天然气地球科学

• 综述与评述 • 上一篇    下一篇

有机硫同位素组成应用于油气来源和演化研究进展

蔡春芳   

  1. 1.中国科学院地质与地球物理研究所,中国科学院油气资源研究重点实验室,北京 100029;
    2.中国科学院大学地球科学院,北京 100049
  • 收稿日期:2017-11-01 修回日期:2018-01-30 出版日期:2018-02-10 发布日期:2018-02-10
  • 作者简介:蔡春芳(1966-),男,福建福清人,研究员,博士,主要从事沉积盆地流体—岩石相互作用研究.E-mail:cai_cf@yahoo.com.
  • 基金资助:
    国家自然科学基金重点项目“深层油气的来源和演化:单体化合物和碳硫同位素限定”(编号:41730424);国家科技重大专项“深层白云岩储层形成的主控因素与规模分布”(编号:2017ZX05008-003-040)联合资助.
     

Application of organic sulfur isotopic composition to petroleum origin and evolution:A review

Cai Chun-fang   

  1. 1.Key Lab of Petroleum Resources,Institute of Geology and Geophysics,CAS,Beijing 100029,China;
    2.College of Earth Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2017-11-01 Revised:2018-01-30 Online:2018-02-10 Published:2018-02-10

摘要:

得益于干酪根、单体化合物和微区有机硫同位素测试技术的成功开发,有机硫同位素组成现在已经很好地应用于确定沉积物中有机硫的起源。研究发现:①有机硫同位素组成大体上随地层年代具有稳态变化的趋势,近平行于海水年代曲线;②深埋油气藏中含有非烃源岩来源的有机硫,可形成于细菌硫酸盐还原(BSR)或热化学硫酸盐还原作用(TSR);TSR改造的原油富含硫代金刚烷且其硫同位素组成接近于储层硬石膏,而BSR改造的原油则不含硫代金刚烷,硫含量最高的原油却具有最低的全油和单体化合物的硫同位素值组成;③如果烃源岩生烃和油裂解作用发生在快速埋藏的相对封闭体系中,且原油和储层沥青没有受到TSR或BSR改造,那么可以应用有机硫同位素组成进行油、储层沥青与源岩对比,从而确定油气的来源。塔里木盆地在寒武纪—奥陶纪快速埋藏、快速生烃,一部分未受TSR改造的原油,其全油δ34S 值主要介于+14.8‰~+23.3‰之间(n=16),二苯并噻吩δ34S平均值介于+13.5‰~+21.6‰之间 (n=6),接近于下寒武统烃源岩的δ34S 值(+10.4‰~+21.6‰,n=15)。结合碳同位素和生物标志化合物分析,认为这些原油来自下寒武统烃源岩;而川东北地区东部长兴组和飞仙关组未受TSR改造的储层沥青,其δ34S值 和δ13C值分别介于+5.8‰~+9.6‰之间和-25.1‰~-27.3‰之间,可溶抽提物不含芳基类异戊二烯烷烃,这些特征与巴中—达州深水陆架泥岩源岩可以对比,表明裂解为天然气前的原油很可能来自龙潭组烃源岩。这些结果显示,有机硫同位素组成具有很好的应用前景。

关键词: 硫同位素, 有机质, 单体化合物, 热化学硫酸还原, 油气源对比, 油气次生变化

Abstract:

Organic sulfur geochemistry was poorly understood until significant advances in sulfur contents and isotopic composition measurement methods recently,however,few systematical review and summary has been published.This paper is to review the advance in the origin of organic sulfur in sediment and its application to petroleum origin and evolution.(1)Organic sulfur isotopic compositions are found to show a secular change with its depositional ages roughly parallel to the seawater sulfate δ34S-age trend;(2)organic sulfur compounds can be newly generated in the petroleum reservoirs by incorporating H2S of an origin of bacterial sulfate reduction (BSR)or thermochemical sulfate reduction (TSR)into hydrocarbons.TSR-altered petroleum contains high thiadiamondoids and has bulk and individual compounds δ34S values close to those of anhydrite in the reservoirs.In contrast,BSR-altered oils contain no detectable thiadiamondoids and have lightest bulk and individual compound δ34S values in the oil with the highest sulfur content.Thus BSR-altered oils can be distinguished from TSR-altered ones;(3)organic sulfur isotopic compositions can be used for oil-source rock and solid bitumen-source rock correlation purposes only for oils and solid bitumen not altered by BSR or TSR and for source rocks which were rapidly buried during oil generation and cracking.Tarim Basin was rapidly buried and hydrocarbon was generated during the Cambrian to Ordovician,among which a part of oils not altered by TSR show bulk δ34S values from +14.8‰ to +23.3‰ (n=16)and averaged DBTs from +13.5‰ to +21.6‰ (n=6),being close to those of kerogens from the Lower Cambrian source rocks (from +10.4‰ to +21.6‰,n=15).Based on these results along with carbon isotopes and biomarkers,these oils are considered to have been derived from the Lower Cambrian.The other case from the Northeast Sichuan Basin,where non-TSR altered solid bitumens in the Changxin and Feixianguan formations show δ34S and δ13C values from +5.8‰ to +9.6‰ and from -25.1‰ to -27.3‰,respectively,and there is no detectable aryl isoprenoids in the extractable organic matter.These features are well correlated with Upper Permian Longtan Fm.mudstone source rock in the Bazhong-Dazhou area,suggesting that the oil prior to being cracked to the solid bitumen and natural gases were derived from Longtan Formation.These results show that organic sulfur may have a good application prospect.

Key words: Sulfur isotopes, Organic matter, Individual compounds, Thermochemical sulfate reduction, Petroleum and source rock correlation, Petroleum alteration

中图分类号: 

  • TE122.1

[1]Canfield D E,Raiswell R.The evolution of the sulfur cycle[J].American Journal of Science,1999,299(7):697-723.
[2]Bottrell S H,Newton R J.Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J].Earth-Science Reviews,2006,75(1-4):59-83.
[3]Bottrell S H,Mortimer R J G,Davies I M,et al.Sulphur cycling in organic-rich marine sediments from a Scottish fjord[J].Sedimentology,2009,56(4):1159-1173.
[4]Werne J P,Hollander D J,Behrens A,et al.Timing of early diagenetic sulfurization of organic matter:A precursor-product relationship in Holocene sediments of the anoxic Cariaco Basin,Venezuela[J].Geochimica et Cosmochimica Acta,2000,64(10):1741-1751.
[5]Werne J P,Lyons T W,Hollander D J,et al.Reduced sulfur in euxinic sediments of the Cariaco Basin:Sulfur isotope constraints on organic sulfur formation[J].Chemical Geology,2003,195(1-4):159-179.
[6]Thode H G.Sulfur isotope ratios in petroleum research and exploration:Williston Basin[J].AAPG Bulletin,1981,65(9):1527-1535.
[7]Orr W L.Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils[J].Organic Geochemistry,1986,10(1):499-516.
[8]Manowitz B,Krouse H R,Barker C,et al.Sulfur Isotope Data Analysis of Crude Oils from the Bolivar Coastal Fields (Venezuela)[C].ACS Symposium Series,1990:592-612.
[9]Cai C F,Zhang C M,Cai L L.Origins of Palaeozoic oils in the Tarim Basin:Evidence from sulfur isotopes and biomarkers[J].Chemical Geology,2009,268(3/4):197-210.
[10]Cai C F,Li K K,Zhu Y M,et al.TSR origin of sulfur in Permian and Triassic reservoir bitumen,east Sichuan Basin,China[J].Organic Geochemistry,2010,41(9):871-878.
[11]Cai C F,Zhang C M,Worden R H,et al.Application of sulfur and carbon isotopes to oil-source rock correlation:A case study from the Tazhong area,Tarim Basin,China[J].Organic Geochemistry,2015,83-84:140-152.
[12]Cai C F,Amrani A,Worden R H,et al.Sulfur isotopic compositions of individual organosulfur compounds and their genetic links in the Lower Paleozoic petroleum pools of the Tarim Basin,NW China[J].Geochimica et Cosmochimica Acta,2016,182:88-108.
[13]Cai C F,Xiang L,Yuan Y Y,et al.Sulfur and carbon isotopic compositions of the Permian to Triassic TSR and non-TSR altered solid bitumen and its parent source rock in NE Sichuan Basin[J].Organic Geochemistry,2017,105:1-12.
[14]Cai C F,Xu C L,He W X,et al.Biomarkers and C and S isotopes of the Permian to Triassic solid bitumen and its potential source rocks in NE Sichuan Basin[J].Geofluids,2017(3):1-14.
[15]Dinur D,Spiro B,Aizenshtat Z.The distribution and isotopic composition of sulfur in organic-rich sedimentary rocks[J].Chemical Geology,1980,31(1/2):37-51.
[16]Goldberg T,Strauss H,Guo Q J,et al.Reconstructing marine redox conditions for the early Cambrian Yangtze Platform:Evidence from biogenic sulphur and organic carbon isotopes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(2):175-193.
[17]Cai C F,Li K K,Ma A L,et al.Distinguishing Cambrian from Upper Ordovician source rocks:Evidence from sulfur isotopes and biomarkers in the Tarim Basin[J].Organic Geochemistry,2009,40(7):755-768.
[18]Adam P,Philippe E,Albrecht P.Photochemical sulfurization of sedimentary organic matter:A widespread process occurring at early diagenesis in natural environments?[J].Geochimica et Cosmochimica Acta,1998,62(2):265-271.
[19]Werne J P,Lyons T W,Hollander D J,et al.Investigating pathways of diagenetic organic matter sulfurization using compound-specific sulfur isotope analysis[J].Geochimica et Cosmochimica Acta,2008,72(14):3489-3502.
[20]Lewan M D.Sulphur-radical control on petroleum formation rates[J].Nature,1998,391(6663):164-166.
[21]Amrani A.Organosulfur compounds:Molecular and isotopic evolution from biota to oil and gas[J].Annual Review of Earth & Planetary Sciences,2014,42(1):733-768.
[22]Cai C F,Worden R H,Wolff G A,et al.Origin of sulfur rich oils and H2S in Tertiary lacustrine sections of the Jinxian Sag,Bohai Bay Basin,China[J].Applied Geochemistry,2005,20(7):1427-1444.
[23]Méhay S,Adam P,Kowalewski I,et al.Evaluating the sulfur isotopic composition of biodegraded petroleum:The case of the western Canada sedimentary basin[J].Organic Geochemistry,2009,40(4):531-545.
[24]Peters K E,Walters C C,Moldowan J M.The Biomarker Guide,Second Edition Volume Ⅱ.Biomarkers & Isotopes in Petroleum Systems & Earth History [M].Cambridge:Cambridge University Press,2005:645-708.
[25]Zhang S C,Zhu G Y,Liang Y B,et al.Geochemical characteristics of the Zhaolanzhuang sour gas accumulation and thermochemical sulfate reduction in the Jixian Sag of Bohai Bay Basin[J].Organic Geochemistry,2005,36(12):1717-1730.
[26]Li M,Zhang S,Jiang C,et al.Two-dimensional gas chromatograms as fingerprints of sour gas-associated oils[J].Organic Geochemistry,2008,39(8):1144-1149.
[27]Hanin S,Adam P,Kowalewski I,et al.Bridgehead alkylated 2-thiaadamantanes:novel markers for sulfurisation processes occurring under high thermal stress in deep petroleum reservoirs[J].Chemical Communications,2002,33(49):1750.
[28]Wei Z,Moldowan J M,Fago F,et al.Origins of thiadiamondoids and diamondoidthiols in petroleum[J].Energy Fuels,2007,21(6):3431-3436.
[29]Cai C F,Xiao Q L,Fang C C,et al.The effect of thermochemical sulfate reduction on formation and isomerization of thiadiamondoids and diamondoids in the Lower Paleozoic petroleum pools of the Tarim Basin,NW China[J].Organic Geochemistry,2016,101:49-62.
[30]Machel H G,Krouse H R,Sassen R.Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J].Applied Geochemistry,1995,10(4):373-389.
[31]Ma Q S,Ellis G S,Amrani A,et al.Theoretical study on the reactivity of sulfate species with hydrocarbons[J].Geochimica et Cosmochimica Acta,2008,72(18):4565-4576.
[32]Zhang T W,Amrani A,Ellis G S.Experimental investigation on thermochemical sulfate reduction by H2S initiation[J].Geochimica et Cosmochimica Acta,2008,72(14):3518-3530.
[33]Cai C F,He W X,Jiang L,et al.Petrological and geochemical constraints on porosity difference between Lower Triassic sour-and sweet-gas carbonate reservoirs in the Sichuan Basin[J].Marine and Petroleum Geology,2014,56:34-50.
[34]Manzano B K,Fowler M G,Machel H G.The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs,Brazeau river area,Alberta,Canada[J].Organic Geochemistry,1997,27(7/8):507-521.
[35]Cai C F,Worden R H,Bottrell S H,et al.Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin,China[J].Chemical Geology,2003,202(1/2):39-57.
[36]Li S M,Shi Q,Pang X Q,et al.Origin of the unusually high dibenzothiophene oils in Tazhong-4 Oilfield of Tarim Basin and its implication in deep petroleum exploration[J].Organic Geochemistry,2012,48(7):56-80.
[37]Amrani A,Deev A,Sessions A L,et al.The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction[J].Geochimica et Cosmochimica Acta,2012,84(4):152-164.
[38]Krouse H R,Viau C A,Eliuk L S,et al.Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J].Nature,1988,333(6172):415-419.
[39]Pan C C,Yu L P,Liu J Z.Chemical and carbon isotopic fractionations of gaseous hydrocarbons during abiogenic oxidation[J].Earth & Planetary Science Letters,2006,246(1-2):70-89.
[40]Cai C F,Zhang C M,He H,et al.Carbon isotope fractionation during methane-dominated TSR in east Sichuan Basin gasfields,China:A review[J].Marine & Petroleum Geology,2013,48:100-110.
[41]Liu Quanyou,Jin Zhijun,Wu Xiaoqi,et al.Discussion on the genesis of sulfide in H2S natural gas in Sichuan Basin[J].Natural Gas Geoscience,2014,25(1):33-38.
刘全有,金之钧,吴小奇,等.四川盆地含H2S天然气中硫化物成因探讨[J].天然气地球科学,2014,25(1):33-38.
[42]Sassen R.Geochemical and carbon isotopic studies of crude oil destruction,bitumen precipitation,and sulfate reduction in the deep Smackover Formation[J].Organic Geochemistry,1988,12(4):351-361.
[43]Cai C F,Xiang L,Yuan Y Y,et al.Marine C,S and N biogeochemical processes in the redox-stratified Early Cambrian Yangtze ocean[J].Journal of the Geological Society (London),2015,172 (3):390-406.
[44]Ardakani O H,Chappaz A,Sanei H,et al.Effect of thermal maturity on remobilization of molybdenum in black shales[J].Earth & Planetary Science Letters,2016,449:311-320.
[45]Seewald J S.Aqueous geochemistry of low molecular weight hydrocarbons at elevated temperatures and pressures:Constraints from mineral buffered laboratory experiments[J].Geochimica et Cosmochimica Acta,2001,65(10):1641-1664.
[46]Idiz E F,Tannenbaum E,Kaplan I R.Pyrolysis of High-sulfur Monterey Kerogens[C].ACS Symposium Series,1990:575-591.
[47]Amrani A,Lewan M D,Aizenshtat Z.Stable sulfur isotope partitioning during simulated petroleum formation as determined by hydrous pyrolysis of Ghareb Limestone,Israel[J].Geochimica et Cosmochimica Acta,2005,69(22):5317-5331.
[48]Claypool G E,Holser W T,Kaplan I R,et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J].Chemical Geology,1980,28:199-260.
[49]Premuzic E T,Gaffney J S,Manowitz B.The importance of sulfur isotope ratios in the differentiation of Prudhoe Bay crude oils[J].Journal of Geochemical Exploration 1986,26:151-159.
[50]Engel M H,Zumberge J E.Secular change in the stable sulfur isotope composition of crude oils relative to marine sulfates and sulfides[C]//Abstracts of International Meeting of Organic Geochemistry 2007,September 19-24,O38,Torquay,UK.2007:523-524.
[51]Thode H G,Monster J,Dunfort B.Sulphur isotope abundance in petroleum and associated Materials[J].American Association of Petroleum Geologists Bulletin,1958,42:2619-2641.
[52]Lur’e M A,Shmidt F K.Carbon and sulfur isotopes as geochemical keys to the origin of petroleum[J].Chemistry and Technology of Fuels and Oils,2009.45(3):189-192.
[53]Wei Z B,Walters C C.et al.Thiadiamondoids as proxies for the extent of thermochemical sulfate reduction[J].Organic Geochemistry,2012,44:53-70.
[54]Aizenshat Z,Amrani A.Significance of δ34S and evaluation of its impact on sedimentary organic matter:Ⅱ.Thermal changes of type Ⅱ-S kerogens catagenetic stage controlled mechanisms.Study and conceptual overview[C]//Hill R J,et al.eds.,Geochemical Investigations:A tribute to Isaac R.Kaplan,Special Publication 8.Geochemical Society,2004:35-50.
[55]Gaffney J S,Premuzic E T,Manowitz B.On the usefulness of sulfur isotope ratios in crude oil correlations[J].Geochim.Cosmochim Acta,1980,44:135-139.
[56]Orr W L.Changes inthe sulfur content and isotopic ratios of sulfur during petroleum Maturation- study of Big Horn Basin Paleozoic oil[J].AAPG Bulletin,1974,58:2295-2318.
[57]Hao F,Guo T L,Zhu Y M,et al.Evidence for multiple stages of oil cracking and thermochemical sulfate reduction in the Puguang Gas Field,Sichuan Basin,China[J].AAPG Bulletin,2008,92(5):611-637.
[58]Jia W L,Wang Q L,Peng P A,et al.Isotopic compositions and biomarkers in crude oils from the Tarim Basin:Oil maturity and oil mixing[J].Organic Geochemistry,2013,57(4):95-106.
[59]Huang H,Zhang S,Su J.Palaeozoic oil-source correlation in the Tarim Basin,NW China:A review[J].Organic Geochemistry,2016,94:32-46.

[1] 王朋飞,姜振学,吕鹏,金璨,李鑫,黄璞. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学, 2018, 29(7): 997-1008.
[2] 邱 振,邹才能,李熙喆,王红岩,董大忠,卢斌,周尚文,施振生,冯子齐,张梦琪. 论笔石对页岩气源储的贡献——以华南地区五峰组—龙马溪组笔石页岩为例[J]. 天然气地球科学, 2018, 29(5): 606-615.
[3] 王涛利,郝爱胜,陈清,李,王庆涛,卢鸿,刘大永. 中扬子宜昌地区五峰组和龙马溪组页岩发育主控因素[J]. 天然气地球科学, 2018, 29(5): 616-631.
[4] 王宏坤,吕修祥,王玉满,慕瑄,张琰,钱文文,陈佩佩. 鄂西下志留统龙马溪组页岩储集特征[J]. 天然气地球科学, 2018, 29(3): 415-423.
[5] 刘佳宜,刘全有,朱东亚,孟庆强,刘文汇,邱登峰,黄振凯. 深部流体在富有机质烃源岩形成中的作用[J]. 天然气地球科学, 2018, 29(2): 168-177.
[6] 康毅力,白佳佳,游利军. 有机质含量对页岩声波传播特性的影响[J]. 天然气地球科学, 2017, 28(9): 1341-1349.
[7] 刘英杰,黄传炎,岳家恒,郭来源. 陆相湖盆层序地层格架内有机质发育及控制因素分析——以中上扬子建南地区侏罗系东岳庙段为例[J]. 天然气地球科学, 2017, 28(6): 930-938.
[8] 祁帅,李贤庆,何坤,张光武,陈金明,高文杰,梁万乐. 不同类型有机质热演化轻烃产率及组成特征对比[J]. 天然气地球科学, 2017, 28(6): 975-986.
[9] 朱心健,陈践发,贺礼文,王艺繁,张威,张宝收,张科. 塔里木盆地麦盖提斜坡罗斯2井油气地球化学特征及油气源分析[J]. 天然气地球科学, 2017, 28(4): 566-574.
[10] 罗情勇,郝婧玥,李可文,戴娜,栾进华,程礼军,张志平,胡科,钟宁宁. 重庆地区五峰组—龙马溪组页岩笔石光学特征及其在成熟度评价中的应用[J]. 天然气地球科学, 2017, 28(12): 1855-1863.
[11] 张廷山,何映颉,杨洋,伍坤宇. 有机质纳米孔隙吸附页岩气的分子模拟[J]. 天然气地球科学, 2017, 28(1): 146-155.
[12] 王淑芳,张子亚,董大忠,王玉满,李新景,胡俊文,黄金亮,管全中. 四川盆地下寒武统筇竹寺组页岩孔隙特征及物性变差机制探讨[J]. 天然气地球科学, 2016, 27(9): 1619-1628.
[13] 马卫,李剑,王东良,王义凤,马成华,王志宏,杜天威. 烃源岩排烃效率及其影响因素[J]. 天然气地球科学, 2016, 27(9): 1742-1751.
[14] 袁伟,柳广弟,罗文斌,李超正,徐黎明,牛小兵,艾嘉怡. 鄂尔多斯盆地长7段富有机质页岩中磷灰石类型及其成因[J]. 天然气地球科学, 2016, 27(8): 1399-1408.
[15] 耳闯,赵靖舟,王芮,张杰,袁野,沈武显. 鄂尔多斯盆地三叠系延长组富有机质页岩孔隙特征及发育机制[J]. 天然气地球科学, 2016, 27(7): 1202-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!