天然气地球科学

• 天然气地质学 • 上一篇    下一篇

断陷盆地扇三角洲朵叶“叠置型”沉积样式及其油气地质意义——以海拉尔盆地苏德尔特构造带兴安岭组Ⅰ、Ⅱ油组为例

崔鑫,李江海,姜洪福,王运增,齐林海 ,杨少英   

  1. 1.核工业北京地质研究院,遥感信息与图像分析技术国家级重点实验室,北京 100029;
    2.北京大学地球与空间科学学院,北京 100871;
    3.中国石油大庆油田有限责任公司海拉尔石油勘探开发指挥部,黑龙江 大庆 163453
  • 收稿日期:2017-10-18 修回日期:2018-03-19 出版日期:2018-05-10 发布日期:2018-05-10
  • 作者简介:崔鑫(1985-),男,黑龙江大庆人,工程师,博士,主要从事石油地质、构造地质与遥感地质等研究.E-mail:cuixin8868@163.com.
  • 基金资助:

    中国石油天然气股份有限公司项目“苏德尔特油田兴安岭、布达特油层已开发外扩潜力研究”(编号:DQYT-0516002-2014-JS-635);中国地质调查局国土资源航空物探遥感中心项目“准噶尔盆地东北缘航空高光谱油气信息提取示范及异常查证”(编号:遥DC1707)联合资助.

The “superimposed sedimentary type” of sandstone in fan delta in faulted-basin and its petroleum geologic significance:A case study of oil groups Ⅰ and Ⅱ in Xing’anling Formationof the Sudeerte structural belt,Hailar Basin

Cui Xin,Li Jiang-hai,Jiang Hong-fu,Wang Yun-zeng,Qi Lin-hai,Yang Shao-ying   

  1. 1.National Key Laboratory of Remote Sensing Information and Image Analysis Technique,Beijing Research Institute of Uranium Geology,CNNC,Beijing 100029,China;
    2.School of Earth and Space Science,Peking University,Beijing 100871,China;
    3.CNPC Hailar Exploration and Development Administration,Daqing Oilfield Company,Daqing 163453,China
  • Received:2017-10-18 Revised:2018-03-19 Online:2018-05-10 Published:2018-05-10

摘要:

综合运用单井岩性分析、测井特征对比,粒度分选特征分析,典型相标志识别等手段,结合前人研究,确定海拉尔盆地苏德尔特构造带下白垩统兴安岭组Ⅰ、Ⅱ油组为扇三角洲前缘沉积环境。有利于储层砂体发育的沉积微相包括:水下分流河道、水下天然堤、河口坝、前缘席状砂和浊积砂等。其中水下分流河道微相为主力储层砂体发育相。Ⅰ、Ⅱ油组存在3种砂体沉积样式,分别为“孤立型”“接触型”和“叠置型”。“孤立型”沉积样式主要发育在物源供给不足,但沉积空间充足的B28井区,具有扇体朵叶分散,河道砂体独立的特征;“接触型”沉积样式主要发育在物源供给充足且沉积空间充足的B14井区,具有朵叶侧向接触,河道砂体侧向相切的特征;“叠置型”沉积样式主要发育在物源供给充足且“窄而深”的B16井区,具有多期发育的扇体朵叶垂向叠置,侧向加积,河道砂体上下叠置,侧向相切的特征。建立区内扇三角洲“叠置型”沉积相模式,认为断陷盆地内“叠置型”沉积样式最有利于发育优质储层并储存油气。

关键词: &ldquo, 叠置型&rdquo, 沉积样式, 扇三角洲, 油气意义, 苏德尔特构造带, 海拉尔盆地

Abstract:

Based on well rock electrical characteristics analysis,particle size analysis,phase typical sign recognition,combined with previous studies,the Cretaceous Xing’anling Formation oil groups Ⅰ and Ⅱ in the Sudeerte structure belt were determined as fan delta front sedimentary environment.The main reservoir sands development includes underwater d9istributary channel microfacies,underwater natural levee,mouth bar,front sheet sand and turbidite sands phase.The underwater distributary channel microfacies are the developmental facies of the main reservoir sand body.Three major depositional patterns of fan lobes can be identified within this depositional system:(a)isolated lobes,(b) contact lobes and (c) superimposed lobes.The isolated lobes mainly developed in the B28 block,which was caused by the scarcity of sand and slowly increasing accommodation space.The contact lobes mainly developed in the B14 well block,which was caused by sufficient sediment supply and steadily increasing accommodation space across a wide area.The superimposed lobes mainly developed in the B16 block,which was caused by a sufficient sediment input,and steadily increasing accommodation space within a restricted area.In the whole study area,the superimposed lobe pattern is the most favorable depositional pattern forming the highest-quality reservoirs,because of the high degree of sand body connectivity.

Key words: Superimposed sedimentary, Fan dalta, Petroleum geologic significance, Sudeerte structural , belt, Hailar Basin

中图分类号: 

  • TE122.1

[1]Sun Yonghe,Han Yuping,Feng Zhipeng,et al.Fault systems and its control on hydrocarbon migration and accumulation in Beier Sag,Hailar Basin[J].Geological Review,2011,57(1):89-100.
孙永河,韩钰萍,冯志鹏,等.海拉尔盆地贝尔凹陷断裂系统及其对油气运聚的控制作用[J].地质论评,2011,57(1):89-100.
[2]Zhou Y,Ji Y,Pigott J D,et al.Tectono-stratigraphy of Lower Cretaceous Tanan Sub-Basin,Tamtsag Basin,Mongolia:Sequence architecture,depositional systems and controls on sediment infill[J].Marine and Petroleum Geology,2014,49(49):176-202.
[3]Fu Xiaofei,Dong Jing,Lv Yanfang,et al.Fault structural characteristics of Wuerxun-Beier Depression in the Hailar Basin and their reservoir-controlling mechanism[J].Acta Geologica Sinica,2012,86(6):877-889.
付晓飞,董晶,吕延防,等.海拉尔盆地乌尔逊—贝尔凹陷断裂构造特征及控藏机理[J].地质学报,2012,86(6):877-889.
[4]Yuan Jing,Wang Wei,Zhu Jianfeng,et al.Research on provenance and sedimentary facies of Yingcheng Formation in Lower Cretaceous in Longfengshan Subsag,Changling fault depression,Songliao Basin[J].Natural Gas Geoscience,2017,28(1):93-105.
袁静,王尉,朱建峰,等.松辽盆地长岭断陷龙凤山次凹下白垩统影城组物源与沉积相研究[J].天然气地球科学,2017,28(1):93-105.
[5]Li Zhandong,Bao Chuhui,Wang Dianju,et al.Controlling effect of structure palaeogeomorphology for sand bodies of Wuerxun-Beier Sag in Hailar Basin[J].Journal of Central South University:Science and Technology,2016,47(7):2357-2365.
李占东,鲍楚慧,王殿举,等.海拉尔盆地乌尔逊—贝尔凹陷构造—古地貌对沉积砂体的控制[J].中南大学学报:自然科学版,2016,47(7):2357-2365.
[6]Li Zhangdong,Yu Peng,Shao Biying,et al.Response analysis of sedimentary filling evolution and tectonic activity incomplicated faulted basin an example of middle rift belt in Hailar-Tamt Sag Basin[J].Journal of China University of Mining and Technology,2015,44(5):989-996.
李占东,于鹏,邵碧莹,等.复杂断陷盆地沉积充填演化与构造活动的响应分析——以海拉尔—塔木察格盆地中部断陷带为例[J].中国矿业大学学报,2015,44(5):989-996.
[7]Wang Jianping,Fan Tailiang,Wang Hongyu,et al.Reservoir heterogeneity characteristics in the framework of multi-grade base level cycle of the oil layers of Tongbomiao and Nantun Formations in the Sudeerte Oilfield[J].Earth Science Frontiers,2012,19(2):141-150.
王建平,樊太亮,王宏语,等.苏德尔特油田铜钵庙组—南屯组油层多级次基准面旋回格架中的储层非均质性特征[J],地学前缘,2012,19(2):141-150.
[8]Chen Jiecheng,Jiang Hongfu,Lei Youzhong,et al.Study on miscible CO2 flooding test in strong water-sensitive reservoirs in Sudert Oilfield[J].Xinjiang Petroleum Geology,2016,37(6):694-696.
程杰成,姜洪福,雷友忠,等.苏德尔特油田强水敏储集层CO2混相驱试验[J].新疆石油地质,2016,37(6):694-696.
[9]Xu Zhenzhong,Yao Jun,Wang Xibin,et al.Sedimentary microfacies and gas oil distribution in Ⅰ oil formation in Xing’anling Group,Sudeerte Oilfield[J].Natural Gas Geoscience,2008,19(5):680-684.
徐振中,姚军,王夕宾,等.海拉尔盆地苏德尔特油田兴安岭群Ⅰ油层组沉积微相及其含油气性[J].天然气地球科学,2008,19(5):680-684.
[10]Jia Zhenzhen,Lin Chengyan,Ren Lihua,et al.Diagenesis and reservoir quality evolution of low permeability tufaceous sandstones in Suderte Oilfield[J].Journal of Jilin University:Earth Science Edition,2016,46(6):1624-1636.
贾珍臻,林承焰,任丽华,等.苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J].吉林大学学报:地球科学版,2016,46(6):1624-1636.
[11]Allen M B,Macdonald D I M,Xun Z,et al.Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin,northern China[J].Marine and Petroleum Geology,1997,14(7/8):951-972.
[12]Chen Congyang,Gao Youfeng,Wu Haibo,et al.Zircon U-Pb chronology of volcanic rocks in the Hailar Basin,NE China and its geological implications[J].Earth Science,2016,41(8):1259-1274.
陈崇阳,高有峰,吴海波,等.海拉尔盆地火山岩的锆石U-Pb年龄及其地质意义[J].地球科学,2016,41(8):1259-1274.
[13]Ping Guidong,Lv Yanfang,Fan Limin,et al.Rules and main controlling factors of hydrocarbon enrichment of Wuerxun-Beier Depression,Hailaer Basin[J].Journal of Central South University:Science and Technology,2013,44(10):4167-4178.
平贵东,吕延防,范立民,等.海拉尔盆地乌尔逊—贝尔凹陷油气富集规律及主控因素分析[J].中南大学学报:自然科学版,2013,44(10):4167-4178.
[14]Liu Zhihong,Wan Chuanbiao,Ren Yanguang,et al.Geological features and the rule of oil and gas accumulation of Urxun-Beier Depression in Hailaer Basin[J].Journal of Jilin University:Earth Science Edition,2006,36(4):527-534.
刘志宏,万传彪,任延广,等.海拉尔盆地乌尔逊—贝尔凹陷的地质特征及油气成藏规律[J].吉林大学学报:地球科学版,2006,36(4):527-534.
[15]Cui Xin,Li Jianghai,Wang Yunzeng,et al.Characteristic and control factors of fracture development in the basement of Sudeerte structural belt,Hailaer Basin[J].Geological Review,2016,62(5):1257-1269.
崔鑫,李江海,王运增,等.海拉尔盆地苏德尔特构造带基底裂缝特征及控制因素[J].地质论评,2016,62(5):1257-1269.
[16]Sun Xiaomeng,Lu Baoliang,Zhang Meisheng,et al.Typical structural styles and deformation sequence in outcrop area of Hailaer Basin and its margin[J].Journal of Jilin University:Earth Science Edition,2011,41(supplement 1):1-8.
孙晓猛,鲁宝亮,张梅生,等.海拉尔盆地及盆缘露头区典型构造样式及变形序列[J].吉林大学学报:地球科学版,2011,41(增刊1):1-8.
[17]Zhang Junlong,Meng Qian,Qi Jiafu.Multi-stage structural deformation features and hydrocarbon accumulation in faulted basin:A case study in Nanbeier Sag of Hailar-Tamt Sag Basin[J].Petroleum Geology and Experiment,2012,34(4):368-375.
张君龙,蒙启安,漆家福.断陷盆地多期构造变形特征与油气聚集——以海拉尔—塔木察格盆地南贝尔凹陷为例[J].石油实验地质,2012,34(4):368-375.
[18]Nemec W,Steel R J.Gjelberg J,et al.Anatomy of collapsed and re-established delta font in Lower Cretaceous of eastern spitsbergen:Gravitational sliding and sedimentation processes[J].AAPG Bulletin,1988,72(4):454-476.
[19]Normark W R,Dickson F H.Sublacustrine fan morphology in Lake Superior[J].AAPG Bulletin,1976,60(7):1021-1036.
[20]Zhu Xiaomin.Sedimentary Petrology[M].Beijing:Petroleum Industry Press,2008.
朱筱敏.沉积岩石学[M].北京:石油工业出版社,2008.
[21]Passega R.Grain size representation by CM patterns as a geological tool[J].Journal of Sedimentary Research,1964,34(4):830-847.
[22]Passega R,Byramjee R.Grain-size image of clastic deposits[J].Sedimentology,1969,13(3/4):233-252.
[23]Tan C,Yu X,Li S,et al.Sedimentology and stratigraphic evolution of the fan delta at the Badaowan Formation(Lower Jurassic),southern Junggar Basin,northwest China[J].Arabian Journal of Geosciences,2016,9(2):115.
[24]Moustafa A R,Abdine S A.Tectonic Evolution and Structural Setting of the Suez Rift[C]∥Interior Rift Basins.AAPG Memoir 59.Tulsa:AAPG,1994:9-54.
[25]Reading H G,Richards M.Turbidite systems in deep-water basin margins classified by grain size and feeder system[J].AAPG Bulletin,1994,78(5):792-822.
[26]Jia J,Liu Z,Miao C,et al.Depositional model and evolution for a deep-water sublacustrine fan system from the syn-rift Lower Cretaceous Nantun Formation of the Tanan Depression(Tamtsag Basin,Mongolia)[J].Marine and Petroleum Geology,2014,57(2):264-282.
[27]Tian Jingchun,Zhang Xingliang,Wang Feng,et al.Quantitative characterization of superimposition relationship and distribution of reservoir sandbodies in the Upper Palaeozoic of Gaoqiao region,the Ordos Basin[J].Oil and Gas Geology,2013,34(6):737-742.
田景春,张兴良,王峰,等.鄂尔多斯盆地高桥地区上古生界储集砂体叠置关系及分布定量刻画[J].石油与天然气地质,2013,34(6):737-742.
[28]Feng Congjun,Bao Zhidong,Dai Chunming,et al.Superimposition patterns of underwater distributary channel sands in deltaic front and its control in remaining oil distribution:A case study from K1q4 in J19 block,Fuyu Oilfield[J].Oil and Gas Geology,2015,36(1):128-135.
封从军,鲍志东,代春明,等.三角洲前缘水下分流河道单砂体叠置机理及对剩余油的控制——以扶余油田J19区块泉头组四段为例[J].石油与天然气地质,2015,36(1):128-135.
[29]Ren Shuangpo,Yao Guangqing,Mao Wenjing.Genetic types and superimposition patterns of subaqueous distributary channel thin sandbodies in delta front:A case study from the Ⅳ-Ⅵ reservoir of H3 in Biqian 10 area of Gucheng Oilfield[J].Acta Sedimentologica Sinica,2016,34(3):582-593.
任双坡,姚光庆,毛文静.三角洲前缘水下分流河道薄层单砂体成因类型及其叠置模式——以古城油田泌浅10区核三段Ⅳ—Ⅵ油组为例[J].沉积学报,2016,34(3):582-593.
[30]Yin Yanshu,Liu Yuan.Analysis of the reservoir architecture of thick sandbody and its control on remaining oil in middle nearshore subaqueous fan-taking the 4th layer,3rd member,Hetaoyuan Formation,eocene,in Zhaowa Oilfield,Miyang Sag,Nanxiang Basin as an example[J].Geological Review,2017,63(3):703-718.
尹艳树,刘元.近岸水下扇扇中厚砂体储层构型及对剩余油控制——以南襄盆地泌阳凹陷古近系核桃园组三段四砂组2小层为例[J].地质论评,2017,63(3):703-718.
[31]Corella J P,Loizeau J L,Kremer K,et al.The role of mass-transport deposits and turbidites in shaping modern lacustrine deepwater channels[J].Marine and petroleum geology,2016,77:515-525.
[32]Meng Qian,Wan Chuanbiao,Zhu Defeng,et al.Age assignment and geological significance of the “Budate Group” in the Hailar Basin[J].Science China:Earth Sciences,2013,5(5):779-788.
蒙启安,万传彪,朱德丰,等.海拉尔盆地“布达特群”的时代归属及其地质意义[J].中国科学:地球科学,2013,5(5):779-788.
[33]Cui Xin,Li Jianghai,Jiang Hongfu,et al.Hydrocarbon accumulation in rifted basin tectonic units:A case study of Huoduomoer tectonic zone in the Hailaer Basin[J].Petroleum Geology and Experiment,2016,38(1):40-47.
崔鑫,李江海,姜洪福,等,断陷盆地内构造带对油气聚集的控制作用——以海拉尔盆地霍多莫尔构造带为例[J].石油实验地质,2016,38(1):40-47.
[34]Shan Jingfu,Ji Youliang,Jin Lihong,et al.Sedimentary facies characteristic of Nantun Formation in Tarnan-Southbell Depression[J].Journal of Central South University:Science and Technology,2013,44(1):241-250.
单敬福,纪友亮,金利红,等.塔南—南贝尔凹陷沉南屯组沉积相特征[J].中南大学学报:自然科学版,2013,44(1):241-250.

[1] 朱立文,王震亮,张洪辉. 鄂尔多斯盆地乌审召地区山2亚段致密气“甜点”控因分析[J]. 天然气地球科学, 2018, 29(8): 1085-1093.
[2] 程鸣,傅雪海,张苗,程维平,渠丽珍. 沁水盆地古县区块煤系“三气”储层覆压孔渗实验对比研究[J]. 天然气地球科学, 2018, 29(8): 1163-1171.
[3] 张广权,胡向阳,孙兵,贾跃玮. 松辽盆地龙凤山凝析气藏营四砂组沉积特征及控制因素分析[J]. 天然气地球科学, 2017, 28(4): 502-513.
[4] 王志荣,贺平,郭志伟,陈玲霞,徐培远. 水力压裂条件下“三软”煤层压裂渗透模型及应用[J]. 天然气地球科学, 2017, 28(3): 349-355.
[5] 崔鑫,李江海,姜洪福,许丽,张红伟,王辉. 海拉尔盆地苏德尔特构造带火山岩基底储层特征及成藏模式[J]. 天然气地球科学, 2016, 27(8): 1466-1476.
[6] 阿布力米提·依明,唐勇,曹剑,陈刚强,陈静,陶柯宇. 准噶尔盆地玛湖凹陷下三叠统百口泉组源外“连续型”油藏成藏机理与富集规律[J]. 天然气地球科学, 2016, 27(2): 241-250.
[7] 任东,董家辛,王志平,时文. 火山岩气藏气井生产动态规律及预测方法[J]. 天然气地球科学, 2016, 27(11): 2037-2042.
[8] 许多年,尹路,瞿建华,王斌,张磊,曲永强,陈雪珍. 低渗透砂砾岩“甜点”储层预测方法及应用——以准噶尔盆地玛湖凹陷北斜坡区三叠系百口泉组为例[J]. 天然气地球科学, 2015, 26(S1): 154-161.
[9] 史忠生,王天琦,方乐华,何巍巍,白洁,苏玉平,庞文珠. 南苏丹Melut裂谷盆地扇体的发现及油气意义[J]. 天然气地球科学, 2015, 26(1): 81-89.
[10] 国殿斌,万涛,徐怀民,彭君,慕小水,袁丽,罗俊军,梅冰. 相控作用下的去压实波阻抗反演方法在储层预测中的应用——以东濮凹陷濮城构造带沙三中亚段为例[J]. 天然气地球科学, 2014, 25(6): 906-913.
[11] 张亚雄,朱筱敏,张功成,陈欢庆. 中国南海琼东南盆地渐新统陵水组沉积特征[J]. 天然气地球科学, 2013, 24(5): 956-964.
[12] 林煜,吴胜和,岳大力,闫军生,李斌,王丽琼. 扇三角洲前缘储层构型精细解剖——以辽河油田曙2-6-6区块杜家台油层为例[J]. 天然气地球科学, 2013, 24(2): 335-344.
[13] 张玺华,林良彪,陈洪德,侯明才,陈安清. 扇三角洲沉积储层地震预测方法研究——以川东北元坝地区自流井组珍珠冲段为例[J]. 天然气地球科学, 2013, 24(2): 423-428.
[14] 历玉英,付晓飞,张明学. 松辽盆地徐家围子断陷断裂变形特征及控藏机理[J]. 天然气地球科学, 2012, 23(6): 979-988.
[15] 王洪求, 刘伟方, 郑多明, 敬兵, 董瑞霞, 张喜梅, 李胜军. 塔里木盆地奥陶系碳酸盐岩“非串珠状”缝洞型储层类型及成因[J]. 天然气地球科学, 2011, 22(6): 982-988.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!