39(1):42-53.
马安来,金之钧,朱翠山.塔里木盆地顺南1井原油硫代金刚烷系列的检出及意义[J].石油学报,2018,39(1):42-53.
[10]Cai Chunfang,Xiao Qilin,Fang Chenchen,et al.The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin,NW China[J].Organic Geochemistry,2016,101:49-62.
[11]Cai Chunfang,Amrani A,Worden R H,et al.Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin,NW China[J].Geochimica et Cosmochimica Acta,2016,182:88-108.
[12]Wang Zhaoming,Xie Huiwen,Chen Yongquan,et al.Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J].China Petroleum Exploration,2014,19(2):1-13.
王招明,谢会文,陈永权,等.塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J].中国石油勘探,2014,19(2):1-13.
[13]Song Daofu,Wang Tieguan,Li Meijun.Geochemistry and possible origin of the hydrocarbons from Wells Zhongshen 1 and Zhongshen 1C,Tazhong Uplift[J].Science China:Earth Science,2016,59(4):840-850.
宋到福,王铁冠,李美俊.塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识[J].中国科学:地球科学,2016,46(1):107-117.
[14]Wang Daowei,Wang Tieguan,Li Meijun,et al.The distribution of chrysene and methylchrysenes in oils from Wells ZS5 and ZS1 in the Tazhong Uplift and its implications in oil-to-source correlation[J].Geochimica,2016,45(5):451-461.
王道伟,王铁冠,李美俊,等.塔中隆起中深5井与中深1井和烷基分布特征与油源启示[J].地球化学,2016,45(5):451-461.
[15]Zhu Guangyou,Huang Haiping,Wang Huitong.Geochemical and significance of discovery in Cambrian reservoirs at Well ZS1 of the Tarim Basin,northwest China[J].Energy & Fuels,2015,29(3):1332-1344
[16]Zhang Shuichang,Huang Haiping,Su Jin,et al.Geochemistry of Paleozoic marine petroleum from the Tarim Basin,NW China:Part 5.Effect of maturation,TSR and mixing on the occurrence and distribution alkyldibenzothiophenes[J].Organic Geochemistry,2015,86:5-18.
[17]Li Sumei,Amrani A,Pang Xiongqi,et al.Origin and quantitative source assessment of deep oils in the Tazhong Uplift,Tarim Basin[J].Organic Geochemistry,2015,78:1-22.
[18]Zhang Jizhi,Wang Zhaoming,Yang Haijun,et al.Origin and differential accumulation of hydrocarbons in Cambrian sub-salt dolomite reservoirs in Zhongshen area,Tarim Basin,NW China[J].Petroleum Exploration and Development,2017,44(1):40-47.
张纪智,王照明,杨海军,等.塔里木盆地中深地区寒武系盐下白云岩油气来源及差异聚集[J].石油勘探与开发,2017,44(1):40-47.
[19]Dahl J E,Moldowan J M,Peter K E,et al.Diamondoid hydrocarbons as indicators of natural oil cracking[J].Nature,1999,399(6731):54-56.
[20]Ma Anlai.New advancement in application of diamondoids on organic geochemistry[J].Natural Gas Geoscience,2016,27(5):851-860.
马安来.金刚烷类化合物在有机地球化学中的应用进展[J].天然气地球科学,2016,27(5):851-860.
[21]Gordadze G N.Geochemistry of cage hydrocarbons[J].Petroleum Chemistry,2008,48(4):241-253.
[22]Galimberti R,Zecchinello F,Nali M,et al.A fast method for detection of thiadiamondoids as molecular markers of themchemical sulfate reduction[C]//Gonzalwz-vila F J,Gonzalez-Perez J A,Almendros M G.Organic Geochemistry:Challenges for the 21st century.Vol.1.Book of Abstracts of communications presented to the 22nd International Meeting on Organic Geochemistry,Seville-Spain,2005:229-230.
[23]Worden R H,Smalley P C,Oxtoby N H.Gas souring by thermochemical sulfate reduction at 140℃[J].AAPG Bulletin,1995,79(6):854-863.
[24]Machel H G,Krouse H R,Sassen R.Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J].Applied Geochemistry,1995,10(4):373-389.
[25]Machel H G,Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J].Sedimentary Geology,2001,140(1),143-175.
[26]Tang Y C,Ellis G S,Zhang T W,et al.Effect of aqueous chemistry on the thermal stability of hydrocarbons in petroleum reservoirs[J].Geochimica et Cosmochimica Acta,2005,69(10):559.
[27]Zhang Shuichang,Su Jin,Huang Haiping,et al.Genetic origin of sour gas condensates in the Paleozoic dolomite reservoirs of the Tazhong Uplift,Tarim Basin[J].Marine and Petroleum Geology,2015,68(Part A):107-119.

[1] 朱光有,曹颖辉,闫磊,杨海军,孙崇浩,张志遥,李婷婷,陈永权. 塔里木盆地8 000m以深超深层海相油气勘探潜力与方向[J]. 天然气地球科学, 2018, 29(6): 755-772.
[2] 曹颖辉,李洪辉,闫磊,王洪江,张君龙,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带分段演化特征及其对生储盖组合的影响[J]. 天然气地球科学, 2018, 29(6): 796-806.
[3] 闫磊,李洪辉,曹颖辉,杨敏,赵一民. 塔里木盆地满西地区寒武系台缘带演化及其分段特征[J]. 天然气地球科学, 2018, 29(6): 807-816.
[4] 朱心健,陈践发,贺礼文,王艺繁,张威,张宝收,张科. 塔里木盆地麦盖提斜坡罗斯2井油气地球化学特征及油气源分析[J]. 天然气地球科学, 2017, 28(4): 566-574.
[5] 孙先如,贾超,李振生,李建勋,曹高社. 南华北盆地寒武系底部马店组气源岩演化的流体包裹体分析[J]. 天然气地球科学, 2017, 28(11): 1625-1636.
[6] 魏国齐,王志宏,李剑,杨威,谢增业. 四川盆地震旦系、寒武系烃源岩特征、资源潜力与勘探方向[J]. 天然气地球科学, 2017, 28(1): 1-13.
[7] 吴伟,罗冰,罗文军,王文之. 再论四川盆地川中古隆起震旦系天然气成因[J]. 天然气地球科学, 2016, 27(8): 1447-1453.
[8] 孟昊,任影,钟大康,高崇龙,高宙,王点,姜杨锦丰,李谨杰. 四川盆地东部寒武系龙王庙组地球化学特征及其古环境意义[J]. 天然气地球科学, 2016, 27(7): 1299-1311.
[9] 黄擎宇,胡素云,潘文庆,刘伟,张艳秋,石书缘,王坤. 塔里木盆地巴楚地区寒武系储层特征及主控因素[J]. 天然气地球科学, 2016, 27(6): 982-993.
[10] 谢增业,李志生,魏国齐,李剑,王东良,王志宏,董才源. 腐泥型干酪根热降解成气潜力及裂解气判识的实验研究[J]. 天然气地球科学, 2016, 27(6): 1057-1066.
[11] 郑兴平,张友,陈希光,杨钊,邵冠铭,白晓佳. 塔里木盆地东部碳酸盐岩储层特征与天然气勘探方向[J]. 天然气地球科学, 2016, 27(5): 765-771.
[12] 郑剑锋,陈永权,倪新锋,严威,黄理力,张艳秋. 基于CT成像技术的塔里木盆地寒武系白云岩储层微观表征[J]. 天然气地球科学, 2016, 27(5): 780-789.
[13] 杨福林,王铁冠,李美俊. 塔里木台盆区寒武系烃源岩地球化学特征[J]. 天然气地球科学, 2016, 27(5): 861-872.
[14] 崔海峰,田雷,张年春,刘军,张继娟. 塔西南坳陷寒武系玉尔吐斯组烃源岩分布特征[J]. 天然气地球科学, 2016, 27(4): 577-583.
[15] 张德民,鲍志东,郝雁,杨飞,陈敏,仲向云. 塔里木盆地牙哈_英买力寒武系潜山区优质储层形成模式[J]. 天然气地球科学, 2016, 27(10): 1797-1807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑建京;吉利明;孟仟祥;. 准噶尔盆地天然气地球化学特征及聚气条件的讨论[J]. 天然气地球科学, 2000, 11(4-5): 17 -21 .
[2] 付广;杨勉;. 盖层发育特征及对油气成藏的作用[J]. 天然气地球科学, 2000, 11(3): 18 -24 .
[3] 陈建阳,张志杰,于兴河 . AVO技术在水合物研究中的应用及应注意的问题[J]. 天然气地球科学, 2005, 16(1): 123 -126 .
[4] 王先彬;妥进才;周世新;李振西;张铭杰;闫宏;. 论天然气形成机制与相关地球科学问题[J]. 天然气地球科学, 2006, 17(1): 7 -13 .
[5] 倪金龙;夏斌;. 济阳坳陷坡折带组合类型及石油地质意义[J]. 天然气地球科学, 2006, 17(1): 64 -68 .
[6] 唐友军,文志刚,窦立荣,徐佑德. 一种估算原油成熟度的新方法[J]. 天然气地球科学, 2006, 17(2): 160 -162 .
[7] Cramer B;Faber E;Gerling P;Krooss B M;刘全有(译). 天然气稳定碳同位素反应动力学研究――关于干燥、开放热解实验中的思考[J]. 天然气地球科学, 2002, 13(5-6): 8 -18 .
[8] 郭精义,杨占龙,黄刚,杨立国. 潜江凹陷新农地区沉积微相特征与岩性油气藏[J]. 天然气地球科学, 2006, 17(2): 249 -255 .
[9] 朱志敏;沈冰;闫剑飞;. 阜新盆地无机成因气探讨[J]. 天然气地球科学, 2006, 17(3): 418 -421 .
[10] 付广;孟庆芬;. 断层封闭性影响因素的理论分析[J]. 天然气地球科学, 2002, 13(3-4): 40 -44 .